傅里叶变换的11个性质公式
- 格式:doc
- 大小:5.74 KB
- 文档页数:2
第二章习题解答1、求下列序列的z 变换()X z ,并标明收敛域,绘出()X z 的零极点图。
(1) 1()()2nu n (2) 1()()4nu n - (3) (0.5)(1)nu n --- (4) (1)n δ+(5) 1()[()(10)]2nu n u n -- (6) ,01na a <<解:(1) 00.5()0.50.5nn n n zZ u n z z ∞-=⎡⎤==⎣⎦-∑,收敛域为0.5z >,零极点图如题1解图(1)。
(2) ()()014()1414n nn n z Z u n z z ∞-=⎡⎤-=-=⎣⎦+∑,收敛域为14z >,零极点图如题1解图(2)。
(3) ()1(0.5)(1)0.50.5nnn n zZ u n z z --=-∞-⎡⎤---=-=⎣⎦+∑,收敛域为0.5z <,零极点图如题1解图(3)。
(4) [](1Z n z δ+=,收敛域为z <∞,零极点图如题1解图(4)。
(5) 由题可知,101010910109(0.5)[()(10)](0.5)()(0.5)(10)0.50.50.50.50.50.5(0.5)n n nZ u n u n Z u n Z u n z z z z z z z z z z z --⎡⎤⎡⎤⎡⎤--=--⎣⎦⎣⎦⎣⎦⋅=-----==--收敛域为0z >,零极点图如题1解图(5)。
(6) 由于()(1)nn n a a u n a u n -=+--那么,111()(1)()()()nn n Z a Z a u n Z a u n z z z a z a z a a z a z a ----⎡⎤⎡⎤⎡⎤=---⎣⎦⎣⎦⎣⎦=----=-- 收敛域为1a z a <<,零极点图如题1解图(6)。
(1) (2) (3)(4) (5) (6)题1解图2、求下列)(z X 的反变换。
FFT (快速傅⾥叶变换)算法详解多项式的点值表⽰(Point Value Representation)设多项式的系数表⽰(Coefficient Representation):P a (x )=a 0+a 1x +a 2x 2+⋯+a n −1x n −1=n −1∑i =0a ix i则我们对上⾯的式⼦可以代⼊不同的 n 个 x 的值,构成⼀个 n 维向量:P a (x 0)P a (x 1)P a (x 2)⋮P a (x n −1)=1x 0x 20⋯x n −101x 1x 21⋯x n −111x 2x 22⋯x n −12⋮⋮⋮⋱⋮1x n −1x 2n −1⋯x n −1x −1a 0a 1a 2⋮a n −1更简洁的写法:P a =X α对上式观察后发现,X 是所谓的范德蒙德矩阵(Vandermonde's Matrix),在 n 个 x 的值不同的情况下,其⾏列式的值为:det (X )=∏0⩽i <j ⩽n −1(x j −x i )很明显,当所有 n 个 x 取值不同时,其⾏列式不为零,因此 X 可逆。
所以我们可以唯⼀确定多项式系数构成的向量 α:α=X −1P a也就是说,多项式 P a (x ) 还可以由 n 个 x 代⼊得到的 n 个点值来唯⼀表⽰:{x 0,P(x 0),x 1,P(x 1),x 2,P(x 2),⋯,x n −1,P(x n −1)}这就是多项式的点值表⽰。
多项式的点值表⽰是指,对于 n 次多项式,可以⽤ n 个不同的 x 和与之对应的多项式的值 P(x ) 构成⼀个长度为 n 的序列,这个序列唯⼀确定多项式,并且能够与系数表⽰相互转化。
n 次单位根了解了多项式的点值表⽰,⼀个很⾃然的问题是:如何选择 x 的值,来防⽌其指数⼤⼩爆炸型增长呢?这⾥可以借⽤复数的单位根。
简单回顾⼀下,复数有两种表⽰⽅法:迪卡尔积坐标表⽰和极坐标表⽰,这⾥我们⽤到的是后者:z =re i θi 是虚数单位,r 表⽰模长,θ 表⽰相⾓。
名词解释1.双口网络:如果一个网络有两个端子与外部电路相连接,使网络有两个端口,为双口网络。
2.对称双口网络:如果将双口网络的入口与出口对调后,其各端口电压、电流保持不变,为对称双口网络。
3.双口网络分析:①端口电流的参考方向均为流入双口网络,且采用正玄稳态相量模式。
②双口网络内部不含独立电源,且初始状态为零的线性时不变网络。
4. 网络函数:在正玄稳态电路中,响应相量与激励相量之比。
若激励与响应在网络的同一端口,则为策动点函数;若不在同一端口,为传输或转移函数。
4.频率响应:在保持电源电压不变的情况下,电路中的电流、电压和阻抗等物理量随电源频率变化的关系。
5.系统:由若干相互关联、相互作用的事物按一定规律组合而成的具有某种功能的整体。
6.连续系统:当系统的输入是连续时间信号时,若系统的输出也是连续时间信号,则称该系统为连续系统。
7.连续信号:在连续时间范围内(—∞<t<∞)有定义的信号。
8.系统的时域分析:若求解系统响应的整个过程是在时间域里进行的,则为系统的时域分析。
