正弦、余弦函数的周期性与奇偶性
- 格式:doc
- 大小:195.50 KB
- 文档页数:8
三角函数的奇偶性与周期性三角函数是数学中重要的函数之一,在数学和物理等领域得到了广泛的应用。
其中,奇偶性与周期性是三角函数的两个重要特征。
本文将对三角函数的奇偶性与周期性进行详细探讨。
一、正弦函数的奇偶性与周期性正弦函数是最基本的三角函数之一,用sin(x)表示。
在单位圆上,正弦函数的值等于对应角度的纵坐标值。
正弦函数具有以下特点:1. 奇偶性:正弦函数是奇函数,即满足sin(-x)=-sin(x)。
这意味着正弦函数关于原点对称,即在原点处取对称轴。
2. 周期性:正弦函数的周期为2π,即在[0,2π]范围内,正弦函数的图像重复出现。
在其他范围内,正弦函数的周期可表示为2π的整数倍。
在图像上,正弦函数的曲线呈现一种波动的形态,无论是在[-2π,2π]范围内还是在其他范围内。
这种周期性的特点使得正弦函数在描述周期性现象时非常有用,如振动、波动等。
二、余弦函数的奇偶性与周期性余弦函数是另一种常见的三角函数,用cos(x)表示。
在单位圆上,余弦函数的值等于对应角度的横坐标值。
余弦函数具有以下特点:1. 奇偶性:余弦函数是偶函数,即满足cos(-x)=cos(x)。
这意味着余弦函数关于y轴对称,即在y轴处取对称轴。
2. 周期性:余弦函数的周期也是2π,与正弦函数相同。
在[0,2π]范围内,余弦函数的图像重复出现。
余弦函数的图像与正弦函数的图像相似,同样呈现一种波动的形态。
但相对于正弦函数,余弦函数的波峰和波谷位置相反,即在同一角度上,正弦函数达到波峰时,余弦函数达到波谷。
三、其他三角函数的性质与周期除了正弦函数和余弦函数,还存在其他几个常见的三角函数,如正切函数、余切函数、正割函数和余割函数。
它们的性质和周期如下:1. 正切函数(tan(x)):正切函数是奇函数,周期为π。
2. 余切函数(cot(x)):余切函数是奇函数,周期为π。
3. 正割函数(sec(x)):正割函数是偶函数,周期为2π。
4. 余割函数(csc(x)):余割函数是奇函数,周期为2π。
三角函数的周期性与奇偶性三角函数是高中数学中的一个重要部分,它的周期性和奇偶性是在学习三角函数的过程中需要掌握的基本概念。
三角函数中主要包括正弦函数、余弦函数和正切函数。
1. 正弦函数的周期性和奇偶性正弦函数的定义式为y = sin x,其中x为自变量,y为因变量。
正弦函数的图像是一条波形曲线,它的周期为2π,即当x增加一个周期时,y的值会重复一次。
具体来说,正弦函数在[0,2π]区间内的最小正周期为2π。
因此,在对正弦函数进行周期性和奇偶性的分析时,可以把自变量限制在[0,2π]之间。
正弦函数的奇偶性是指当x取反时,y的值是否发生变化。
可以通过正弦函数的定义式来进行验证:sin(-x) = -sin x。
因此,正弦函数是一个奇函数,即在[0,2π]内,正弦函数关于坐标轴的原点对称。
2. 余弦函数的周期性和奇偶性余弦函数的定义式为y = cos x,其中x为自变量,y为因变量。
余弦函数的图像也是一条波形曲线,它的周期也是2π。
与正弦函数类似,余弦函数的最小正周期也为2π。
在对余弦函数进行周期性和奇偶性的分析时,也可以把自变量限制在[0,2π]之间。
余弦函数的奇偶性是指当x取反时,y的值是否发生变化。
通过余弦函数的定义式可以得知:cos(-x) = cos x。
因此,余弦函数是一个偶函数,即在[0,2π]内,余弦函数关于y轴对称。
3. 正切函数的周期性和奇偶性正切函数的定义式为y = tan x,其中x为自变量,y为因变量。
正切函数在定义域内有无数个周期,其最小正周期为π,即当x增加π时,y的值会重复一次。
因此,在对正切函数进行周期性和奇偶性的分析时,需要考虑其多个周期的情况。
正切函数的奇偶性是指当x取反时,y的值是否发生变化。
