1998年全国初中数学联合竞赛试题
- 格式:doc
- 大小:114.50 KB
- 文档页数:8
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题......................003-0052.希望杯第一届(1990年)初中一年级第二试试题......................010-0123.希望杯第二届(1991年)初中一年级第一试试题...... 0错误!未定义书签。
-0204.希望杯第二届(1991年)初中一年级第二试试题...... 0错误!未定义书签。
-0265.希望杯第三届(1992年)初中一年级第一试试题...... 0错误!未定义书签。
-0326.希望杯第三届(1992年)初中一年级第二试试题...... 0错误!未定义书签。
-0407.希望杯第四届(1993年)初中一年级第一试试题...... 0错误!未定义书签。
-0508.希望杯第四届(1993年)初中一年级第二试试题...... 0错误!未定义书签。
-0589.希望杯第五届(1994年)初中一年级第一试试题...... 0错误!未定义书签。
-06610.希望杯第五届(1994年)初中一年级第二试试题..... 0错误!未定义书签。
-07311.希望杯第六届(1995年)初中一年级第一试试题..... 0错误!未定义书签。
-080 12希望杯第六届(1995年)初中一年级第二试试题..... 0错误!未定义书签。
-08713.希望杯第七届(1996年)初中一年级第一试试题..... 0错误!未定义书签。
-09814.希望杯第七届(1996年)初中一年级第二试试题....... 错误!未定义书签。
-10515.希望杯第八届(1997年)初中一年级第一试试题....... 错误!未定义书签。
-11316.希望杯第八届(1997年)初中一年级第二试试题....... 错误!未定义书签。
-12017.希望杯第九届(1998年)初中一年级第一试试题....... 错误!未定义书签。
第三章 托勒密定理及应用【基础知识】托勒密定理 圆内接四边形的两组对边乘积之和等于两对角线的乘积. 证明 如图3-1,四边形ABCD 内接于O ,在BD 上取点P ,使PAB CAD =∠∠,则△ABP ∽△ACD ,于是A图3-1AB BPAB CD AC BP AC CD=⇒⋅=⋅. 又ABC △∽△APD ,有BC AD AC PD ⋅=⋅. 上述两乘积式相加,得 AB CD BC AD AC BP PD AC BD ⋅+⋅=+=⋅().①注 此定理有多种证法,例如也可这样证:作AE BD ∥交o 于E ,连EB ,ED ,则知BDAE 为等腰梯形,有EB AD =,ED AB =,ABD BDE θ==∠∠,且180EBC EDC +=︒∠∠,令BAC ϕ=∠,AC 与BD 交于G ,则111sin sin()sin 222ABCD S AC BD AGD AC BD AC BD EDC θϕ=⋅⋅=⋅⋅+=⋅⋅∠∠,11sin sin 22EBCD EBC ECD S S S EB BC EBC ED DC EDC =+=⋅⋅+⋅⋅△△∠∠()()11sin sin 22EB BC ED DC EDC AD BC AB DC EDC =⋅+⋅⋅=⋅+⋅⋅∠∠. 易知 ABCD EBCD S S =,从而有AB DC BC AD AC BD ⋅+⋅=⋅.推论1(三弦定理) 如果A 是圆上任意一点,AB ,AC ,AD 是该圆上顺次的三条弦,则sin sin sin AC BAD AB CAD AD CAB ⋅=⋅+⋅∠∠∠.② 事实上,由①式,应用正弦定理将BD ,DC ,BC 换掉即得②式.推论2(四角定理) 四边形ABCD 内接于O ,则sin sin sin sin ADC BAD ABD BDC ⋅=⋅∠∠∠∠sin sin ADB DBC +⋅∠∠.③ 事实上,由①式,应用正弦定理将六条线段都换掉即得③式.直线上的托勒密定理(或欧拉定理) 若A ,B ,C ,D 为一直线上依次排列的四点,则AB CD BC AD AC BD ⋅+⋅=⋅.注 由直线上的托勒密定理有如下推论:若A ,B ,C ,D 是一条直线上顺次四点,点P 是直线AD 外一点,则sin sin sin sin sin sin APB CPD APD BPC APC BPD ⋅+⋅=⋅∠∠∠∠∠∠. 事实上,如图3-2,设点P 到直线AD 的距离为h ,DC BA P图3-2由AB CD AD BC AC BD ⋅+⋅=⋅,有 PAB PCD PAD PBC PAC PBD S S S S S S ⋅+⋅=⋅△△△△△△,用两边及夹角正弦形式的三角形面积表示上式后,两边同除以14PA PB PC PD ⋅⋅⋅即得推论.由上述推论也可证明圆内接四边形中的托勒密定理.证明 如图3-3,在图上取一点P ,连PA 、PB 、PC 、PD ,设PB 交AD 于B ',PC 交AD 于C '. 由正弦定理 sin 2AB APB R =∠,sin 2CD CPD R =∠,sin 2AD APD R =∠,sin 2BC BPC R =∠,sin 2AC APC R=∠,sin 2BDBPD R=∠,其中R 为圆的半径. B'C 'DCBAP图3-3对A 、B '、C '、D 应用直线上的托勒密定理的推论,有sin sin sin sin sin sin sin sin APB CPB APD BPC APB C PD APD B PC ''''⋅+⋅=⋅+⋅∠∠∠∠∠∠∠∠sin sin sin sin APC B PD APC BPD ''=⋅=⋅∠∠∠∠. 故AB CD AD BC AC BD ⋅+⋅=⋅.四边形中的托勒密定理(或托勒密不等式) 设ABCD 为任意凸四边形,则AB CD BC AD ⋅+⋅≥ AC BD ⋅,当且仅当A ,B ,C ,D 四点共圆时取等号.证明 如图3-4,取点E 使BAE CAD =∠∠,ABE ACD =∠∠,则△ABE ∽△ACD ,即有AD ACAE AB=,且AC CDAB BE=,即CB图3-4AB CD AC BE ⋅=⋅.①又DAE CAB =∠∠,有△ADE ∽△ACB ,亦有AD BC AC ED ⋅=⋅.② 由①式与②式,注意到BE ED BD +≥,有AB CD BC AD AC BE ED AC BD ⋅+⋅=⋅+⋅()≥.其中等号当且仅当E 在BD 上,即ABD ACD =∠∠时成立.此时A ,B ,C ,D 四点共圆.由此,即有托勒密定理的逆定理 在凸四边形ABCD 中,若AB CD BC AD AC BD ⋅+⋅=⋅,则A ,B ,C ,D 四点共圆.【典型例题与基本方法】1.恰当地作出或选择四边形,是应用托勒密定理的关键例 1 在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若角A ,B ,C 的大小成等比数列,且22b a ac =-,则角B 的弧度数等于多少?(1985年全国高中联赛题) 解 如图3-5,过点C 作CD AB ∥交ABC △的外接圆于D ,连AD ,则四边形ABCD 为等腰梯形.由托勒密定理,有22b a c CD =+⋅.cbaDCBA图3-5由已知有22b a c a =+⋅,则CD a =,从而AD DC CB ==,即2ADC BC =,亦即2B BAC =∠∠.又因为在ABC △中,角A ,B ,C 的大小成等比数列,则公比2Bq A==∠∠,从而A B C ++=∠∠∠ 247πA A A A ++==∠∠∠∠,故π7A =∠,2π7B =∠为所求. 例2 凸四边形ABCD 中,60ABC =︒∠,90BAD BCD ==︒∠∠,2AB =,1CD =,对角线AC ,BD 交于点O .如图3-6,求sin AOB ∠. (1996年北京中学生竞赛题)DC BAPO图3-6解 因90BAD BCD ==︒∠∠,则A ,B ,C ,D 四点共圆.延长BA ,CD 交于P ,则ADP ABC =∠∠ 60=︒.设AD x =,有AP =,2DP x =,由割线定理,有(2)2(12)x x +⋅=+.求得2AD x ==,42BPBC == 对ABCD 应用托勒密定理,有(42)2112BD AC ⋅=+⋅=-.又ABCD ABD BCD S S S =+△△12)(42=-+=.从而,112)sin 2AOB ⋅=∠.故sin AOB =∠例3 如图3-7,已知在ABC △中,AB AC >,A ∠的一个外角的平分线交ABC △的外接圆于点E ,过E 作EF AB ⊥,垂足为F .求证:2AF AB AC =-. (1989年全国高中联赛题)H GF EDCBA图3-7证明 在FB 上取点D ,使FD FA =,连ED 并延长交圆于G ,连AG ,EC ,则ACE AGD =∠∠,180180ADG ADE EAH EAC =︒-=︒-=∠∠∠∠(H 在CA 的延长线上),从而△ADG ∽△EAC ,且BC AG =.于是,注意BC AG =,有C AE B AD EC ⋅=,故2AE BCAF EC⋅=. 连EB ,对四边形AEBC 应用托勒密定理,有AB EC AE BC BE AC ⋅=⋅+⋅,即AE BC AB EC BE AC ⋅=⋅-⋅.