概率论C重修辅导之知识点总结
- 格式:doc
- 大小:680.00 KB
- 文档页数:23
概率知识点总结及归纳一、概率基础知识1. 随机试验与样本空间随机试验是指在相同条件下,重复进行实验,结果不确定的现象,如掷硬币、抛骰子等。
每次实验的所有可能结果组成的集合称为样本空间,通常用Ω表示。
样本空间的元素称为样本点,通常用ωi表示。
2. 事件与事件的概率事件是样本空间的子集,即样本空间中的一些样本点组成的集合。
事件的概率是指该事件发生的可能性大小,通常用P(A)表示,其中A表示事件。
3. 概率的性质(1)非负性:对任意事件A,有0≤P(A)≤1。
(2)规范性:必然事件的概率为1,不可能事件的概率为0。
(3)可加性:若事件A与事件B互斥(即A与B无公共样本点),则P(A∪B) = P(A) + P(B);若事件A与事件B不互斥,则P(A∪B) = P(A) + P(B) - P(A∩B)。
4. 等可能概型当所有样本点发生的可能性相等时,称为等可能概型。
在等可能概型中,事件A的概率公式为P(A) = n(A)/n(Ω),其中n(A)表示事件A中样本点的个数,n(Ω)表示样本空间中样本点的个数。
二、概率的计算方法1. 古典概率法古典概率法适用于等可能概型,即所有样本点发生的可能性相等的情况。
在此情况下,事件A的概率公式为P(A) = n(A)/n(Ω),其中n(A)表示事件A中样本点的个数,n(Ω)表示样本空间中样本点的个数。
2. 几何概型法几何概型法适用于计算几何概型中的事件概率。
对于几何概型中一个区域的面积为S,事件A发生的区域面积为S(A),则事件A的概率为P(A) = S(A)/S。
3. 频率统计法频率统计法适用于大量试验中,用实验结果的频率估计事件的概率。
当试验次数增大时,事件A发生的频率逼近于事件A的概率。
频率统计法是概率理论与统计学的基础,也是实际应用中常用的方法。
4. 概率的性质及计算(1)互补事件的概率:对于事件A,其互补事件为A的对立事件,即事件A不发生的概率为1减去事件A发生的概率,即P(Ac) = 1 - P(A)。
概率论复习要点(个人归纳)第一章:全概率公式P19例五独立事件:P22页例3第二章:几个重要的分布,二项分布,泊松分布,均与分布,正态分布(第四章的重点)。
P34例62.4分布函数,具体可以参考P43 例2和P44例三2.5二维随机变量,要求掌握二维随机变量(X,Y)的分布律的画法以及边缘分布律的画法另外2.5中P48定义二以及P48例三都是需要掌握的内容,应该会考到2.6边缘分布P51的例一例二以及上面的公式都可以看看,2.9随机变量及其分布,需要掌握Y=g(x)的求法,几个例题都可以看看,例三和例四比较经典第三章:3.1数学期望:P76页的公式,离散型和连续型随机变量的数学期望的求法以及P78页的定理,当然,P80的几个法则也要注意,p81例10不错。
几个例题都可以看看3.2与.33中方差和协方差的算法P87的例1很经典,P89的定理二可以看一看。
3.4和3.5略,并没有什么关于这两个小节的看法(PS:这两个小节上课我也没认真听)补充:几种特殊分布的数学期望和方差需要记一下,虽然并不一定会考,但是,万一呢?第四章:正态分布4.1正态分布的标准式要牢记,以及4.1.5的小公式要记住P100的引理P101的例1虽然很简单,但是很常用,很值得参考P103的3o法可以看看,虽然并没有什么卵用4.2 P105定理一记一下,以及P105的定理2和定理2的系也需要记一下4.3可以看一下中心极限定理,P109例1很值得一看第五章:5.3前面的部分都是很简单的描述统计,就不介绍了,但是可以看一看5.3记一下公式就好,知道k阶原点矩和k阶中心矩的概念,以及S^2,,和均值的计算就好。
5.4的P133-P135douyao看一看然后就是几个分布X^2分布,T分布。
5.4的P138页的定理1和定理2需要着重看一看第六章:6.1.1矩估计法的使用,具体可以参考P147的例2,P147的例3也不错,不过不是很常用,P147的例4页很不错,很值得参考6.1.2最大似然估计法:要求掌握L(P)的使用以及会用ln(L(p))求导并求得P的最大似然估计量和估计值,P149-P150de例5,6,7都可以参考,例五较为经典,6.2稍微看看掌握就好6.3-6.4-6.5参数的区间估计:我们只要求掌握单个总体的均值u的置信水平为1-a置信区间以及单个总体的方差s^2的的置信区间P159例1可作为参考,P158和P162的公式必须牢记,因为我并不知道考试到底给不给这些公式6.6的单侧置信上下限可以看看,与单侧置信区间的差别很小,P166的那张表一定要看,单个正太总体所对应的几个求u和s的置信区间和单侧置信上下限都要牢记第七章:假设检验:7.2 P177-P178的两个表一定要记住,可以看看P178的例题加深印象,不过这种东西还是做题更能加深理解7.3 P183下方一直到P185页都很值得一看,当然,重点还是185的那张表然后,貌似就并没有什么其它的考点了。
概率知识点总结大全一、基本概率概念1.试验和事件试验是指对某种随机现象进行观察,可以是重复进行的实验,也可以是一次性的观察。
而试验的结果称为样本空间,样本空间通常用Ω表示。