通过正切函数的定义式可以得知:tan(-x) = -tan x。
因此,正切函数是一个奇函数,即在其每个周期内,正切函数关于坐标轴的原点对称。
综上所述,三角函数的周期性和奇偶性是其在数学中的重要概念之一。
三角函数的图像与性质三角函数是数学中的重要概念,它们的图像和性质对于初中数学学习者来说是必须掌握的内容。
在本文中,我将详细介绍三角函数的图像与性质,并给出一些例子和说明,帮助中学生和他们的父母更好地理解和应用这些知识。
一、正弦函数的图像与性质正弦函数是最基本的三角函数之一,它的图像是一条连续的曲线,呈现出周期性变化。
正弦函数的性质包括:1. 周期性:正弦函数的周期是2π,即在每个2π的区间内,正弦函数的图像重复出现。
2. 幅度:正弦函数的幅度表示波峰和波谷的最大差值,通常记为A。
幅度越大,波峰和波谷的差值越大。
3. 对称性:正弦函数的图像关于y轴对称,即f(x) = -f(-x)。
4. 奇偶性:正弦函数是奇函数,即f(x) = -f(x)。
举例说明:假设有一条正弦函数的图像,周期为2π,幅度为1。
在区间[0, 2π]内,正弦函数的图像先从0逐渐上升到1,然后下降到0,再下降到-1,最后又上升到0。
这样的周期性变化会一直重复下去。
根据正弦函数的性质,可以得出该图像关于y轴对称,且是奇函数。
二、余弦函数的图像与性质余弦函数也是一种常见的三角函数,它的图像和正弦函数有些相似,但也有一些不同之处。
余弦函数的性质包括:1. 周期性:余弦函数的周期也是2π,与正弦函数相同。
2. 幅度:余弦函数的幅度也表示波峰和波谷的最大差值,通常记为A。
与正弦函数不同的是,余弦函数的幅度表示波峰和波谷的绝对值最大差值。
3. 对称性:余弦函数的图像关于y轴对称,即f(x) = f(-x)。
4. 奇偶性:余弦函数是偶函数,即f(x) = f(x)。
举例说明:假设有一条余弦函数的图像,周期为2π,幅度为1。
在区间[0, 2π]内,余弦函数的图像先从1逐渐下降到0,然后下降到-1,再上升到0,最后又上升到1。
这样的周期性变化会一直重复下去。
根据余弦函数的性质,可以得出该图像关于y轴对称,且是偶函数。
三、正切函数的图像与性质正切函数是三角函数中的另一种重要函数,它的图像与正弦函数和余弦函数有很大的不同。
三角函数的周期性与奇偶性三角函数是数学中非常重要的一类函数,包括正弦函数sin(x),余弦函数cos(x),正切函数tan(x)等。
这些函数在数学、物理、工程等领域中有广泛的应用。
其中,周期性和奇偶性是三角函数的两个重要性质,下面将详细讨论这两个性质。
一、周期性1. 正弦函数sin(x)和余弦函数cos(x)的周期性:正弦函数sin(x)和余弦函数cos(x)都是周期函数,它们的周期都为2π。
也就是说,对于任意实数x,有sin(x+2π) = sin(x),cos(x+2π) =cos(x)。
这意味着当自变量x增加2π或减少2π时,函数值不变,即函数呈现出周期性的变化规律。
这样的周期性特点使得正弦函数和余弦函数在很多问题中具有重要的意义。
2. 正切函数tan(x)的周期性:正切函数tan(x)也是一个周期函数,它的周期为π。
也就是说,对于任意实数x,有tan(x+π) = tan(x)。
这意味着当自变量x增加π或减少π时,函数值保持不变。
需要注意的是,正切函数在一些特殊点(如π/2,3π/2等)处不定义,因为在这些点上正切函数的值会趋于无穷大,即函数的图像会有垂直渐进线。
二、奇偶性1. 正弦函数sin(x)的奇偶性:正弦函数sin(x)是一个奇函数,它的图像关于原点对称。
也就是说,对于任意实数x,有sin(-x) = -sin(x)。
这意味着当自变量x取相反数时,函数值的相反数与原来的函数值相等,即函数的图像关于y轴对称。
2. 余弦函数cos(x)的奇偶性:余弦函数cos(x)是一个偶函数,它的图像关于y轴对称。
