离心泵基础知识工作原理
- 格式:docx
- 大小:696.27 KB
- 文档页数:22
水泵基础必学知识点
1. 水泵的工作原理:水泵通过旋转叶轮产生离心力,将液体引入泵体,并通过压力差将液体推出泵体,实现液体的输送。
2. 水泵的分类:常见的水泵有离心泵、柱塞泵、螺杆泵、自吸泵等。
根据用途和工作原理的不同,水泵还可分为给水泵、排水泵、清洁水泵、污水泵等。
3. 水泵的选型:在选择水泵时需要考虑液体的性质、流量需求、扬程
要求等因素。
根据这些需求来确定合适的水泵类型和规格。
4. 水泵的性能参数:常见的水泵性能参数有流量、扬程、功率、效率等。
这些参数反映了水泵的工作能力和效果。
5. 水泵的安装与维护:水泵的安装要求水平稳固,进出口管道连接牢固,且有足够的密封。
在使用过程中需要定期检查维护,如清理进出口、更换密封件、检修电机等。
6. 水泵的故障排除:水泵可能出现各种故障,如启动困难、流量减小、压力下降等。
故障排除需要根据具体情况进行检查,在检查时需要注
意安全措施。
7. 水泵的节能措施:水泵的运行主要消耗电能,因此节能对于降低运
行成本和保护环境都非常重要。
可以采取的节能措施包括选择高效水泵、优化系统设计、合理调整运行参数等。
8. 水泵的应用领域:水泵广泛应用于工农业生产和生活领域,例如给水、供暖、农田灌溉、污水处理、工业生产等。
不同应用领域需要不
同类型的水泵。
这些是水泵基础必学的知识点,希望对你有所帮助!。
机泵基础知识及操作注意事项机泵是一种将机械运动转化为流体动能的设备,广泛应用于工业生产中的液体输送和压力增加。
可能涉及的基础知识和操作注意事项包括机泵的分类、结构组成、工作原理、使用范围、安装要点、操作要点和维护保养。
一、机泵的基础知识1.机泵的分类:-按照工作原理可分为离心泵、容积泵和潜水泵等。
-按照结构形式可分为单级泵和多级泵。
-按照泵的用途可分为清水泵、污水泵、化工泵等。
2.机泵的结构组成:-泵体:一般为铸铁、不锈钢或塑料制成。
-叶轮:旋转产生流动压力的部分。
一般有封闭式、半封闭式和开式叶轮等类型。
-泵轴:传递机械能量的部分,连接电机和叶轮。
-密封装置:防止泵内介质泄漏的装置,一般包括填料密封和机械密封两种形式。
3.机泵的工作原理:-离心泵通过叶轮的旋转产生离心力,使流体产生压力差,推动流体流动。
-容积泵通过改变腔体容积,实现对流体的吸入、排放和压缩。
-潜水泵则是将电机和泵体封装在一起,通过电机带动叶轮旋转,推动流体流动。
4.机泵的使用范围:-工业生产中的液体输送和压力增加。
-农业灌溉、城市给排水和污水处理。
-供热系统、供暖系统和空调系统等。
1.安装要点:-泵的基础应坚固平整,泵底不得有垫铁等物块。
-泵出口要连接管道,管道布局要合理,避免出现过长、过弯或过窄的情况。
-泵入口要设置过滤装置,避免固体杂质进入泵内损坏叶轮。
-泵与电机的轴线要保持一致,联轴器安装要牢固。
2.操作要点:-操作前要检查泵的各部件是否正常,特别是密封装置是否完好。
-启动前,应向泵内注入润滑液和冲洗液,确保泵正常运行。
-启动时应逐渐开启进口阀门,保持流量与额定值相符。
-使用中发现异常响声、温度升高等情况时,应立即停止使用并检查原因。
3.维护保养:-维护保养前要切断电源,并进行泵的完全排空。
-定期检查泵体和管道系统是否有渗漏、生锈、腐蚀等现象。
-定期检查泵轴的轴承和密封装置是否灵活有效,如有问题及时更换。
-泵停机后,应清洗泵体内部,特别是叶轮和泵腔内的杂物。