事件则是样本空间的子集,通常用A、B、C...表示,表示试验可能发生的结果的集合。
2.概率概率是描述事件发生可能性的大小的数值,通常用P(A)表示。
对于一个样本空间Ω中的任意事件A,满足以下条件:(1)非负性:对于任意事件A,有P(A) >= 0;(2)规范性:P(Ω) = 1;(3)可列可加性:对于两个互斥事件A、B,有P(A∪B) = P(A) + P(B)。
3.事件的互斥和独立互斥事件是指两个事件不能同时发生。
独立事件是指一个事件的发生不受另一个事件发生的影响。
4.条件概率在事件B已发生的条件下,事件A发生的概率称为条件概率,通常用P(A|B)表示。
5.全概率公式和贝叶斯定理全概率公式和贝叶斯定理是概率理论中的两个重要定理,用于计算复杂事件发生的概率。
二、概率分布1.离散型随机变量和连续型随机变量离散型随机变量是指只能取有限个或可数个数值的随机变量,通常用概率分布函数描述其分布。
而连续型随机变量是指取值连续的随机变量,通常用密度函数描述其分布。
2.概率质量函数和概率密度函数概率质量函数描述离散型随机变量的概率分布,概率密度函数描述连续型随机变量的概率分布。
3.期望和方差期望是随机变量取值的平均值,方差则是描述随机变量取值分散程度的度量。
4.常见概率分布常见的概率分布包括二项分布、泊松分布、正态分布等,在实际问题中有广泛的应用。
三、大数定律和中心极限定理大数定律指的是当重复进行独立的试验时,随着试验次数的增加,事件发生的概率会趋于事件的概率。
中心极限定理则是指当样本容量足够大时,样本均值的分布会近似服从正态分布。
四、统计推断统计推断是利用样本数据对总体特征进行估计或假设检验的过程,包括点估计、置信区间估计和假设检验。
概率知识点总结归纳1. 概率的基本概念概率是对随机事件发生可能性的描述。
通常用一个介于0和1之间的数来表示,0表示不可能发生,1表示一定会发生。
概率计算的基本原理是基于事件发生的次数和总次数之间的比值。
例如,一个硬币抛掷的概率为0.5,这意味着在许多次抛掷中,正面朝上的次数占总次数的一半。
2. 概率的运算规则概率的运算规则包括加法规则、乘法规则和条件概率等。
加法规则指的是两个事件发生的概率之和等于这两个事件中至少有一个发生的概率。
乘法规则指的是两个事件同时发生的概率等于这两个事件分别发生的概率的乘积。
条件概率指的是在给定某一事件发生的条件下,另一事件发生的概率。
3. 概率分布概率分布是描述随机变量的概率分布情况的工具。
随机变量可以是离散型的,也可以是连续型的。
离散型随机变量的概率分布可以通过概率质量函数(PMF)来描述,而连续型随机变量的概率分布可以通过概率密度函数(PDF)来描述。
4. 随机变量的期望和方差随机变量的期望是描述随机变量平均值的指标,方差是描述随机变量离散程度的指标。
对于离散型随机变量,期望可以通过概率质量函数的加权平均来计算,方差可以通过随机变量的方差定义来计算;而对于连续型随机变量,期望可以通过概率密度函数的加权积分来计算,方差可以通过随机变量的方差定义来计算。
5. 大数定律和中心极限定理大数定律指的是在独立重复试验条件下,随着试验次数的增加,样本均值趋于总体均值的原理。
中心极限定理指的是在独立同分布条件下,随着样本容量的增加,样本均值的分布趋于正态分布的原理。
总的来说,概率是描述随机事件的可能性的数学工具,通过概率的运算规则、概率分布、随机变量的期望和方差、大数定律和中心极限定理等知识点,我们可以更好地理解和描述各种随机事件的发生可能性。
希望这篇文章对你有所帮助。
概率复习知识点总结1. 随机事件和概率随机事件是指在一定条件下,可能发生也可能不发生的事件。
概率是描述随机事件出现可能性的一种数学工具,通常用P(A)来表示事件A发生的概率。
概率的取值范围是0≤P(A)≤1,其中P(A)=0表示事件A不可能发生,P(A)=1表示事件A必然发生。
2. 概率的性质(1)互斥事件的概率如果事件A和事件B是互斥事件(即事件A和事件B不可能同时发生),则有P(A∪B)=P(A)+P(B)。
(2)对立事件的概率如果事件A和事件B是对立事件(即事件A和事件B不能同时发生,且二者的并集为全集),则有P(A)+P(B)=1。
3. 条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率,通常用P(A|B)表示。
条件概率的计算公式为P(A|B)=P(A∩B)/P(B)。
4. 事件的独立性如果事件A和事件B的发生不会相互影响,即P(A|B)=P(A),P(B|A)=P(B),则称事件A 和事件B是相互独立的。
独立事件的概率计算公式为P(A∩B)=P(A)×P(B)。
5. 随机变量和概率分布随机变量是对随机事件结果的数值描述,分为离散随机变量和连续随机变量两种。
概率分布是描述随机变量概率规律的函数,可以分为离散概率分布和连续概率分布。
6. 期望和方差随机变量的期望是对随机变量取值的加权平均,通常用E(X)表示。
随机变量的方差是对随机变量取值与其期望的离差的平方和的平均值,通常用Var(X)表示。
7. 大数定律和中心极限定理大数定律指的是随着样本数量的增加,样本均值会趋向于总体均值。
中心极限定理是指当样本容量足够大时,样本均值的分布将近似服从正态分布。