也就是说,对于任意实数x,有cos(-x) = cos(x)。
这意味着当自变量x取相反数时,函数值保持不变,即函数的图像关于y轴对称。
3. 正切函数tan(x)的奇偶性:正切函数tan(x)既不是奇函数也不是偶函数,它的图像既没有关于原点的对称性,也没有关于y轴的对称性。
但是,正切函数有一个特殊的奇偶性质,即tan(-x) = -tan(x)。
三角函数的周期性与奇偶性知识点三角函数是数学中重要的概念之一,包括正弦函数、余弦函数和正切函数。
它们在数学中有着广泛的应用,涉及到周期性与奇偶性的概念。
本文将详细介绍三角函数的周期性与奇偶性知识点,以便读者更好地理解和运用这些函数。
一、正弦函数的周期性与奇偶性正弦函数是一种周期函数,其周期为2π。
换句话说,当自变量增加2π时,正弦函数的值会再次重复。
具体而言,正弦函数的周期性可以表示为sin(x + 2π) = sin(x)。
这意味着,如果我们将自变量x增加一个周期的长度,正弦函数的值将保持不变。
正弦函数还具有奇偶性。
奇函数的特点是在原点关于y轴对称,即f(-x) = -f(x)。
对于正弦函数来说,sin(-x) = -sin(x),因此它是一个奇函数。
这也意味着,正弦函数的图像关于坐标原点对称。
二、余弦函数的周期性与奇偶性余弦函数也是一种周期函数,其周期同样为2π。
与正弦函数类似,余弦函数的值在自变量增加一个周期的长度后会再次重复,即cos(x +2π) = cos(x)。
不同的是,余弦函数是一个偶函数,即f(-x) = f(x)。
在余弦函数中,cos(-x) = cos(x),这意味着余弦函数的图像关于y轴对称。
三、正切函数的周期性与奇偶性正切函数是一个没有周期的函数,它在某些点上是无界的。
因此我们不能像正弦函数和余弦函数一样讨论它的周期性。
然而,正切函数具有奇偶性。
在正切函数中,tan(-x) = -tan(x),因此它也是一个奇函数。
与正弦函数一样,正切函数的图像关于原点对称。
综上所述,三角函数的周期性与奇偶性是它们在数学中重要的性质。
正弦函数和余弦函数都是周期函数,正弦函数是奇函数而余弦函数是偶函数。
正切函数虽然没有周期,但仍然是一个奇函数。
这些性质在解决数学问题和实际应用中起到重要的作用。
通过了解三角函数的周期性与奇偶性,我们可以更好地理解和分析三角函数的性质。
这对于解题和应用三角函数来说是非常有帮助的。
三角函数中的周期性与奇偶性三角函数是数学中的重要概念,在各个领域中都得到广泛的应用。
其中,周期性和奇偶性是三角函数的两个重要特性,对于分析和理解三角函数的性质具有重要意义。
一、周期性周期性是指函数在一定范围内以固定的间隔上下循环出现相同的值。
在三角函数中,正弦函数(sin)和余弦函数(cos)的周期均为2π。
这意味着,当自变量每增加2π时,函数的值会回到原来的位置。
以正弦函数为例,sin(x)的周期为2π,可以表示为:sin(x + 2π) = sin(x)这意味着,无论x的取值是多少,只要将其增加2π,函数的值就会回到原来的位置。
同样地,余弦函数的周期也为2π。
对于正弦函数和余弦函数的图像来说,周期性表现为波形的重复出现。
在一段周期中,波形会上升到最大值,然后下降到最小值,再经过0点回到原来的位置。
二、奇偶性奇偶性是指函数在定义域内满足一定的对称性。
在三角函数中,正弦函数是奇函数,而余弦函数是偶函数。
奇函数的特点是对称于坐标原点,即满足以下性质:sin(-x) = -sin(x)这意味着,对于正弦函数来说,当自变量取相反数时,函数的值也取相反数。
例如,sin(-π/6)等于-sin(π/6)。
与之相反,偶函数的特点是对称于y轴,即满足以下性质:cos(-x) = cos(x)这意味着,对于余弦函数来说,当自变量取相反数时,函数的值保持不变。
例如,cos(-π/3)等于cos(π/3)。
奇偶性在三角函数的图像中体现为关于y轴或坐标原点的对称性。