9.线性系统:一个既具有分解特性,又具有零状态线性和零输入线性的系统为线性系统;否则,为非线性系统。
10.时不变系统:如果激励作用于系统引起零状态响应时,当激励延迟了一定时间后作用于系统时,其引起的零状态响应也延迟了相同时间的系统。
它具有微分特性和积分特性。
11.系统建模:根据实际系统的结构、元件特性,利用有关基本定律寻找能表征系统特征的数学关系式。
12.阶跃响应:当激励为单位阶跃函数时,系统的零状态响应为单位阶跃响应。
13.网络输出阻抗:将激励源置零保留激励源为阻抗,此时输出口得等效阻抗为网络输出阻抗。
14.谐振电路的选择性:若串联谐振电路中有不同频率的电源同时作用时,则接近谐振频率的电流成分将较大,而偏离谐振频率的电流成分则较小,由此可将谐振频率附近的电流成分选择出来。
15.线性性质包含的两个内容:齐次性:当激励增大a倍时,零状态响应也增大a倍。
【知识总结】快速傅⾥叶变换(FFT )这可能是我第五次学FFT 了……菜哭qwq 先给出⼀些个⼈认为⾮常优秀的参考资料:快速傅⾥叶变换(FFT )⽤于计算两个n 次多项式相乘,能把复杂度从朴素的O (n 2)优化到O (nlog 2n )。
⼀个常见的应⽤是计算⼤整数相乘。
本⽂中所有多项式默认x 为变量,其他字母均为常数。
所有⾓均为弧度制。
⼀、多项式的两种表⽰⽅法我们平时常⽤的表⽰⽅法称为“系数表⽰法”,即A (x )=n∑i =0a i x i上⾯那个式⼦也可以看作⼀个以x 为⾃变量的n 次函数。
⽤n +1个点可以确定⼀个n 次函数(⾃⾏脑补初中学习的⼆次函数)。
所以,给定n +1组x 和对应的A (x ),就可以求出原多项式。
⽤n +1个点表⽰⼀个n 次多项式的⽅式称为“点值表⽰法”。
在“点值表⽰法”中,两个多项式相乘是O (n )的。
因为对于同⼀个x ,把它代⼊A 和B 求值的结果之积就是把它带⼊多项式A ×B 求值的结果(这是多项式乘法的意义)。
所以把点值表⽰法下的两个多项式的n +1个点的值相乘即可求出两多项式之积的点值表⽰。
线性复杂度点值表⽰好哇好但是,把系数表⽰法转换成点值表⽰法需要对n +1个点求值,⽽每次求值是O (n )的,所以复杂度是O (n 2)。
把点值表⽰法转换成系数表⽰法据说也是O (n 2)的(然⽽我只会O (n 3)的⾼斯消元qwq )。
所以暴⼒取点然后算还不如直接朴素算法相乘……但是有⼀种神奇的算法,通过取⼀些具有特殊性质的点可以把复杂度降到O (nlog 2n )。
⼆、单位根从现在开始,所有n 都默认是2的⾮负整数次幂,多项式次数为n −1。
应⽤时如果多项式次数不是2的⾮负整数次幂减1,可以加系数为0的项补齐。
先看⼀些预备知识:复数a +bi 可以看作平⾯直⾓坐标系上的点(a ,b )。
这个点到原点的距离称为模长,即√a 2+b 2;原点与(a ,b )所连的直线与实轴正半轴的夹⾓称为辐⾓,即sin −1ba 。
傅里叶变换的11个性质公式
傅里叶变换的11个性质公式是傅立叶变换的基本性质,由他们可以推出其它性质。
其中包括线性性质、有穷性质、周期性质、旋转性质、折叠性质、应变性质、平移性质、对称性质、频域算子性质、滤波性质、压缩性质等共11条。
1、线性性质:如果x(t)和y(t)是两个信号,则有:X(ω)=F[x(t)],Y(ω)=F[y(t)],则有:
X(ω)+Y(ω)=F[x(t)+y(t)];αX(ω)=F[αx(t)];
X(ω)*Y(ω)=F[x(t)*y(t)]。
2、有穷性质:如果x(t)是有穷的,则X(ω)也是有穷的。
3、周期性质:如果x(t)在周期T内无穷重复,则
X(ω)也在周期2π/T内无穷重复。
4、旋转性质:X(ω-ω0) = F[x(t)e^(-jω0t)],即信号x(t)经过相位旋转成x(t)e^(-jω0t),其傅里叶变换也会经过相位旋转成X(ω-ω0)。
5、折叠性质:X(ω+nω0)=F[x(t)e^(-jnω0t)],即信号x(t)经过频率折叠后变为x(t)e^(-jnω0t),其傅里叶变换也会经过频率折叠成X(ω+nω0)。
6、应变性质:X(aω)=F[x(at)],即信号x(t)经过时间应变成x(at),其傅里叶变换也会经过频率应变成
X(aω)。
7、平移性质:X(ω-ω0) = F[x(t-t0)],即信号
x(t)经过时间平移成x(t-t0),其傅里叶变换也会经过频率平移成X(ω-ω0)。
8、对称性质:X(-ω) = X*(-ω),即傅里叶变换的实部和虚部对称。
9、频域算子性质:X(ω)Y(ω)=F[h(t)*x(t)],即傅里叶变换不仅可以表示信号,还可以表示系统的频域表示,即h(t)*x(t),其傅里叶变换为X(ω)Y(ω)。
10、滤波性质:H(ω)X(ω)=F[h(t)*x(t)],即傅里叶变换可以用来表示滤波器的频域表示,即h(t)*x(t),其傅里叶变换为H(ω)X(ω)。
11、压缩性质:X(ω)Y(ω)=F[x(t)y(t)],即傅里叶变换可以用来表示信号的压缩,即x(t)y(t),其傅里叶变换为X(ω)Y(ω)。