8. 总结概率学是一门重要的数学学科,具有广泛的应用价值。
通过掌握概率论的基本理论和方法,可以帮助我们更好地理解和应用概率学知识,解决实际问题。
希望大家通过本文的介绍,加深对概率学知识点的理解,为今后的学习和工作打下坚实的基础。
概理论知识点总结一、概率基本概念1. 随机试验与样本空间随机试验是具有随机性的试验,例如掷硬币、抛骰子等都属于随机试验。
样本空间是随机试验所有可能结果的集合,用Ω表示。
2. 事件与概率事件是样本空间的子集,表示某个随机试验的结果。
概率是事件发生的可能性大小,通常用P(A)表示事件A发生的概率,0≤P(A)≤1。
3. 概率的性质概率具有以下性质:(1)非负性:对任意事件A,有P(A)≥0;(2)规范性:对样本空间Ω,有P(Ω)=1;(3)可列可加性:对任意两两互斥事件A和B,有P(A∪B)=P(A)+P(B);4. 条件概率对事件B已经发生的条件下,事件A发生的概率称为条件概率,通常记为P(A|B)。
条件概率的计算公式为P(A|B)=P(A∩B)/P(B)。
5. 独立性如果事件A和事件B的发生是彼此独立的,那么P(A|B)=P(A),P(B|A)=P(B)。
即事件A 的发生并不影响事件B的发生,反之亦然。
二、随机变量与概率分布1. 随机变量随机变量是对随机试验结果的数值化表达,通常用大写字母X、Y等表示。
随机变量分为离散随机变量和连续随机变量。
2. 离散随机变量的分布函数离散随机变量X的分布函数F(x)定义为F(x)=P{X≤x},可以表示为随机变量小于等于x的概率。
离散随机变量的概率质量函数p(x)=P{X=x}表示X取某个特定值的概率。
3. 连续随机变量的密度函数连续随机变量X的密度函数f(x)定义为在区间(a,b)内,事件{a≤X≤b}的概率为∫[a,b]f(x)dx。
密度函数f(x)满足非负性、规范性和可积性。
4. 随机变量的数学期望随机变量X的数学期望E(X)表示X的平均取值,对于离散随机变量,E(X)=∑xip(x),对于连续随机变量,E(X)=∫xf(x)dx。
5. 随机变量的方差随机变量X的方差Var(X)表示X取值的离散程度,Var(X)=E[(X-E(X))^2],方差越大表示随机变量的离散程度越大。
概率论与数理统计 知识点总结一、随机事件与概率1.随机事件(1)事件间的关系与运算● 事件的差:A B A AB AB -=-= ● 对立事件:,AA A A =∅⋃=Ω ● 完备事件组:设12,,,,n A A A 是有限或可数个事件,如果其满足:① ,,,1,2,i j A A i j i j =∅≠=; ②i iA =Ω,则称12,,,,n A A A 是一个完备事件组.(2)随机事件的运算律 ● 求和运算:①A B B A +=+(交换律)②()()A B C A B C A B C ++=++=++(结合律) ● 求交运算:①AB BA =(交换律)②()()AB C A BC ABC ==(结合律) ● 求和运算与求交运算的混合:①()()()A B C AB AC +=+(第一分配律) ②()()()A BC A B A C +=++(第二分配律) ● 求对立事件的运算:()A A =(自反律) ● 和及交事件的对立事件:①A B AB +=(第一对偶律) ②AB A B =+(第二对偶律)2.随机事件的概率(1)概率的公理化定义● 公理1:()1P Ω=;公理2:对任意事件A ,有()0P A ≥;公理3:对任意可数个两两不相容的事件12,,,,n A A A ,有11()()i i i i P A P A ∞∞===∑.(2)概率测度的其他性质 ● 性质1:()0P ∅=性质2(有限可加性):12,,,n A A A 是两两互不相容的,则有11()()nni i i i P A P A ===∑性质3:()1()P A P A =-性质4:()()()P A B P A P AB -=-特别地,若A B ⊃,则①()()()P A B P A P B -=-;②()()P A P B ≥ 性质5:0()1P A ≤≤性质6:()()()()P A B P A P B P AB +=+-推论:()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ++=++---+3.古典概型与几何概型(1)古典概型● 古典概型的概率测度:()==A A P A Ω中元素个数使发生的基本事件数中元素个数基本事件总数(2)几何概型● 几何概型的概率测度:()()()S A P A S =Ω 4.条件概率(1)条件概率的数学定义 ●()()(()0)()P AB P B A P A P A =>● ()1()P B A P B A =- ●()1()P B A P B A =-● 条件概率测度满足概率的三条公理:公理1:()1P A Ω=;公理2:对任意事件B ,有()0P B A ≥;公理3:对任意可数个两两不相容的事件12,,,,n A A A ,有11()()i i i i P A A P A A ∞∞===∑.