于是2AB EC BE ACAF AB AC EC⋅-⋅==-.其中EC BE =可由EAB EAH EBC ==∠∠∠推得. 注 (1)也可应用三弦定理证明.设DAE EAB α==∠∠,则180FAC α=︒-∠,1802BAC α=︒-∠.对AB ,AE ,AC 应用三弦定理,得sin 180sin 1802sin AB AE AC ααα⋅︒-=⋅︒-+⋅()(),即sin22cos sin AE AB AC AE ααα⋅-==⋅.又在Rt AEF △中,cos AE AF α⋅=,故2AF AB AC =-.(2)也可以应用阿基米德折弦定理证明.由BF FA AC ==,有AB AF FA AC -=+,即2AF AB AC =-. 例4 如图3-8,在锐角ABC △的BC 边上有两点E ,F ,满足BAE CAF =∠∠,作FM AB ⊥于M ,FN AC ⊥于N ,延长AE 交ABC △的外接圆于点D .证明:四边形AMDN 与ABC △的面积相等.(2000年全国高中联赛题) F E DCBAMN图3-8证明 设BAE CAF α==∠∠,EAF β=∠,有11sin()sin 22ABC S AB AF AC AF αβα=⋅⋅++⋅⋅=△ ()4AFAB CD AC BD R⋅+⋅,其中R 为外接圆半径. 又11sin sin()22AMDN S AM AD AD AN ααβ=⋅⋅+⋅⋅+四边形 1[cos()sin cos sin()]2AD AF AF αβαααβ=⋅+⋅+⋅⋅+ 1sin(2)24AF AD AF AD BC Rαβ=⋅⋅+=⋅. 由托勒密定理,有AB CD AC BD AD BC ⋅+⋅=⋅,例5 如图3-9,在ABC △中,60A =︒∠,AB AC >,点O 是外心,两条高BE ,CF 交于H 点,点M ,N 分别在线段BH ,HF 上,且满足BM CN =.求MH NHOH+的值.(2002年全国高中联赛题)O HF EBAMN图3-9解法 1 连OB ,OC ,由三角形外心及垂心性质,知2120BOC A ==︒∠∠,180BHC =︒-∠ 180(90)(90)180120HBC HCB C B A -=︒-︒--︒-=︒-=︒∠∠∠∠∠,即B ,C ,H ,O 四点共圆.在此圆中对四边形BCHO 应用托勒密定理,有 BO CH OH BC BH OC ⋅+⋅=⋅.设ABC △的外接圆半径为R ,则BO OC R ==,且由60A =︒∠,知BC ,即有R CH ⋅+OH BH R =⋅,亦即BH CH H -.而()()MH NH BH BM CN CH BH CH +=-+-=-,故MH NHOH+=解法2 同解法1,知B ,C ,H ,O 四点共圆,有OBH OCH =∠∠,而BO OC =,BM CN =,则△OBM OCN ≌△,从而OM ON =,BMO CNO =∠∠,由此知O ,M ,H ,N 四点共圆,且等腰△OMN 的顶角120MON NHE ==︒∠∠,即知sin120sin30MN OM ︒=︒对四边形OMHN ,应用托勒密定理,有MH ON NH OM OH MN ⋅+⋅=⋅,故MH NH MNOH OM+==为所求.注 此例的其他证法可参见第四章例2,第十五章例17.例6 已知ABC △内切圆I 分别与边AB 、BC 切于点F 、D ,直线AD 、CF 分别与I 交于另一点H 、K .求证:3FD HKFH DK⋅=⋅. (2010年东南奥林匹克题) 证明 设内切圆AC 于点Q ,联结FQ 、DQ 、KQ 、HQ (图略).由△CDK ∽△CFD 及△CQK ∽CFQ △,有DK DCFD FC=及QC QK FC FQ =. 注意到DC QC =,有DK FQ FD QK ⋅=⋅. 同理,有FH DQ FD HQ ⋅=⋅.分别对四边形FDKQ 及FDQH 应用托勒密定理,有 2KF DQ DK FQ ⋅=⋅,2HD FQ FH DQ ⋅=⋅.这两式相乘,有4KF HDFH DK⋅=⋅.又由托勒密定理,有KF HD DF HK FH DK ⋅=⋅+⋅.故43KF HD FD HKFH DK FH DK⋅⋅=⇔=⋅⋅.2.注意托勒密定理逆定理的应用和拓广的托勒密定理或托勒密定理推论的应用例7 若右四个圆都与第五个圆内切,第一个与第二个圆的外公切线的长用12l 表示,其他前四个圆中的两两的外公切线也用同样的方法来标记,且前四个圆以顺时针的顺序排列,试证明依次以12l ,23l ,34l ,41l 为边长,以13l ,24l 为对角线所构成的凸四边形的四个顶点共圆.(《中等数学》1999年第5期高中奥林匹克题)证明 如图3-10,设前四个圆分别为1O ,2O ,3O ,4O ,第五个圆为O ,前四个圆与O 分别内切于A ,B ,C ,D ,则易知A ,1O ,O 三点共线.类似地,有B ,2O ,O ;C ,3O ,O ;D ,4O ,O 三点共线.D图3-10设五个圆的半径分别为1r ,2r ,3r ,4r ,R ;AOB α=∠,BOC β=∠,COD γ=∠,DOA δ=∠;1OO a =,2OO b =,3OO c =,4OO d =,则1a R r =-,2b R r =-,3c R r =-,4d R r =-.从而,2222222121212()2cos ()4sin 2l OO r r a b ab a b ab αα=--=+---=⋅.故12sin2l α=.同理,可求得23l ,34l ,41l ,13l ,24l .要证明以12l ,23l ,34l ,41l 为边长,以13l ,24l 为对角线所构成的凸四边形的四个顶点共圆,只要证明123423411324l l l l l l ⋅+⋅=⋅,化简后只要证明sinsinsinsinsinsin222222αγβδαββγ++⋅+⋅=⋅,①即sin sin sin sin sin sin ADB DBC BDC ABD ADC BAD ⋅+⋅=⋅∠∠∠∠∠∠.这由托勒密定理的推论2即证.注 对于①也可由正弦定理2sin2AB R α=转换成AB CD BC DA AC BD ⋅+⋅=⋅即证.此例是一个富有应用价值的问题.托勒密定理是这个问题中四个圆均变为点(过该点线成了“点圆”的切线)的情形.例8 经过XOY ∠的平分线上的一点A ,任作一直线与OX 及OY 分别相交于P ,Q .求证:11OP OQ +为定值.证明 如图3-11,过O ,P ,Q 三点作圆,交射线OA 于B .设POA QOA α==∠∠,对四边形OPBQ中的三条弦OP ,OB ,OQ 应用托勒密定理的推论1,有BAPQO图3-11sin 2sin sin BO OP OQ ααα⋅=⋅+⋅.即sin 22sin cos 2cos sin sin BO BO OP OQ BO αααααα⋅⋅⋅+===⋅.①连BQ ,由△OPA ∽△OBQ ,有OP OQ OA OB ⋅=⋅.由①式除以上式,得112cos OP OQ OA α+=(定值). 注 类似于此例,应用托勒密定理的推论1,也可求解如下问题:过平行四边形ABCD 的顶点A 作一圆分别与AB ,AC ,AD 相交于E ,F ,G ,则有AE AB AG AD AF AC ⋅+⋅⋅=.事实上,若设BAC α=∠,CAD β=∠,则有sin sin sin()AE AG AF βααβ⋅+⋅=⋅+.对此式两边同乘AB AC AD ⋅⋅,利用三角形的面积公式有ADC ABC ABD AE AB S AG AD S AF AC S ⋅⋅+⋅⋅=⋅⋅△△△.而在ABCD 中,有ADC ABC ABD S S S ==△△△,由此即证.例9 设D 为锐角ABC △内部一点,且满足条件:DA DB AB DB DC BC DC DA CA ⋅⋅+⋅⋅+⋅⋅ AB BC CA =⋅⋅.试确定D 点的几何位置,并证明你的结论.(1998年CMO 试题)此题我们改证比其更强的命题如下:设D 为锐角ABC △内部一点,求证:DA DB AB DB DC BC DC DA CA AB BC CA ⋅⋅+⋅⋅+⋅⋅⋅⋅≥,并且等号当且仅当D 为ABC △的垂心时才成立.证明 如图3-12,作ED BC ∥,FA ED ∥,则BCDE 和ADEF 均是平行四边形.连BF 和AE ,显然BCAF也是平行四边形,于是AF ED BC ==,EF AD =,EB CD =,BF AC =.对四边形ABEF 和四边形AEBD ,应用四边形中的托勒密定理(或托勒密不等式)有AB EF AF BE AE BF ⋅+⋅⋅≥,BD AE AD BE AB ED ⋅+⋅⋅≥,即AB AD BC CD AE AC ⋅+⋅⋅≥,BD AE AD CD AB BC ⋅+⋅⋅≥.① 对上述①式中前一式两边同乘DB 后,两边同加上DC DA AC ⋅⋅,然后注意到上述①式中的后一式,有 DB DA AB DB DC BC DC DA AC DB AE AC DC DA AC ⋅⋅+⋅⋅+⋅⋅⋅⋅+⋅⋅≥.FEDCBA图3-12即 ()()DB AB AD BC CD DC DA CA AC DB AE DC AD AC AB BC ⋅+⋅+⋅⋅⋅+⋅⋅⋅≥≥. 故 DA DB AB DB DC BC DC DA CA AB BC CA ⋅⋅+⋅⋅+⋅⋅⋅⋅≥.