例如,正弦函数的图像在坐标原点上下对称,而余弦函数的图像在y 轴上下对称。
三、综合应用三角函数的周期性和奇偶性不仅仅是数学的概念,它们在实际问题中的应用也非常广泛。
周期性可以用于分析周期性现象的规律。
例如,天体运动、电流变化等都具有周期性,可以通过三角函数中的周期性概念来描述和分析这些现象。
奇偶性则可以用于简化计算或证明问题。
例如,利用正弦函数的奇性可以将某些积分计算简化,而余弦函数的偶性可以用于证明恒等式等。
1 正弦、余弦函数的周期性与奇偶性学习目标:1.了解周期函数、周期、最小正周期的定义.2.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的周期.(重点)3.掌握函数y =sin x ,y =cos x 的奇偶性,会判断简单三角函数的奇偶性.(重点、易混点)[自 主 预 习·探 新 知]1.函数的周期性(1)周期函数:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么这个函数的周期为T .(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.2.正弦函数、余弦函数的周期性和奇偶性1.思考辨析(1)若sin ⎝ ⎛⎭⎪⎫2π3+π6=sin π6,则2π3是函数y =sin x 的一个周期.( )(2)所有的周期函数都有最小正周期.( ) (3)函数y =sin x 是奇函数.( )[解析] (1)×.因为对任意x ,sin ⎝ ⎛⎭⎪⎫2π3+x 与sin x 并不一定相等.(2)×.不是所有的函数都有最小正周期,如函数f (x )=5是周期函数,就不存在最小正周期.(3)×.函数y =sin x 的定义域为{x |2k π≤x ≤2k π+π,k ∈Z },不关于原点对称,故非奇非偶.[答案] (1)× (2)× (3)× 2.函数y =2sin ⎝ ⎛⎭⎪⎫2x +π2是( )A .周期为π的奇函数B .周期为π的偶函数C .周期为2π的奇函数D .周期为2π的偶函数B [y =2sin ⎝ ⎛⎭⎪⎫2x +π2=2cos 2x ,它是周期为π的偶函数.]3.若函数y =f (x )是以2为周期的函数,且f (5)=6,则f (1)=________. 6 [由已知得f (x +2)=f (x ), 所以f (1)=f (3)=f (5)=6.][合 作 探 究·攻 重 难](1)y =sin ⎝ ⎛⎭⎪⎫2x +π4;(2)y =|sin x |. 【优质试题:84352085】[思路探究] (1)法一:寻找非零常数T ,使f (x +T )=f (x )恒成立. 法二:利用y =A sin(ωx +φ)的周期公式计算. (2)作函数图象,观察出周期. [解] (1)法一:(定义法)y =sin ⎝ ⎛⎭⎪⎫2x +π4=sin ⎝ ⎛⎭⎪⎫2x +π4+2π=sin ⎣⎢⎡⎦⎥⎤2(x +π)+π4,所以周期为π.法二:(公式法)y =sin ⎝ ⎛⎭⎪⎫2x +π4中ω=2,T =2πω=2π2=π.(2)作图如下:观察图象可知周期为π.[规律方法] 求三角函数周期的方法: (1)定义法:即利用周期函数的定义求解.(2)公式法:对形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(A ,ω,φ是常数,A ≠0,ω≠0)的函数,T =2π|ω|.(3)图象法:即通过观察函数图象求其周期.提醒:y =|A sin(ωx +φ)|(A ≠0,ω≠0)的最小正周期T =π|ω|. [跟踪训练]1.利用周期函数的定义求下列函数的周期. (1)y =cos 2x ,x ∈R ; (2)y =sin ⎝ ⎛⎭⎪⎫13x -π4,x ∈R .[解] (1)因为cos 2(x +π)=cos(2x +2π)=cos 2x ,由周期函数的定义知,y =cos 2x 的周期为π.