(2)乘法公式 ● ()()(),()0P AB P A P B A P A => ● ()()(),()0P AB P B P A B P B => ● ()()()()P ABC P A P B A P C AB = ●12121312121()()()()()n n n P A A A P A P A A P A A A P A A A A -=(3)全概率公式● 设{}i A 是一列有限或可数无穷个两两不相容的非零概率事件,且i iA =Ω,则对任意事件B ,有()()()i i iP B P A P B A =∑.(4)贝叶斯公式● 设{}i A 是一列有限或可数无穷个两两不相容的非零概率事件,且1i i A ∞==Ω,则对任意事件B , ()0P B >,有()()()()()()()i i i i j j jP A P B A P A B P A B P B P A P B A ==∑. 5.事件的独立性(1)两个事件的独立性 ●()()()P AB P A P B =(2)有限个事件的独立性● 两两独立:()()()i j i j P A A P A P A = ● 相互独立:1212()()()()k k i i i i i i P A A A P A P A P A =(3)相互独立性的性质 ● 性质1:如果n 个事件12,,,n A A A 相互独立,则将其中任何(1)m m n ≤≤个事件改为相应的对立事件,形成的新的n 个事件仍然相互独立. 性质2:如果n 个事件12,,,n A A A 相互独立,则有1111()1(1())n n ni i i i i i P A P A P A ===⎛⎫=-=-- ⎪⎝⎭∏∏(4)伯努利概型● 伯努利定理:在一次试验中,事件A 发生的概率为(01)p p <<,则在n 重伯努利试验中,事件A 恰好发生k 次的概率为:(;,)C k k n kn b k n p p q-=,其中1q p =-. ● 在伯努利试验序列中,设每次试验中事件A 发生的概率为p ,“事件A 在第k 次试验中才首次发生”(1)k ≥,这一事件的概率为1(,)k g k p q p -=.二、随机变量的分布与数字特征1.随机变量及其分布(1)离散型随机变量的概率分布● 离散型随机变量的概率分布满足性质:①()0,1,2,i p x i ≥=②()1iip x =∑● 一旦知道一个离散型随机变量X 的概率分布{}i p x (),便可求得X 所生成的任何事件的概率.特别地,对任意a b ≤,有{}({}){}()i i i i i i a x ba x ba x bP a X b P X x P X x p x ≤≤≤≤≤≤≤≤=====∑∑.一般地,若I 是一个区间,则{}=()i ix IP X I p x ∈∈∑.(2)分布函数● 随机变量的分布函数性质:①单调性,若12x x <,则12()()F x F x ≤; ②()lim ()0x F F x →-∞-∞==,()lim ()1x F F x →+∞+∞==;③右连续性,(0)()F x F x +=. (3)连续型随机变量及其概率密度 ●(){}()xF x P X x f t dt -∞=≤=⎰,()f x 为X 的概率密度函数.● 密度函数性质:①()0,(,)f x x ≥∈-∞+∞; ②()1f x dx +∞-∞=⎰.● {}()()()b aP a X b F b F a f x dx <≤=-=⎰● {}0P X x ==(连续型)●'()()F x f x =2.随机变量的数字特征(1)离散型随机变量的数学期望 ●1=i i i EX x p ∞=∑(2)连续型随机变量的数学期望 ●()EX xf x dx +∞-∞=⎰(3)随机变量函数的数学期望● 设X 是一个随机变量,()g x 是一个实函数.①若X 为离散型随机变量,概率分布为{},1,2,i i P X x p i ===.且1()iii g x p∞=<∞∑,则()Eg X 存在,且1()()i i i Eg X g x p ∞==∑.②若X 为连续型随机变量,()f x 是其密度函数,且()()g x f x dx +∞-∞<∞⎰,则()Eg X 存在,且()()()Eg X g x f x dx +∞-∞=⎰.(4)数学期望的性质● ①对任意常数a ,有Ea a =;②设12,αα为任意实数,12(),()g x g x 为任意实函数,如果12(),()Eg X Eg X 均存在,则11221122[()()]()()E g X g X Eg X Eg X αααα+=+;③如果EX 存在,则对任意实数a ,有()E X a EX a +=+. (5)随机变量的方差 ● 离差:X EX -● 方差:2()DX E X EX =-● ● ①若X 为离散型随机变量,其概率分布为{},1,2,i i P X x p i ===,则22()()i i iDX E X EX x EX p =-=-∑②若X 为连续型随机变量,()f x 为其密度函数,则22()()()DX E X EX x EX f x dx +∞-∞=-=-⎰③22()DX EX EX =-● 方差的基本性质:设X 的方差DX 存在,a 为任意常数,则 ①0Da =;②()D X a DX +=; ③2()D aX a DX =.