其中等号成立的充分必要条件是①式中两个不等式中的等号同时成立,即等号当且仅当ABEF 及AEBD 都是圆内接四边形时成立,亦即AFEBD 恰是圆内接五边形时等号成立.由于AFED 为平行四边形,所以条件等价于AFED 为矩形(即AD BC ⊥)且90ABE ADE ==︒∠∠,亦等价于AD BC ⊥且CD AB ⊥,所以所证不等式等号成立的充分必要条件是D 为ABC △的垂心. 【解题思维策略分析】1.推导某些重要结论的工具例10 圆内接六边形ABCDEF 的对角线共点的充要条件是1AB CD EFBC DE FA⋅⋅=.(见第一角元形式的塞瓦定理的推论) 证明 必要性:如图3-13,设AD ,BE ,CF 交于一点P ,则易知△APB ∽△EPD ,△CPD ∽△APF ,△EPF ∽△CPB ,从而,,AB BP CD DP EF FPDE DP FA FP BC BP===.此三式相乘即证. P(C ')FEDC BA图3-13充分性:设1AB CD EFBC DE FA⋅⋅=,AD BE ⋅交于P ,连FP 并延长交圆于C ',连BC ',C D ',则由必要性知1AB C D EF BC DE FA '⋅⋅=',和已知式比较得CD C D BC BC '=',即CD BC BC C D ''⋅=⋅.连BD ,CC ',对四边形BCC D '应用托勒密定理,得BC C D BD CC CD BC '''⋅+⋅=⋅,由此得0BD CC '⋅=.因0BD >,所以0CC '=,即C '与C 重合,于是AD ,BE ,CF 三线共点.例11 O 是ABC △的外接圆,I 是ABC △的内心,射线AI 交O 于D .求证:AB ,BC ,CA 成等差数列的充要条件是IBC DBC S S =△△.证明 如图3-14,由5123242BID DBI ==+=+=+=∠∠∠∠∠∠∠∠∠,知DI BD DC ==.D图3-14必要性:若AB ,BC ,CA 成等差数列,即2AB AC BC +=,而△IBA ,△ICA ,IBC △有相等的高,则2IAB IAC IBC S S S +=△△△.又由托勒密定理,有AB DC AC BD AD BC ⋅+⋅=⋅,即()AB AC DI +⋅AD BC =⋅,2AD AB ACDI BC +==,即I 是AD 的中点,于是AIB IBD S S =△△,IAC ICD S S =△△,2IBC IAB S S =+△△ IAC IBD ICD BDC IBC BDC S S S S S S =+==+△△△△△△,故IBC DBC S S +△△.充分性:若IBC DBC S S =△△,即1111sin sin 2222IB BC B DB BC A ⋅⋅=⋅⋅∠∠,有11sin sin 22IB DB A B =∶∠∶∠.比较上述两式,得IA BD =,但DI DB =,即知2AD DI =,仿前由托勒定理知2AB AC ADBC DI+==,即2AB AC BC +=,故AB ,BC ,CA 成等差数列.例12 如图3-15,设I 为ABC △的内心,角A ,B ,C 所对的边长分别为a ,b ,c .求证:22IA IB bc ac++21IC ab=. FEDCBAI图3-15证明 设I 在三边上的射影分别为D ,E ,F .设ABC △的外接圆半径及内切圆半径分别为R ,r ,则ID IE IF r ===.由B ,D ,I ,F 四点共圆,且IB 为其圆的直径,应用托勒密定理,有DF IB ID BF IF BD ⋅=⋅+⋅ ()r BD BF =+.由正弦定理,有sin 2bDF IB B IB R=⋅=⋅∠,即有()22b IB Rr BD BF ⋅=+.同理,有22()a IB Rr AF AE ⋅=+,22()c IC Rr CD CE ⋅=+,从而2222()a IA b IB c IC Rr a b c ⋅+⋅+⋅=++.又由1()24ABC abc S r a b c R =++=△,有2()Rr a b c abc ++=,故222a IA b IB c IC abc ⋅+⋅+⋅=,即2221IA IB IC bc ac ab++=. 例13 如图3-16,若ABC △与△A B C '''的边长分别为a ,b ,c 与a ',b ',c ',且B B '=∠∠,180A A '+=︒∠∠,则aa bb cc '''=+.A′B'C 'c'b'a'bcbaDCBA图3-16证明 作ABC △的外接圆,过C 作CD AB ∥交圆于D ,连AD ,BD .因180A A A D '+=︒=+∠∠∠∠,BCD B B '==∠∠∠,则A D '=∠∠,B BCD '=∠∠,从而△A B C DCB '''∽△,有A B B C A C DC CB DB ''''''==,即 c a b DC a DB '''==,故ab DC a '='. 又AB CD ∥,知BD AC b ==,AD BC a ==.由托勒密定理,得AD BC AB DC AC BD ⋅=⋅+⋅,即2ac ab a c b a a ''=⋅+⋅''. 故 aa bb cc '''=+.例14 已知O 的内接锐角ABC △,点O 到ABC △的三边a ,b ,c 的距离分别为a H ,b H ,c H .试证:O 的半径R 为方程3222()20ab c a b c x H H H x H H H -++-=的根. (《数学通报》1991年第11期问题征解题)证明 如图3-17,设AO ,BO ,CO 的延长线分别交O 于M ,N ,P .连AP ,BP ,BM ,MC ,NC ,NA .因O 在ABC △内部,则2c BM H =,2b MC H =,2a NC H =,2c NA H =,2b PA H =,2a PB H =.H aH b cb a CBAMNOP图3-17在O 的内接四边形ABMC ,ABCN ,APBC 中分别应用托勒密定理,得 222b c R a c MC b BM H c H b ⋅=⋅+⋅=⋅+⋅, 222c a R b a NA c NC H a H c ⋅=⋅+⋅=⋅+⋅, 222b a R c a PA b PB H a H b ⋅=⋅+⋅=⋅+⋅.即有 000c b c a ba b R a H b H c H a R b H c H a H R c ⋅⎧⋅-⋅-⋅=⎪⋅-⋅+⋅=⎨⎪⋅+-⋅=⎩,,.显然,该方程组关于a ,b ,c 有非零解,于是有 0c bc a baRH H H R H H H R---=-.展开整理,得关于R 的方程为 322220a b c a b c R H H H R H H H ++-=-(),命题获证.例15 如图3-18,在ABC △中,1B ,1C 分别是AB ,AC 延长线上的点,1D 为11B C 的中点,连1AD 交ABC △外接圆于D .求证:1112AB AB AC AC AD AD ⋅+⋅=⋅.(《中等数学》2001年第4期高中训练题) αβD 1B 1C 1DCBA图3-18证明 连BD ,CD .设BAD α=∠,CAD β=∠,ABC △外接圆的半径为R .因1D 为11B C 的中点,知11111112AB D AC D AB C S S S ==△△△.在△BCD 中,由正弦定理,有2sin BD R α=⋅,2sin CD R β=⋅,2sin()BC R αβ=⋅+.在圆内接四边形ABCD 中,由托勒密定理得AB CD AC BD AD BC ⋅+⋅=⋅,即2sin 2AB R AB R β⋅⋅+⋅ sin 2sin()AD R ααβ⋅=⋅⋅+, 两边同乘以11114AB AC AD R⋅⋅⋅,得 111111111AC D AB D AB C AB AB S AC AC S AD AD S ⋅⋅+⋅⋅=⋅⋅△△△,即 1112AB AB AC AC AD AD ⋅+⋅=⋅.例16 如图3-19,设1C ,2C 是同心圆,2C 的半径是1C 半径的2倍.四边形1234A A A A 内接于1C ,将41A A 延长交圆2C 于1B ,12A A 延长交圆2C 于2B ,23A A 延长交圆2C 于3B ,34A A 延长交圆2C 于4B .试证四边形1234B B B B 的周长2⨯≥四边形1234A A A A 的周长,并请确定等号成立的条件.(1988年第三届冬令营试题)C 图3-19证明 设同心圆圆心为O ,连1OA ,1OB ,2OB .在四边形112OA B B 中应用推广的托勒密定理,有 112112211OB A B OA B B OB A B ⋅⋅+⋅≤.因1212OB OB OA ==,则12121122A B B B A B +≤, 从而 12122211222B B A A A B A B +-≥.①同理,23233322222B B A A A B A B +-≥,34344433222B B A A A B A B +-≥,41411144222B B A A A B A B +-≥. 以上四式相加,得12233441122334412()B B B B B B B B A A A A A A A A ++++++≥.②为使②式中等号成立,当且仅当所加的四式均为等式.而①式等号成立,当且仅当四边形112OA B B 内接于圆.这时,12122141O OA A OB B OB B A A ===∠∠∠∠,即1OA 为412A A A ∠的平分线.