(2)因为sin ⎣⎢⎡⎦⎥⎤13(x +6π)-π4=sin ⎝ ⎛⎭⎪⎫13x +2π-π4=sin ⎝ ⎛⎭⎪⎫13x -π4,由周期函数的定义知,y =sin ⎝ ⎛⎭⎪⎫13x -π4的周期为6π.(1)f (x )=sin ⎝ ⎛⎭⎪⎫-12x +π2;(2)f (x )=lg(1-sin x )-lg(1+sin x ); (3)f (x )=1+sin x -cos 2x1+sin x .[思路探究][解] (1)显然x ∈R ,f (x )=cos 12x ,∵f (-x )=cos ⎝ ⎛⎭⎪⎫-12x =cos 12x =f (x ),∴f (x )是偶函数.(2)由⎩⎨⎧1-sin x >0,1+sin x >0,得-1<sin x <1,解得定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ∈R 且x ≠k π+π2,k ∈Z , ∴f (x )的定义域关于原点对称. 又∵f (x )=lg(1-sin x )-lg(1+sin x ), ∴f (-x )=lg [1-sin(-x )]-lg [1+sin(-x )] =lg(1+sin x )-lg(1-sin x )=-f (x ), ∴f (x )为奇函数.(3)∵1+sin x ≠0,∴sin x ≠-1, ∴x ∈R 且x ≠2k π-π2,k ∈Z . ∵定义域不关于原点对称, ∴该函数是非奇非偶函数.[规律方法] 1.判断函数奇偶性应把握好的两个方面: 一看函数的定义域是否关于原点对称; 二看f (x )与f (-x )的关系.2.对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断.提醒:研究函数性质应遵循“定义域优先”的原则. [跟踪训练]2.判断下列函数的奇偶性: (1)f (x )=cos ⎝ ⎛⎭⎪⎫32π+2x +x 2sin x ;(2)f (x )=1-2cos x +2cos x -1.【优质试题:84352086】[解] (1)f (x )=sin 2x +x 2sin x ,又∵x ∈R ,f (-x )=sin(-2x )+(-x )2sin(-x ) =-sin 2x -x 2sin x =-f (x ), ∴f (x )是奇函数.(2)由⎩⎨⎧1-2cos x ≥0,2cos x -1≥0,得cos x =12,∴f (x )=0,x =2k π±π3,k ∈Z , ∴f (x )既是奇函数又是偶函数.1.试举例说明哪些三角函数具有奇偶性?提示:奇函数有y =2sin x ,y =sin 2x ,y =5sin 2x ,y =sin x cos x 等.偶函数有y =cos 2x +1,y =3cos 5x ,y =sin x ·sin 2x 等.2.若函数y =f (x )是周期T =2的周期函数,也是奇函数,则f (2 018)的值是多少?提示:f (2 018)=f (0+1 009×2)=f (0)=0.(1)下列函数中是奇函数,且最小正周期是π的函数是( )【优质试题:84352087】A .y =cos|2x |B .y =|sin 2x |C .y =sin ⎝ ⎛⎭⎪⎫π2+2xD .y =cos ⎝ ⎛⎭⎪⎫3π2-2x(2)定义在R 上的函数f (x )既是偶函数,又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,则f ⎝ ⎛⎭⎪⎫5π3等于( )A .-12 B.12 C .-32D.32[思路探究] (1)先作出选项A ,B 中函数的图象,化简选项C 、D 中函数的解析式,再判断奇偶性、周期性.(2)先依据f (x +π)=f (x )化简f ⎝ ⎛⎭⎪⎫5π3;再依据f (x )是偶函数和x ∈⎣⎢⎡⎦⎥⎤0,π2,f (x )=sin x 求值.