(6)随机变量的矩与切比雪夫不等式● 矩定义:X 为一个随机变量,k 为正整数,如果kEX 存在(即kE X<∞),则称kEX 为X的k 阶原点矩,称kE X 为X 的k 阶绝对矩.定理:随机变量X 的t 阶矩存在,则其s 阶矩(s t <为正整数)也存在. 推论:设k 为正整数,C 为常数,如果kEX 存在,则()kE X C +存在,特别地,)k E X EX -(存在.● 中心矩定义:X 为一个随机变量,k 为正整数,如果k EX 存在,则称()kE X EX -为X 的k阶中心矩,称kE X EX -为X 的k 阶绝对中心矩.● 定理:设()h x 是x 的一个非负函数,X 是一个随机变量,且()Eh X 存在,则对任意0ε>,有(){()}Eh X P h X εε≥≤.推论1(马尔可夫不等式):设X 的k 阶矩存在(k 为正整数),即kE X <∞,则对任意0ε>有{}kkE XP X εε≥≤.推论2(切比雪夫不等式):设X 的方差存在,则对任意0ε>有2{}DXP X EX εε-≥≤.推论3:随机变量X 的方差为0当且仅当存在一个常数a ,使得{}=1P X a =.3.常用的离散型分布,n),n kp -,ndef(,),g k p k =几何分布的无记忆性:设{P X二项分布可作为超几何分布的近似,即1212C C Ck n kk n kN N k n nNN N C N N --⎛⎫⎛⎫≈ ⎪ ⎪⎝⎭⎝⎭.这一近似关系的严格数学表述是:当N →∞时,1N →∞,2N →∞,且1N p N →,21Np N→-,则对任意给定的n 和k ,有()12C C lim1Ck n kn kN N k kn nN NC p p --→∞=-.泊松定理:在n 重伯努利试验中,事件A 在每次试验中发生的概率为n p (注意这与试验的次数n 有关),如果n →∞时,n np λ→(0λ>为常数),则对任意给定的k ,有lim (;,)e !kn n b k n p k λλ-→∞=.当二项分布(,)b n p 的参数n 很大,而p 很小时,可以将它用参数为np λ=的泊松分布来近似,即有()(;,)e !k npnp b k n p k -≈.4.常用的连续型分布正态分布● 定理:设2~(,),,,X N Y aX b a b μσ=+为常数,且0a ≠,则22~(,)Y N a b aμσ+.推论1:如果2~(,)X N μσ,则~(0,1)X N μξσ-=.ξ通常称为X 的标准化.推论2:2~(,)X N μσ的充要条件是存在一个随机变量~(0,1)N ξ,使得X σξμ=+. 推论3:设2~(,),(),()X N x x μσϕΦ分别为其分布函数与密度函数,00(),()x x ϕΦ是标准正态分布的分布函数和密度函数,则有00()(),1()().x x x x μσμϕϕσσ-Φ=Φ-=● 一般正态分布的概率计算:【例】已知2~(,)X N μσ,求()a Φ. 解 0(){}{}{}()X a X a P X a P P b b μμμσσσ---Φ=≤=≤=≤=Φ5.随机变量函数的分布(1)离散型随机变量函数的分布● 离散型随机变量函数的概率分布的一般方法:先根据自变量X 的可能取值确定因变量Y 的所有可能取值,然后对Y 的每一个可能取值(1,2,)i y i =确定相应的{()}i j j i C x g x y ==,则有{}{()}{},{}{}{},j ii i i i i jx C Y y g X y X C P Y y P X C P X x ∈====∈==∈==∑从而求得Y 的概率分布. (2)连续型随机变量函数的分布● 连续型随机变量函数的概率分布的一般方法:一般地,已知X 的分布函数()X F x 或密度函数()X f x ,为求()Y g X =的分布函数,有()(){()}{},Y x F x P Y x P g X x P X C =≤=≤=∈其中{()}x C t g t x =≤.而{}x P X C ∈往往可由X 的分布函数()X F x 来表达或用其密度函数()X f x 的积分来表达:{}()xx X C P X C f t dt ∈=⎰.进而,Y 的密度函数,可直接从()Y F x 导出.三、随机向量1.随机向量的分布(1)随机向量及其分布函数 ●1212{,}P x X x y Y y <≤<≤22122111(,)(,)(,)(,)F x y F x y F x y F x y =--+● 由(联合)分布函数的定义得出性质:①0(,)1F x y ≤≤;②(,)F x y 关于x 和y 均单调非降、右连续; ③(,)lim (,)0,x F y F x y →-∞-∞==(,)lim (,)0,y F x F x y →-∞-∞==(,)(,)(,)lim (,)0,x y F F x y →-∞-∞-∞-∞== (,)(,)(+,+)lim(,) 1.x y F F x y →+∞+∞∞∞==●(,)F x y 的边缘分布函数:(){}{,}(,)X F x P X x P X x Y F x =≤=≤<+∞=+∞, (){}{,}(,)Y F y P Y y P X Y y F y =≤=<+∞≤=+∞.