同理,2OA ,3OA ,4OA 分别为123A A A ∠,234A A A ∠,341A A A ∠的平分线.这意味着O 为四边形1234A A A A 的内切圆的圆心,故知四边形1234A A A A 为正方形,即当且仅当四边形1234A A A A 为正方形时②式等号成立.例17 如图3-20,设ABCDEF 是凸六边形,满足AB BC CD ==,DE EF FA ==,BCD EFA =∠∠ 60=︒.设G 和H 是这六边形内部的两点,使得120AGB DHE ==︒∠∠.试证:AG GB GH DH +++HE CF +≥.(第36届IMO 试题) F'C 'FE DC BAGH图3-20证明 以直线BE 为对称轴,作C 和F 关于该直线的轴对称点C '和F ',于是C F CF ''=,且ABC '△和△DEF '都是正三角形,G 和H 分别在这两个三角形的外接圆上.由托勒密定理,有 C G AB AG C B GB C A '''⋅=⋅+⋅,即有C G AG GB '=+,同理,HF DH HE '=+.于是 AG GB GH DH HE C G GH HF C F CF ''''++++=++=≥.例18 如图3-21,设M ,N 是ABC △内部的两个点,且满足MAB NAC =∠∠,MBA NBC =∠∠.证明:1AM AN BM BN CM CN AB AC BA BC CA CB⋅⋅⋅++=⋅⋅⋅.(第39届IMO 预选题) KCBAMN图3-21证明 设K 是射线BN 上的点,且满足BCK BMA =∠∠.因BMA ACB >∠∠,则K 在ABC △的外部.又MBA CBK =∠∠,则△ABM ∽△KBC ,即有AB BM AMBK BC CK==. 由ABK MBC =∠∠,AB BM KB BC =,知ABK MBC △≌△,于是AB BK AKBM BC CM==.由CKN MAB NAC ==∠∠∠,知A ,N ,C ,K 四点共圆.应用托勒密定理,有AC NK AN KC ⋅=⋅+CN AK ⋅,或()AC BK BN AN KC CN AK ⋅-⋅+⋅∶,将AM BC KC BM ⋅=,BK CM AK BM ⋅=,AB BCBK BM⋅=代入,得AB BC AN AM BC CN BK CMAC BN BM BM BM ⋅⋅⋅⋅⋅⎛⎫-=+ ⎪⎝⎭,即 1AM AN BM BN CM CN AB AC BA BC CA CB ⋅⋅⋅++=⋅⋅⋅.例19 如图3-22,在ABC △中,AB AC =.线段AB 上有一点D ,线段AC 延长线上有一点E ,使得DE AC =.线段DE 与ABC △的外接圆交于T ,P 是线段AT 延长线上的一点.证明:点P 满足PD PE AT +=的充分必要条件是点P 在△ADE 的外接圆上.(2000年国家集训队选拔试题) T ED CBAP图3-22证明 充分性:连BT ,CT .由A ,B ,T ,C ;A ,D ,P ,E 分别四点共圆,知CBT CAT EDP ==∠∠∠,BCT BAT DEP ==∠∠∠,于是△BTC ∽△DPE ,可设DP PE DEk BT CT BC===. 对四边形ABTC 应用托勒密定理,有 AC BT AB CT BC AT ⋅+⋅=⋅.将上式两边同乘以k ,并用前一比例式代入,得 AC DP AB PE DE AT ⋅+⋅=⋅.注意到AB AC DE ==,即得PD PE AT +=.必要性:以D ,E 为两个焦点,长轴长等于AT 的椭圆与直线AT 至多有两个交点,而其中在DE 的一侧,即线段AT 延长线上的交点至多一个,由前面的充分性证明,知AT 的延长线与△ADE 的外接圆的交点Q 在这个椭圆上;而依题设点P 同时在AT 的延长线上和椭圆上,故点P 与点Q 重合,命题获证.2.求解代数问题的一条途径例20 若0a b c >≥≥,且a b c <+,解方程ax =.(1993年南昌市竞赛题)解 因0a b c >≥≥,且a b c <+,所以a ,b ,c 为边可以作一个三角形.作ABC △,使BC a =,AC b =,AB c =,分别作AC ,AB 的垂线,它们交于点D .则四边形ABDC 内接于圆,如图3-23.此时,AD为直径,sin BDBAD AD=∠,sin CDCAD AD==∠,sin aCAB AD=∠.DC图3-23对AD ,AC ,AB 应用托勒密定理推论1或三弦定理,有sin sin AC BAD AB CAD AD ⋅+⋅=⋅∠∠sin CAB ∠,即ab c ADAD⋅+=⋅,即b c a AD ⋅. 由1sin 22ABC abcS bcCAB AD =⋅=△∠,而ABC S =△,其中1()2P a b c =++,从而AD =例21已知a ,b 是不相等的正数,求函数()f x =的值域.CA图3-24解因222+=,则可以ACAB =,BC =.如图3-24,在另一半圆上取中点D ,则CD AD==ABCD 应用托勒密定理,有 ())f x AB CD BC AD AC BD =⋅+⋅=⋅=.不妨取a b>,则,即AB.而当AB CD==()maxf x=.AB()f x是AB的单调递增函数,()minf x==AB时,()f x是AB的单调递减函数,从而当AB,BC,()minf x==故()f x在定义域上,()minf x=()f x的值域为.注对于一般的函数,()()()f x a A x b B x=⋅+⋅,只要()()22A xB x+=定值,就可以构造圆的内接四边形,灵活运用托勒密定理求其极值或值域.3.注意广义托勒密定理的应用前面给出的例6是一个很有价值的问题,甚至,我们可以称之为广义托勒密定理.当一个圆的半径无限趋近于0时,圆就趋近于一点,过该点的直线就成了“点圆”的切线.托勒密定理就是例6中内切于O的四个圆均变为点的情形.利用广义托勒密定理可以处理如下问题:例22 已知1O与2O分别与O内切,作1O 和2O的两条内公切线交O 于A,B ,作1O和2O的外公切线,切点为E和F.求证:EF AB∥.证明如图3-25,设G,H 分别为1O与2O的内公切线的切点,EF交O于C,D 两点,记1O和2O的内公切线长为d .用[]****表示一组与O内切的“圆”,并应用广义托勒密定理,则C'D图3-25对于1[]A C O D,,,,有AG CD AC DE CE AD⋅=⋅+⋅,①对于2[]B D C O ,,,,有 BH CD BD CF DF BC ⋅=⋅+⋅ ()BD CE EF DF BC =++⋅.②对于2[]A C D O ,,,,有()()AG d CD AC DF AD CE EF +⋅=⋅+⋅+. ③对于1[]B D C O ,,,,有()()BH d CD BD CE BC DF EF +⋅=⋅++.④ 由①,③得()()AC DF AD CE EF DC d AC EF FD CE AD ⋅+⋅+-⋅=⋅++⋅,即AD EF DC d AC EF ⋅-⋅=⋅.⑤ 由②,④得()()BD CE BC DF EF DC d BD CE EF DF BC ⋅+⋅+-⋅=⋅++⋅,即BC EF DC d BD EF ⋅-⋅=⋅.⑥ 由⑤与⑥得 ()EF AD AC DC d -=⋅,()EF BC BD DC d -=⋅.故 BC BD AD AC -=-.若四边形ABCD 中不含圆心O ,那ABC ∠,BAD ∠均为锐角.不妨设ABC BAD >∠∠,则AC BD >. 又BDC ACD >∠∠,则BC AD >.所以BC BD AD AC ->-,矛盾.故一定有ABC BAD =∠∠.此时AB DC ∥.若四边形中含圆心,则与之“对称”的四边形A B C D ''''(A ',B ',C ',D '的定义方式与A ,B ,C ,D 的定义方式相似)不含圆心.设CD 交AA '于Y ,C D ''交BB '于X .由已证结论A B C D ''''∥,因为A B B A AB '''=∠∠,C XB DYA ''=∠∠,A B B C XB '''=∠∠,所以DYA A AB ''=∠∠,故AB DC ∥. 例23 如图3-26,1G 和2G 内切于G 的一段弧,并且两圆彼此外切于点W .设A 是1G 和2G 的内公切线与该段弧的交点,而B 和C 是G 中1G 与2G 的外公切线弦的端点,证明:W 是ABC △的内切圆圆心.(IMO -33预选题)图3-26证明 设AW 与BC 的交点为D ,1G ,2G 与BC 的切点分别为E ,F ,并设各线段之长为BE x =,CF y =,BD k =,CD h =,AD d =,于是,有DE k x =-,DF h y =-.又因DE DW DF ==,故k x h y -=-,AW d k x d h y =-+=-+.用(A ,1G )表示点圆A 与1G 的公切线的长,则()1,A d k x G =-+.同理,(),A b c =,(),A c b =,()1,B x G =,()1,C a x G =-,(),B C a =.对1[,,,]A B C G 应用广义托勒密定理,有()()d k x a b x c a x -+⋅+⋅=⋅-,令()12p a b c =++,则由上式,有()2a x k c d p =+-.