离心泵基础知识工作原理在化工和石油部门的生产中,原料、半成品和成品大多是液体或气体,而将原料制成半成品和成品,需要经过复杂的工艺过程,在这个过程中需要输送这些液体或气体,为这些工艺过程提供所需的压力和流量,输送液体的动设备习惯上称之为泵类;输送气体的动设备习惯上称之为压缩机类。
泵与压缩机有很多的种类,按照泵与压缩机的工作原理可以分为速度式与容积式,在速度式中,又可以分为叶片式与喷射式,叶片式又可以分为离心式、混流式、轴流式,最常见的是离心式;容积式可以分为回转式与往复式,往复式本可以分为活塞式与隔膜式。
一、离心泵1.离心泵的工作原理叶轮安装在泵壳2内,并紧固在泵轴3上,泵轴由电机直接带动。
泵壳中央有一液体吸入管4与吸入管5连接。
液体经底阀6和吸入管进入泵内。
泵壳上的液体排出口8与排出管9连接。
在泵启动前,泵壳内灌满被输送的液体;启动后,叶轮由轴带动高速转动,叶片间的液体也必须随着转动。
在离心力的作用下,液体从叶轮中心被抛向外缘并获得能量,以高速离开叶轮外缘进入蜗形泵壳。
在蜗壳中,液体由于流道的逐渐扩大而减速,又将部分动能转变为静压能,最后以较高的压力流入排出管道,送至需要场所。
液体由叶轮中心流向外缘时,在叶轮中心形成了一定的真空,由于贮槽液面上方的压力大于泵入口处的压力,液体便被连续压入叶轮中。
可见,只要叶轮不断地转动,液体便会不断地被吸入和排出。
2. 气缚现象当泵壳内存有空气,因空气的密度比液体的密度小得多而产生较小的离心力。
从而,贮槽液面上方与泵吸入口处之压力差不足以将贮槽内液体压入泵内,即离心泵无自吸能力,使离心泵不能输送液体,此种现象称为“气缚现象”。
为了使泵内充满液体,通常在吸入管底部安装一带滤网的底阀,该底阀为止逆阀,滤网的作用是防止固体物质进入泵内损坏叶轮或防碍泵的正常操作。
3. 离心泵的结构3.1 泵壳泵壳有轴向剖分式和径向剖分式两种。
大多数单级泵的壳体都是蜗壳式的,多级泵径向剖分壳体一般为环形壳体或圆形壳体。
一般蜗壳式泵壳内腔呈螺旋型液道,用以收集从叶轮中甩出的液体,并引向扩散管至泵出口。
泵壳承受全部的工作压力和液体的热负荷。
3.2 叶轮叶轮是唯一的作功部件,泵通过叶轮对液体作功。
叶轮型式有闭式、开式、半开式三种。
闭式叶轮由叶片、前盖板、后盖板组成。
半开式叶轮由叶片和后盖板组成。
开式叶轮只有叶片,无前后盖板。
闭式叶轮效率较高,开式叶轮效率较低。
(见下图)3.3 密封部件密封部件的作用是防止泵的内泄漏和外泄漏,对于多级离心泵而言,级间内漏会严重影响泵的效率,控制泵的内泄漏的密封部件称作密封环或口环,由耐磨材料制成的密封环,镶于叶轮前后盖板和泵壳上,磨损后可以更换。
控制泵的外泄漏的密封部件有填料密封、机械密封、浮环密封、干气密封(在下面的内容中介绍)。
3.4 轴和轴承轴是组成一台泵转动的基础部件,轴承是提供泵旋转及支撑泵轴的部件,轴承常见的种类是滚动轴承、滑动轴承。
4. 离心泵的密封4.1 填料密封填料密封类似于阀门的压兰,由于需要适当的松紧度,因此会有一定程度的泄漏,一般在无污染性介质条件下使用。
4.2 机械密封机械密封是靠一对或数对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力(或磁力)作用下保持贴合并配以辅助密封而达到阻漏的轴封装置。
动环与静环之间的密封:是靠弹性元件(弹簧、波纹管等)和密封液体压力在相对运动的动环和静环的接触面(端面)上产生一适当的压紧力(比压)使两个光洁、平直的端面紧密贴合;端面间维持一层极薄的液体膜而达到密封的作用。