(2)离散型随机向量的概率分布● 离散型随机向量的概率分布{,},,1,2,i i ij P X x Y y p i j ====,ij p 满足性质:①0,,1,2,ij p i j ≥=;②1ijijp=∑∑.● 边缘概率分布:{},1,2,X i i ij jp P X x p i ====∑ {},1,2,Y j j ij ip P Y y p j ====∑(3)连续型随机向量的概率密度函数 ● 二维连续型随机向量(,)(,)x yF x y f s t dsdt -∞-∞=⎰⎰,(,)f x y 为(),X Y 的概率密度函数或X 与Y 的联合密度函数. (,)f x y 具有性质:①(,)0f x y ≥; ②(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;③若D 是平面上的一个区域,则(){,}(,)DP X Y D f x y dxdy ∈=⎰⎰● 边缘密度函数:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰● 均匀分布的密度函数:1,(,)()(,)0,x y G S G f x y ⎧∈⎪=⎨⎪⎩其他,若(),X Y 服从G 上的均匀分布,则对任何平面区域D ,有()1(){,}(,)=()()DD GS D G P X Y D f x y dxdy dxdy S G S G ⋂⋂∈==⎰⎰⎰⎰. (4)二元正态分布 ● 密度函数:()2211222221212()()()()122(1),x x y y x y μμμμρσσρσσϕ⎡⎤------+⎢⎥-⎢⎥⎣⎦=,记作()221212,~(,;,;)X Y N μμσσρ.● 边缘密度函数分布:()2121()2()=,x X x x y dy μσϕϕ--+∞-∞⎰,()2222()2()=,y Y y x y dx μσϕϕ--+∞-∞⎰.注意:比较联合密度函数(),x y ϕ和边缘密度函数()X x ϕ,()Y y ϕ,当且仅当0ρ=时,对一切(),x y ,有(),()()X Y x y x y ϕϕϕ=.2.条件分布与随机变量的独立性(1)条件分布与独立性的一般概念● 随机变量X 和Y 相互独立:(,)()()X Y F x y F x F y =● 定理1:随机变量X 和Y 相互独立的充要条件是X 所生成的任何事件与Y 生成的任何事件独立,即对任意实数集A 和B ,有{,}{}{}P X A Y B P X A P Y B ∈∈=∈∈.定理2:如果随机变量X 和Y 相互独立,则对任意函数12(),()g x g y ,均有1()g X 与2()g Y 相互独立. ● 相互独立:12,,,n X X X 相互独立,()121122,,,()()()n n n F x x x F x F x F x =.(2)离散型随机变量的条件概率分布与独立性 ● 概率分布:{,},,1,2,i j ij P X x Y y p i j ====●i j p (当{}0i P Y y =>时):{,}{}{}iji i i j Y i jP P X x Y y P X x Y y P Y y P =======性质:①0i j p ≥;②1i jip=∑.● 已知j Y y =的条件下X 的条件概率分布:{},1,2,i i i j P X x Y y p i ====; 已知i X x =的条件下Y 的条件概率分布:{},1,2,i i j i P Y y X x p j ====.●X Y ij i j j i i j p p p p p =⋅=⋅● 定理:设,X Y 是离散型随机变量,其联合概率分布为{,}(,1,2,)i j ij P X x Y y p i j ====,边缘概率分布分别为X i p 和Yj p (,1,2,)i j =,则X 与Y 相互独立的充要条件是,,1,2,X Y ij i j p p p i j ==.(3)连续型随机变量的条件密度函数与独立性● 在Y y =的条件下X 的条件分布:0(,){,}{}lim {}()xy Y f u y du P X x y y Y y P X x Y y P y y Y y f y -∞∆→≤-∆<≤≤===-∆<≤⎰● 条件分布和条件密度函数● (,)()()()()X Y Y X X Y f x y f x f y x f y f x y ==● 定理:设连续型随机向量(),X Y 的密度函数为(,)f x y ,边缘密度函数分别为()X f x 和()Y f y ,则X 与Y 相互独立的充要条件是(,)()()X Y f x y f x f y =.3.随机向量的函数的分布与数学期望(1)离散型随机向量的函数分布 ●(,){}{(,)}{,},1,2,i j kk k i j g x y z P Z z P g X Y z P X x Y y k ========∑● 设,X Y 是两个相互独立的随机变量,分别服从参数为1λ和2λ的泊松分布,则X Y ξ=+的分布为()()1212e ,0,1,2,!kk k λλλλ-++=,可见X Y ξ=+服从参数为()12λλ+的泊松分布.