同理,对[B ,C ,2G ,A ],有()2ay h b d P=+-, 注意到k x h y -=-,则()()22a ak k c d h h b d p p -+-=-+-,即有()()b c k ac b c h ab +⋅-=+⋅-,亦即()()()b c k h a c b +-=⋅-.而BD DC BC +=,即k h a +=,于是,()()()()b c k h k h c b +-=+-,即c h b k ⋅=⋅,亦即k ch b=. 此表明BD AB CD AC =,即知AD 平分BAC ∠.所以ac k b c =+,abh b c=+. 得 22ac a ac adk x c d b c p b c p ⎛⎫-=-+-=⎪++⎝⎭. 因而22d d p a b cad k x a ap++===-,于是 111AW AD d a b c b c c BAac DW DW k x a a BD b c+++=-=-=-===-+.由此,即知BW 平分ABC ∠.故W 是ABC △的内心. 【模拟实战】习题A1.A ,B ,C ,D 四点在同一圆周上,且4BC CD ==,E 为AC 与BD 的交点,且6AE =,线段BE 和DE 的长都是整数,则BD 的长等于多少? (1988年全国初中联赛题) 2.在ABC △中,AB AC BC <<,D 在BC 上,E 在BA 的延长线上,且BD BE AC ==,△BDE 的外接圆与ABC △的外接圆交于F 点.求证:BF AF CF =+. (1991年全国初中联褰题) 3.已知P 是正方形ABCD 的外接圆AD 上任一点,求PA PCPB+的值. 4.O 过ABC △的顶点A ,且分别与AB ,AC 和BC 上的中线AD 相交于1B ,1C ,1D ,则1AB AB ⋅,1AD AD ⋅,1AC AC ⋅成等差数列.5.已知正七边形12A A …7A ,求证:121314111A A A A A A =+. (第21届全俄奥林匹克题)6.在圆内接六边形AB CA BC '''中,令BC a '=,B C a ''=,CA b =,C A b ''=,AB c '=,A B c ''=,1AA a '=,1BB b '=,1CC c '=.求证:111111a b c abc a b c aa a bb b cc c ''''''=++++.7.R ,r 分别为ABC △的外接圆和内切圆的半径,m ,n ,p 分别在弧AB ,BC ,CA 上,1h ,2h ,3h 分别为弓形AmB ,BnC 和CPA 的高.求证:1232h h h R r ++=-.8.解方程=.9.已知1=,且01a ≤≤,01b ≤≤.求证:221a b +=. 10.求函数222sin 22cos 2x x y x x θθ+⋅+=+⋅+的值域(θ为参数).11.已知ABC △中,最大角B 与最小角C 的差为AB 上任一点.求证:PD PE PA PB PC PF +=+++. 12.AD ,BE ,CF 是正ABC △的三条高,任取一点P .试证:在△PAD ,△PBE ,△PCF 中,最大一个的面积等于其余两个的面积之和.13.已知ABC △的60A =︒∠,令BC a =,CA b =,AB c =.求证:tan tan tan tan A B c bA B c--=+. 14.已知P 为等腰ABC △(AB AC =)外接圆BC 上的一点,Q 为AB 上一点.求证:PAPB PC=+QAQC QB-.15.已知AB 为O 的直径,圆周上的点C ,D 分别在AB 的两侧,过CD 中点M 分别作AC ,AD 的垂线,垂足为P ,Q .求证:22BC MP BD MQ MC ⋅+⋅=.16.已知平行四边形ABCD 中,过B 的圆分别交AB ,BC ,BD 于E ,F ,G 求证:BE AB BF BC ⋅+⋅ BG BD =⋅.17.设AF 为1O 与2O 的公共弦,点B ,C 分别在1O ,2O 上,且AB AC =,BAF ∠,CAF ∠的平分线交1O ,2O 于点D ,E 求证:DE AF ⊥.18.19.求函数,)y a b +=∈R 的值域.20.已知221(,)x y x y ++∈R ≤.求证:222x xy y +-21.已知两圆内切于点T ,ABC △是大圆的内接正三角形,过A ,B ,C 作小圆的切线AM ,BN ,CP ,且M ,N ,P 为切点.求证:CP ,AM ,BN 三条线段中,一条线段等于另外两条线段之和.22.在ABC △中,BC AC AB >>,外接圆为Γ.三条内角平分线分别交BC ,CA 和AB 于点D ,E 和F ,通过点B 的直线平行于EF 交圆Γ于点Q ,点P 在圆Γ上,且QP AC ∥.求证:PC PA PB =+. 23.在四边形ABCF 中,BF AF FC +=.点D 在BC 上,点E 在BA 的延长线上,且BD BE AC ==,AF CD FC AE ⋅=⋅.求证:四边形ABCF 有外接圆.24.1O 与2O 相交于A ,E 两点,1O 的一条弦BC 与2O 相切于点D ,且AD 与1O 相切于点A .求证:33EB AB EC AC=. 习题B1.设圆内接四边形ABCD 的四边AB a =,BC b =,CD c =,DA d =.求对角线AC 和BD 的长(用a ,b ,c ,d 表示). 2.已知ABC △内接于O ,P 为ABC △内任一点,过点P 引AB ,AC ,BC 的平行线,分别交BC ,AC 于F ,E ,交AB ,BC 于K ,I ,交AB ,AC 于G ,H ,AD 为O 过点P 的弦.试证:2224EF KI GH PA PD ++⋅≥.(《数学通报》1991年第9期问题)3.圆内接四边形被它的一条对角线分成两个三角形,证明:这两个三角形的内切圆半径之和与对角线的选取无关. (IMO -23预选题) 4.设1C ,2C 是同心圆,2C 的半径是1C 的半径的λ(1λ>)倍.n 边形12A A …n A 内接于1C ,延长1n A A .12A A ,…,1n n A A -分别交圆2C 于1B ,2B ,…n B ,若n 边形12A A …n A ,12B B …n B 的周长分别为1p ,2p .试证:21p p λ≥,其中等号当且仅当n 边形12A A …n A 是正n 边形时成立.(IMO -21预选题) 5.已知边长分别为a ,b ,c 的ABC △内接于O ,1O 内切于O ,切点G 在BC 上,由点A ,B ,C 分别引1O 的切线长顺次为d ,e ,f .证明:ad be cf =+.6.在圆内接四边形ABCD 中,1O ,2O ,3O ,4O 分别是△ABD ,△BCA ,△CDB ,△DAC 的内切圆.设AB ,BC ,CD ,DA 上的切点依次是E ,F ,M ,N ,G ,H ,P ,Q ,设i O 的半径为i R (i =1,2,3,4).求证:1324EF MN R R R R ⋅=+.7.设锐角ABC △的A ∠的平分线交BC 于L ,交外接圆于N ,自点L 分别向AB 和AC 作垂线LK 和LM ,垂足为K 和M .求证:ABC △的面积等于四边形AKNM 的面积. (IMO -28试题) 8.ABC △为O 内接三角形,AB AC BC >>.点D 在BC 上,从O 点分别作AB ,AC 的垂线交AD于E 、F ,射线BE ,CF 交于P 点.则PB PC PO =+的充要条件是30BAC =︒∠.9.证明:设ABC △中,A ∠,B ∠与C ∠的三条角平分线分别交ABC △的外接圆于1A ,1B ,1C ,则111AA BB CC AB BC CA ++>++.(1982年澳大利亚竞赛题)10.设ABCDEF 是凸六边形,且AB BC =,CD DE =,EF FA =.证明:32BC DE FA BE DA FC ++≥,并指出等式在什么条件下成立. (IMO -38预选题) 11.在ABC △中,90A =︒∠,A C <∠∠,过A 点作ABC △的外接圆O 的切线,交直线BC 于D ,设点A 关于BC 的对称点为E ,作AX BE ⊥于X ,Y 为AX 的中点,BY 与O 交于Z .证明:BD 为△ADZ 的外接圆的切线. (IMO -39预选题)12.O 为正ABC △的外接圆,AD 为O 的直径,在BC 上任取一点P (P B ≠,P C ≠),设E ,F 分别为△PAB ,PAC △的内心.证明PD PE PF =-.13.设G 为ABC △的重心,在ABC △所在平面上确定点P 的位置,使得PA AG BP BG CP CG ⋅+⋅+⋅有最小值,并用ABC △的边长表示这个最小值.(IMO -42预选题)14.设12A A …n A (4n ≥)为凸n 边形.证明:12A A …n A 为圆内接多边形的充分必要条件是对每个顶点j A 对应一组实数()j j b c ,1,2,,j n =…,满足(1)i j j i i j A A b c b c i j n =-<≤≤.(IMO -41预选题)。