这层膜具有液体动压力与静压力,它起着平衡压力和润滑端面的作用。
两端面之所以必须高度光洁平直是为了给端面创造完美贴合和使比压均匀的条件,这是相对旋转密封。
示意图如下:机械密封的安装使用注意事项:1)、设备转轴的径向跳动应≤0.04毫米,轴向窜动量不允许大于0.1毫米;2)、设备的密封部位在安装时应保持清洁,密封零件应进行清洗,密封端面完好无损,防止杂质和灰尘带入密封部位;3)、在安装过程中严禁碰击、敲打,以免使机械密封摩擦付破损而密封失效;4)、安装时在与密封相接触的表面应涂一层清洁的机械油,以便能顺利安装;5)、安装静环压盖时,拧紧螺丝必须受力均匀,保证静环端面与轴心线的垂直要求;6)、安装后用手推动动环,能使动环在轴上灵活移动,并有一定弹性;7)、安装后用手盘动转轴、转轴应无轻重感觉;8)、设备在运转前必须充满介质,以防止干摩擦而使密封失效;9)、对易结晶、颗粒介质,对介质温度>80oC时,应采取相应的冲洗、过滤、冷却措施,各种辅助装置请参照机械密封有关标准。
10)、安装时在与密封相接触的表面应涂一层清洁的机械油,要特别注意机械油的选择对于不同的辅助密封材质,避免造成O型圈侵油膨胀或加速老化,造成密封提前失效。
4.3 干气密封一般来讲,典型的干气密封结构包含有静环、动环组件(旋转环)、副密封O形圈、静密封、弹簧和弹簧座(腔体)等零部件。
静环位于不锈钢弹簧座内,用副密封O形圈密封。
弹簧在密封无负荷状态下使静环与固定在转子上的动环组件配合,如图1所示在动环组件和静环配合表面处的气体径向密封有其先进独特的方法。
配合表面平面度和光洁度很高,动环组件配合表面上有一系列的螺旋槽,如图2所示。
随着转子转动,气体被向内泵送到螺旋槽的根部,根部以外的一段无槽区称为密封坝。
密封坝对气体流动产生阻力作用,增加气体膜压力。
该密封坝的内侧还有一系列的反向螺旋槽,这些反向螺旋槽起着反向泵送、改善配合表面压力分布的作用,从而加大开启静环与动环组件间气隙的能力。
反向螺旋槽的内侧还有一段密封坝,对气体流动产生阻力作用,增加气体膜压力。
配合表面间的压力使静环表面与动环组件脱离,保持一个很小的间隙,一般为3微米左右。
当由气体压力和弹簧力产生的闭合压力与气体膜的开启压力相等时,便建立了稳定的平衡间隙。
在动力平衡条件下,作用在密封上的力如图3所示。
闭合力Fc,是气体压力和弹簧力的总和。
开启力Fo是由端面间的压力分布对端面面积积分而形成的。
在平衡条件下Fc=Fo,运行间隙大约为3微米。
如果由于某种干扰使密封间隙减小,则端面间的压力就会升高,这时,开启力Fo大于闭合力Fc,端面间隙自动加大,直至平衡为止。
如图4所示。
类似的,如果扰动使密封间隙增大,端面间的压力就会降低,闭合力Fc 大于开启力Fo,端面间隙自动减小,密封会很快达到新的平衡状态,见图5。
干气密封的使用要点:密封面之间的气源必须保证,转动情况下失去气源肯定导致密封损坏。
4.4 浮环密封浮动环密封的原理是靠高压密封油在浮环与轴套间形成油膜,节流降压,阻止高压侧气体流向低压侧,将气体封住。
因为主要是油膜起作用,故又称为油膜密封。
在工作时浮环受力情况与轴承相似,所不同的是:轴承浮起的是轴,对浮环密封而言,由于浮环重量很小,故轴转动而在浮环与轴间隙中产生油膜浮力时,浮起的将是浮环,轴是相对固定的。
根据轴承油膜原理知道,如浮环与轴完全同心,则不会产生油膜浮力,如浮环与轴偏心,则轴转动时将会产生油膜浮力,这种浮力使浮环浮起而使偏心减小。
当偏心减小到一定程度,即对应产生的浮力正好与浮环重量相等时,便达到了动态平衡。