结论:泊松分布具有独立可加性.2,(2)连续型随机向量的函数分布● 分布函数:(){}{(,)}{(,)}(,)zZ z D F z P Z z P g X Y z P X Y D f x y dxdy =≤=≤=∈=⎰⎰,其中z D ={(,)(,)}x y g x y z ≤. ● 密度函数:'()=()Z Z f z F z .● 随机变量的和:设(,)X Y 的联合密度函数为(,)f x y ,则X Y +的密度函数为()=(,)Z f z f z y y dy +∞-∞-⎰或 ()=(,)Z f z f x z x dx +∞-∞-⎰特别地,如果X 和Y 是相互独立的随机变量,则有(卷积公式)()=()()Z X Y f z f x f z x dx +∞-∞-⎰或 ()=()()Z X Y f z f z y f y dy +∞-∞-⎰即,()=*()*()Z X Y Y X f z f f z f f z =.● 独立正态随机变量之和:设随机变量221122~(,),~(,)X N Y N μσμσ,且X 与Y 独立,则221212~(,)X Y N μμσσ+++,即2122212()2()()z X Y f z μμσσ⎡⎤---⎢⎥+⎢⎥⎣⎦+=,结论:独立正态分布的和服从正态分布.推论:X 与Y 相互独立且分别服从正态分布211(,)N μσ和222(,)N μσ,则其任意非零线性组合仍服从正态分布,且22221212~(,)aX bY N a b a b μμσσ+++.进一步地,12,,n X X X 相互独立,2~(,)i i iX N μσ,则22111~(,)n n ni i i i i i i i i a X N a a μσ===∑∑∑.● 随机变量的商:设二维随机向量(,)X Y 的密度函数为(,)f x y ,则XZ Y=的密度函数为'()=()(,)Z Z f z F z y f zy y dy +∞-∞=⎰.● 最大值与最小值:设,X Y 的分布函数分别为(),()F x G x ,密度函数分别为(),()f x g x ,且X与Y 相互独立,令max{,},min{,}M X Y N X Y ==,则有(3)随机向量函数的数学期望● 二维离散型随机向量的数学期望:,(,)(,)ijiji jEZ Eg X Y g x y p==∑.● 二维连续型随机向量的数学期望:(,)(,)(,)EZ Eg X Y g x y f x y dxdy +∞+∞-∞-∞==⎰⎰.●(,)g X Y XY =型:()(),,,(,),,i j ij i jx y p X Y EXY xyf x y dxdy X Y +∞+∞-∞-∞⎧⎪=⎨⎪⎩∑⎰⎰若为离散型若为连续型 (4)数学期望的进一步性质● (1)对任意两个随机变量,X Y ,如果其数学期望均存在,则()E X Y +存在,且()=E X Y EX EY ++(2)设,X Y 为任意两个相互独立的随机变量,数学期望均存在,则EXY 存在,且=EXY EXEY推广: (1)12,,,n X X X 是任意n 个随机变量,数学期望均存在,则()12n E X X X +++存在,且()1212n n E X X X EX EX EX +++=+++(2)设12,,,n X X X 是个相互独立的随机变量,且数学期望均存在,则()12n E X X X 存在,且()1212n n E X X X EX EX EX =.4.随机变量的数字特征(1)协方差● 协方差:()()()cov ,X Y E X EX Y EY =--⎡⎤⎣⎦1,2,)●()cov ,X Y EXY EXEY =-● 定理:(1)()cov ,X X DX = (2)()()cov ,cov ,X Y Y X =(3)()()cov ,cov ,,,aX bY ab X Y a b =为任意常数 (4)()cov ,0,C X C =为任意常数(5)()()()1212cov ,cov ,cov ,X X Y X Y X Y +=+ (6)如果X 与Y 相互独立,则()cov ,0X Y =推论:设,X Y 为任意两个随机变量,如果其方差均存在,则X Y +的方差也存在,且()()2cov ,D X Y DX DY X Y +=++.()()2cov ,D X Y DX DY X Y -=+-特别地,如果X 与Y 相互独立,则()D X Y DX DY +=+.● 定理:设()12,,,n X X X 是n 维随机向量,如果()1,2,,i X i n =的方差均存在,则对任意实向量()12,,,n λλλ,1ni i i X λ=∑的方差必存在,且()21112cov ,n n i i i i i j i j i i i j n D X DX X X λλλλ==≤<≤⎛⎫=+ ⎪⎝⎭∑∑∑.特别地,如果12,,,n X X X 两两独立,则211n n i i i i i i D X DX λλ==⎛⎫= ⎪⎝⎭∑∑. (2)协方差矩阵 ● 记()T 12,,,n X X X =X ,其协差阵通常记作D X .对任意实向量()T12,,,n λλλ=λ,有()T T D D =λX λX λ.对任意实向量()T12,,,n λλλ=λ,()T T 0D D =≥λX λλX .