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 016-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 022-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 029-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 034-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 044-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 051-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 058-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 064-07311.希望杯第六届(1995年)初中一年级第一试试题 ........................................... 071-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 078-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 088-09814.希望杯第七届(1996年)初中一年级第二试试题............................................. 93-10515.希望杯第八届(1997年)初中一年级第一试试题........................................... 101-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 108-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 116-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 125-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 132-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 145-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 152-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 156-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 160-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 166-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 170-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 177-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 181-20029.希望杯第十五届(2004年)初中一年级第一试试题 (185)30.希望杯第十五届(2004年)初中一年级第二试试题 (186)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (186)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题 ................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题 ................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题 ................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0.B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b 互为倒数.2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式.B .单项式与单项式的和是多项式.C .多项式与多项式的和是多项式.D .整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B .没有最小的正有理数.C .没有最大的负整数.D .没有最大的非负数.4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么( ) A .a ,b 同号. B .a ,b 异号.C .a >0. D .b >0.5.大于-π并且不是自然数的整数有( ) A .2个. B .3个.C .4个. D .无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A .0个.B .1个.C .2个.D .3个.7.a 代表有理数,那么,a 和-a 的大小关系是 ( )A .a 大于-a .B .a 小于-a .C .a 大于-a 或a 小于-a .D .a 不一定大于-a .8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A .一样多.B .多了.C .少了.D .多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______.3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m 的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y 的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43x;C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34.10.如图: ,数轴上标出了有理数a,b,c的位置,其中O是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________. 6.n 为正整数,1990n -1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
全国初中数学联赛与全国初中数学竞赛有什么不同.txt最佳答案
全国数学联赛第一试着重基础知识和基本技能,题型为选择题6题、填空题4题,共70分。
第二试着重分析问题和解决问题的能力,题型为三道解答题,内容分为代数题、几何题、几何代数综合题或杂题,共70分,两试合计共140分。
竞赛对象:在校初中生,采取自愿与学校推荐相结合的办法报名参加。
全国数学联的获奖成绩常常被作为人大附、四中等重点提前录取的一个重要参考。
数学竞赛和联赛好像不是一个地方组织的,全国数学竞赛比联赛题要简单一点,但决赛题都比较变态。
现在参加数学竞赛的人比参加联赛的好像多一点,但两者本质上并没有什么区别。
2001年全国初中数学联合竞赛试题及答案
2002年全国初中数学联合竞赛试题及答案
2003年全国初中数学联合竞赛试题及答案
2005年全国初中数学联合竞赛试题及答案
2005年全国初中数学联合竞赛决赛试题及答案
2006年全国初中数学联合竞赛决赛试题及答案。
1.若a + b = 7,a - b = 3,则a的值是多少?
A. 2
B. 5
C. 4
D.7
2.有一个正整数n,其各位数字之和为9,而且n除以9的余数等于其各位数字之积,求
n的值是多少?
A.27
B.36
C.45
D.54
3.三个数a、b、c成等比数列,且它们的和为39,若b是这三个数中最小的数,则a的值
为多少?
A. 6
B.9
C.12
D.15
4.一个几何图形,其周长是10厘米,其中一个内角是60度,另一个内角是120度,这个
几何图形是什么?
A.正三角形
B.正方形
C.正五边形
D.正六边形
5.若x^2 + y^2 = 25,且xy = 6,则x+y^2的值为多少?
A.31
B.36
C.41
D.46
6.已知等差数列{a_n}的前5项依次为1,4,7,10,13,求a_{10}的值是多少?
A.25
B.28
C.31
D.34
7.在一个几何图形中,一个外角的度数是120度,内角的度数是多少?
A.60度
B.90度
C.120度
D.150度
8.有两个数,它们的和是16,差是4,求这两个数分别为多少?
A.6,10
B.7,9
C.8,8
D.5,11
9.若正方体的棱长是a,则该正方体的表面积等于多少?
A.6a^2
B.4a^2
C.5a^2
D.8a^2。
第二十讲 点共线与线共点趣题引路】例1 证明梅涅劳斯定理:如图20-1,在△ABC 中,一直线截△ABC 的三边AB 、AC 及BC 的延长线于D 、E 、F 三点。