由于浮环很轻,因此这个动态平衡时的偏心是很小的,即浮环会自动与轴保持基本同心,这是浮环的特点。
浮环密封是由高压环、低压环、防转销、辅助O型密封环等组成。
高压环的作用是利用密封油在浮环与轴套间形成的油膜,阻止所密封气体通过浮环与轴套间的间隙外漏,但会有少量油从此间隙中向密封气体侧泄漏,因高压环两侧压差较小,所以高压环一般为一道。
低压环的作用是利用密封环油在浮环与轴套间形成的油膜,产生节流降压,阻止密封油流向低压侧,起减少密封油消耗、使密封油保压的作用,因低压环两侧压差较大(低压环外侧一般同大气连通),为防止泄油量过大,视情况低压环可选用多道。
防转销的作用是防止浮环随轴转动,但同时防转销又不影响浮环正常浮起。
O形密封环的作用是防止密封油从浮环和壳体间的接触面处泄漏,为辅助密封。
从浮环的结构看,目前采用较多的是L形环。
用L形环可以缩短密封轴向尺寸,但端面密封面难于研磨,不能直接接触来封油,而常用O形密封圈密封,这样就增加了端面摩擦力,对浮环的浮动不利。
另外,由于浮环壁薄,加工时容易出现椭圆度,而且运转时受力不均,容易产生偏斜。
用矩形环可以克服上述缺点,但要增加密封的轴向尺寸。
从工作条件来看,高压侧浮环工作条件要恶劣得多,第一,浮环的两侧压差很小,一般为约0.06MPa;第二、为提高密封效果,间隙一般尽可能减少,因此,高压侧的漏油量比低压侧要小得多,一般要少1000~2000倍。
高压浮环运转时产生的大量的热量不能被油及时带走,使高压环和油的温度很高,容易引起抱轴等现象使浮环损坏。
(为了解决这个问题,必须加强高压侧浮环的冷却,例如,在高压环上钻一些冷却孔,让油先冲刷高压环的外壁,然后绝大部分油经过冷却孔从高压侧环流过,加强了冷却效果,试验证明对提高浮环的运转可靠性和减小污油耗量都是有利的。
为加强高压环冷却,也可以在高压环上开径向沟槽和采取其他措施。
为了提高密封处轴的耐磨性,一般在轴上加轴套,并在轴套上涂一层耐磨材料)。
5、离心泵的径向力与轴向力离心泵的径向力由壳体承受,由于介质有水利轴承的作用,在细长轴结构的立式多级离心泵中,此水力轴承作用尤为重要,如下图举例说明例如烯烃车间P2017泵的运行,为防止水力轴承作用减弱,应严格控制K2001机组透平复水器的液位,防止汽蚀产生。
在单级悬臂式离心泵中,轴向力由推力轴承承受;在多级卧式离心泵中,轴向力由平衡鼓、平衡盘承受,有的多级卧式离心泵有平衡鼓、平衡盘组合的轴向力平衡装置;平衡鼓不能调节轴向力,平衡盘可以跟踪转子位置,进行轴向力调节,叶轮轴向力的产生机理及平衡原理见下列图示说明:由平衡室泄漏的介质由外部管路引回离心泵第一级入口6、离心泵的特性曲线不同型号泵的特性曲线不同,但均有以下三条曲线:(1)H-Q线表示压头和流量的关系;(2)N-Q线表示泵轴功率和流量的关系;(3)η-Q线表示泵的效率和流量的关系;(4)泵的特性曲线均在一定转速下测定故特性曲线图上注出转速n值;离心泵特性曲线上的效率最高点称为设计点,泵在该点对应的压头和流量下工作最为经济,离心泵铭牌上标出的性能参数即为最高效率点上的工况参数。
离心泵的性能曲线可作为选择泵的依据确定泵的类型后再依流量和压头选泵。
7、离心泵的操作7.1正常启动操作7.1.1 启动前的主要检查试验工作:加润滑油:至视油窗中线或恒液位油杯内至少存有1/3~2/3油液位、检查泵的机械、仪表、电气设备完好;灌泵:关闭入口阀、打开出口阀和放气阀、见液后关闭排气阀;灌泵后进行盘车;点动:检查旋转方向是否正确(泵转子的转向必须与悬架上的箭头方向一致)。