(1)D (2)D [(1)y =cos|2x |是偶函数,y =|sin 2x |是偶函数,y =sin ⎝ ⎛⎭⎪⎫π2+2x =cos 2x 是偶函数,y =cos ⎝ ⎛⎭⎪⎫3π2-2x =-sin 2x 是奇函数,根据公式得其最小正周期T =π.(2)f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-π=f ⎝ ⎛⎭⎪⎫2π3 =f ⎝ ⎛⎭⎪⎫2π3-π=f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3 =sin π3=32.]母题探究:1.若本例(2)中的“偶函数”改为“奇函数”,“π”改为“11π12”,其他条件不变,结果如何?[解] f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-11π12×2=f ⎝ ⎛⎭⎪⎫-π6=-f ⎝ ⎛⎭⎪⎫π6=-sin π6=-12.2.若本例(2)中的“π”改为“π2”,其他条件不变,求f ⎝ ⎛⎭⎪⎫-176π.[解] ∵f (x )的周期为π2,且为偶函数, ∴f ⎝ ⎛⎭⎪⎫-176π=f ⎝ ⎛⎭⎪⎫-3π+π6 =f ⎝ ⎛⎭⎪⎫-6×π2+π6=f ⎝ ⎛⎭⎪⎫π6. 又∵f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π2-π3=f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32, ∴⎝ ⎛⎭⎪⎫-176π=32. [规律方法] 1.三角函数周期性与奇偶性的解题策略探求三角函数的周期,常用方法是公式法,即将函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,再利用公式求解.2.与三角函数奇偶性有关的结论(1)要使y =A sin(ωx +φ)(Aω≠0)为奇函数,则φ=k π(k ∈Z ); (2)要使y =A sin(ωx +φ)(Aω≠0)为偶函数,则φ=k π+π2(k ∈Z ); (3)要使y =A cos(ωx +φ)(Aω≠0)为奇函数,则φ=k π+π2(k ∈Z ); (4)要使y =A cos(ωx +φ)(Aω≠0)为偶函数,则φ=k π(k ∈Z ).[当 堂 达 标·固 双 基]1.如图所示的是定义在R 上的四个函数的图象,其中不是周期函数的图象的是()D [观察图象易知,只有D 选项中的图象不是周期函数的图象.] 2.函数f (x )=2sin 2x 的奇偶性为( ) A .奇函数 B .偶函数 C .既奇又偶函数D .非奇非偶函数A [f (x )=2sin 2x 的定义域为R ,f (-x )=2sin 2(-x )=-2sin 2x =-f (x ),所以f (x )是奇函数.]3.函数f (x )=3sin ⎝ ⎛⎭⎪⎫πx 2-π4,x ∈R 的最小正周期为________.4 [由已知得f (x )的最小正周期T =2ππ2=4.]4.若函数y =f (x )是定义在R 上的周期为3的奇函数且f (1)=3,则f (5)=________.【优质试题:84352088】-3[由已知得f(x+3)=f(x),f(-x)=-f(x),所以f(5)=f(2)=f(-1)=-f(1)=-3.]5.判断下列函数的奇偶性:(1)f(x)=-2cos 3x;(2)f(x)=x sin(x+π). 【优质试题:84352089】[解](1)f(-x)=-2cos 3(-x)=-2cos 3x=f(x),所以f(x)=-2cos 3x为偶函数.(2)f(x)=x sin(x+π)=-x sin x,所以f(-x)=x sin(-x)=-x sin x=f(x),故函数f(x)为偶函数.。