求证:1=⋅⋅DBADEA CE FC BF 解析:左边是比值的积,而右边是1,转化比值使其能约简,想到平行线分线段成比例作平行线即可. 证明过点C 作CG /∥EF 交AB 于G . ,,BF BD EC DGCF DG AE AD∴== ∴1=⋅⋅=⋅⋅BDADAD DG DG BD BD AD EA CE FC BF例2 证明塞瓦定理:如图20-2,在△ABC 内任取一点P ,直线AP 、BP 、CP 分别与BC 、CA 、AB 相交于D 、E 、F ,求证:1=⋅⋅FBAF EA CE DC BD 证明,,.BCP ACPABP ACP BAP BCPS S S BD CE AF DC S EA S FB S ∆∆∆∆∆∆===∴1=⋅⋅=⋅⋅∆∆∆∆∆∆BCPACPABP BCP ACP ABP S S S S S S FB AF EA CE DC BD知识拓展】1.证明三点共线和三线共点的问题,是几何中常遇到的困难而有趣的问题,解这类问题一定要掌握好证三点共线和三线共点的基本方法。
2.证明三点共线的方法是:(1)利用平角的概念,证明相邻两角互补、 (2)当AB ±BC =AC 时,A 、B 、C 三点共线。
(3)用同一方法证明A 、B 、C 中一点必在另两点的连线上。
(4)当AB 、BC 平行于同一直线时,A 、B 、C 三点共线。
(5)若B 在PQ 上,A 、C 在P 、Q 两侧,∠ABP =∠CBQ 时,A 、B 、C 三点共线. (6)利用梅涅劳斯定理的逆定理. 3.证明三线共点的基本方法是:(1)证明其中两条直线的交点在第三条直线上 (2)证明三条直线都经过某一个特定的点.(3)利用已知定理,例如任意三角形三边的中垂线交于一点,三条内角平分线交于一点,三条中线交于一点以及三条高所在直线交于一点等。
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题第 1 页共277 页目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 016-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 022-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 029-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 034-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 044-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 051-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 058-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 065-07311.希望杯第六届(1995年)初中一年级第一试试题 ........................................... 072-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 079-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 089-09814.希望杯第七届(1996年)初中一年级第二试试题............................................. 95-10515.希望杯第八届(1997年)初中一年级第一试试题........................................... 103-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 110-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 119-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 128-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 135-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 148-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 155-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 159-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 163-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 169-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 173-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 180-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 184-200第 2 页共277 页29.希望杯第十五届(2004年)初中一年级第一试试题 (188)30.希望杯第十五届(2004年)初中一年级第二试试题 (189)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (189)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题 ................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题 ................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题 ................................... 288-301第 3 页共277 页第 4 页 共 277 页希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0.B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b 互为倒数.2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式.B .单项式与单项式的和是多项式.C .多项式与多项式的和是多项式.D .整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B .没有最小的正有理数.C .没有最大的负整数.D .没有最大的非负数.4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么( ) A .a ,b 同号. B .a ,b 异号.C .a >0. D .b >0.5.大于-π并且不是自然数的整数有( ) A .2个. B .3个.C .4个. D .无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A .0个.B .1个.C .2个.D .3个.7.a 代表有理数,那么,a 和-a 的大小关系是 ( )A .a 大于-a .B .a 小于-a .C .a 大于-a 或a 小于-a .D .a 不一定大于-a .8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A .一样多.B .多了.C .少了.D .多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______.第 5 页 共 277 页 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第 6 页共277 页第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题第7 页共277 页提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-50005000)=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-=-2500.+1)=5x+26.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.第8 页共277 页8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即第9 页共277 页希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m 的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中第10 页共277 页的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y 的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.第11 页共277 页答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m ,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出第12 页共277 页∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.第13 页共277 页3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得第14 页共277 页即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.第15 页共277 页希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+12468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43x;C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34.第16 页共277 页第 17 页 共 277 页10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( )A.%2p q +;B.()%mp nq +;C.()%mp nq p q ++;D.()%mp nq m n++. 二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________. 6.n 为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.第18 页共277 页答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
1998年全国数学联赛试卷
一、选择题:(每小题6分,共30分)
1、已知a、b、c都是实数,并且cba,那么下列式子中正确的是( )
(A)bcab(B)cbba(C)cbba(D)cbca
2、如果方程0012ppxx的两根之差是1,那么p的值为( )
(A)2(B)4(C)3(D)5
3、在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么
△ABC的面积等于( )
(A)12(B)14(C)16(D)18
4、已知0abc,并且pbacacbcba,那么直线ppxy一定通过第( )
象限
(A)一、二(B)二、三(C)三、四(D)一、四
5、如果不等式组0809bxax的整数解仅为1,2,3,那么适合这个不等式组的整数a、b的
有序数对(a、b)共有( )
(A)17个(B)64个(C)72个(D)81个
二、填空题:(每小题6分,共30分)
6、在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上任意一点,PE⊥BD,PF⊥
AC,E、F分别是垂足,那么PE+PF=___________。
7、已知直线32xy与抛物线2xy相交于A、B两点,O为坐标原点,那么△OAB的
面积等于___________。
8、已知圆环内直径为acm,外直径为bcm,将50个这样的圆环一个接一个环套地连成一条锁
链,那么这条锁链拉直后的长度为___________cm。
9、已知方程015132832222aaxaaxa(其中a是非负整数),至少有一个整数
根,那么a=___________。
10、B船在A船的西偏北450处,两船相距210km,若A船向西航行,B船同时向南航行,
且B船的速度为A船速度的2倍,那么A、B两船的最近距离是___________km。
2
三、解答题:(每小题20分,共60分)
11、如图,在等腰三角形ABC中,AB=1,∠A=900,点
E为腰AC中点,点F在底边BC上,且FE⊥BE,求△
CEF的面积。
12、设抛物线452122axaxy的图象与x轴
只有一个交点,(1)求a的值;(2)求618323aa的值。
13、A市、B市和C市有某种机器10台、10台、8台,现在决定把这些机器支援给D市18
台,E市10台。已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B市
调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的
运费为400元和500元。
(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x
(台)的函数关系式,并求W的最大值和最小值。
(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示
总运费W(元),并求W的最大值和最小值。
1998年全国初中数学联赛参考答案
一、选择题
1.B
根据不等式性质.
2.D
由△=p2-4>0及p>2,设x1,x2为方程
的两根,那么有x1+x2=-p,x1x2=l.又由
(x1-x2)2=(x1+x2)2-4x1x2,
得l2=(-p)2-4.∴p2=5,
3.C
如图连ED,
A
B
C
E
F
3
又∵DE是△ABC两边中点连线.
故选C.
4.B
得 2(a+b+c)=p(a+b+c).
∴有p=2或a+b+c=0.
当p=2时,y=2x+2.则直线通过第一、二、三象限.
当a+b+c=0时,不妨取a+b=-c,于是
∴y=-x-1,则直线通过第二、三、四象限.
综合上述两种情况,直线一定通过第二、三象限,故选B.
5.C
在数轴上画出这个不等式组解集的可能区间,如下图
∴a=1,2,3…9,共9个.
∴b=3×8+1,3×8+2,3×8+3,…,
3×8+8.共8个.
4
∵9×8=72(个),故选C.
二、填空题
6.解 如图,过A作AG⊥BD于G,
∵“等腰三角底边上的任意一点到两腰距离的和等于腰上的高”.
∴PE+PF=AG.
∵AD=12,AB=5,
∴BD=13.
7.解 如图,直线y=-2x+3与抛物线y=x2的交点坐标为A(1,1),B(-3,
9),作AA1,BB1分别垂直于x轴,垂足为A1,B1,
∴S△OAB=S梯形AA1B1B-S△AA1O-S△BB1O
8.解 如图,当圆环为3个时,链长为3a+
5
故a可取1,3或5.
10.解 如图,设经过t小时后,A船、B船分别航行到A1,B1,设AA1=x,
于是BB1=2x.
∴A1C=|10-x|,B1C=|10-2x|.
三、解答题
11.解法1 过C作CD⊥CE与EF的延长线交于D,
∵∠ABE+∠AEB=90°,
∠CED+∠AEB=90°,
∴∠ABE=∠CED.
于是Rt△ABE∽△CED,
6
又∠ECF=∠DCF=45°,所以,CF是∠DCE的平分线,点F到CE和CD
的距离相等.
解法2 作FH⊥CE于H,设FH=h.
∵∠ABE+∠AEB=90°,
∠FEH+∠AEB=90°,
∴∠ABE=∠FEH.
∴Rt△EHF∽Rt△BAE.
即EH=2h,
又∵HC=FH,
12.解(1)因为抛物线与x轴只有一个交点,所以一元二次方程
(2)由(1)知,a2=a+1,反复利用此式可得
a4=(a+1)2=a2+2a+1=3a+2,
a8=(3a+2)2=9a2+12a+4=21a+13,
7
a16=(21a+13)2=441a2+546a+169
=987a+610.
a18=(987a+610)(a+1)=987a2+1597a+610=2584a+1597.
∵a2-a-1=0,∴64a2-64a-65=-1,
即 (8a+5)(8a-13)=-1.
∴a18+323a-6=2584a+1597+323(-8a+13)=5796.
13.解(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,
发往E市的机器台数分别为10-x,10-x,2x-10.于是
W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)
=-800x+17200.
∴5≤x≤9.
∴W=-800x+17200(5≤x≤9,x是整数)
由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小
值10000元;当x=5时,W取到最大值13200元.
(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,
发往E市的机器台数分别是10-x,10-y,x+y-10,于是
W=200x+800(10-x)+300y+700(10-y)+400(19-x-y)+500(x+y-10)
=-500x-300y-17200
∴W=-500x-300y+17200,
W=-200x-300(x+y)+17200
≥-200×10-300×18+17200=9800.
当x=10,y=8时,W=9800.所以,W的最小值为9800.
8
又W=-200x-300(x+y)+17200
≤-200×0-300×10+17200=14200.
当x=0,y=10时,W=14200,所以,W的最大值为14200.