(3)相关系数 ●,cov ,X Y X Y ρ,,1X Y ρ≤● 定理:设(),X Y 是一个二维随机向量,,DX DY 均存在且为正,则,1X Y ρ=的充要条件是X 与Y 具有线性关系,即存在常数0a ≠及常数b ,使得{}1P Y ax b =+=.而且,当0a >时,,1X Y ρ=;当0a <时,,1X Y ρ=-.● 如果,DX DY 均存在且为正,那么X 与Y 不相关等价以下条件:①()cov ,0X Y =; ②EXY EXEY =;③()D X Y DX DY +=+; ④,0X Y ρ=.5.大数定律与中心极限定理(1)依概率收敛 ● 定义:设12,,,,,n X X X X 是一列随机变量,如果对任意0ε>,恒有{}lim 0n n P X X ε→∞->=,则称{}n X 依概率收敛到X ,记作Pn X X −−→或lim n n P X X →∞-=.(2)大数定律 ● 定理:①伯努利大数定律:设n μ是n 重伯努利试验中事件A 发生的次数,已知在每次试验中A 发生的概率为()01p p <<,则对任意0ε>,有lim 0n n P p n με→∞⎧⎫->=⎨⎬⎩⎭, 即Pnp nμ−−→或limnn P p nμ→∞-=.②切比雪夫大数定律:设12,,,n ξξξ是一列两两不相关的随机变量,它们的数学期望iE ξ和方差i D ξ均存在,且方差有界,即存在常数C ,使得()1,2,i D C i ξ≤=,则对任意0ε>,有1111lim 1n ni i n i i P E n n ξξε→∞==⎧⎫-<=⎨⎬⎩⎭∑∑. 推论:设12,,,nξξξ是一列独立同分布的随机变量,其数学期望和方差均存在,记=i E ξμ,则对任意0ε>,有11lim 1n i n i P n ξμε→∞=⎧⎫-<=⎨⎬⎩⎭∑. 即11n Pi i n ξμ=−−→∑.③辛钦大数定律:设12,,,nξξξ是一列相互独立同分布的随机变量,且数学期望存在,记=i E ξμ,则有11lim 1n i n i P n ξμε→∞=⎧⎫-<=⎨⎬⎩⎭∑. (3)中心极限定理● 定理:林德伯格-列维 设12,,,n ξξξ是一列相互独立同分布的随机变量,且=i E ξμ,2=0,1,2,,i D i ξσ>=则有22lim en t i xn n P x dt ξμ--∞→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑.● 定理:设()~,,01,n X b n p p <<则22lim et xn P x dt --∞→∞⎧⎫⎪≤=⎬⎪⎭.四、数理统计的基础知识1.总体与样本样本与样本分布● 总体X 的分布函数为()F x ,则样本()12,,,n X X X 的分布函数为:()()121,,,nn n i i F x x x F x ==∏,称之为样本分布.特别地,若总体X 为连续型随机变量,其密度函数为()f x ,则样本的密度函数为()()121,,,nn n i i f x x x f x ==∏.若总体X 为离散型随机变量,概率分布为(){}p x P X x ==,x 取遍X 所有可能取值,则样本的概率分布为()()()1211221,,,,,,nn n n n i i p x x x P X x X x X x p x ======∏.),n i x =∏为伯努利总体,如果它服从以}{,p P X =)12,,,n X X X 的概率分布为,n n X i =取1或0,而n i +,它恰等于样本中取值为服从参数为λ的泊松分布,)12,,,n X X 为其样本,则样本的概率分布为)21,,ee !!!!kinn n n k k k n i X i X i i i i i λλλλ--======∏,其中取非负整数,而n i ++.2.统计量常用的统计量)n X +2)X -1(ni i X X =-∑3.常用的统计分布(1)分位数● 上侧分位数:设随机变量X 的分布函数为()F x ,对给定的实数(01)αα<<,如果实数F α满足{}P X F αα>=,即()1F F αα-=或()1F F αα=-,则称F α为随机变量X 的分布的水平α上的上侧分位数. ● 有关等式:{}1P X F αα-≤= 1221P F X F ααα-⎧⎫<≤=-⎨⎬⎩⎭推论:()()122,,P X F m n X F m n ααα-⎛⎫⎧⎫⎧⎫<⋃>= ⎪⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎝⎭或()()122,,1P F m n X F m n ααα-⎧⎫<<-⎨⎬⎩⎭. ● 双侧分位数:设X 是对称分布的连续型随机变量,其分布函数为()F x ,对给定的实数(01)αα<<,如果正实数T α满足{}P X T αα>=,即()()1F T F T ααα--=-.则称T α为随机变量X 的分布的水平α的双侧分位数. 注意:由于对称性,上式可改写为:()12F T αα=-或{}()12P X T F T ααα>=-=.对于具有对称密度函数的分布函数的上侧分位数,恒有1F F αα-=-. (2)2χ分布 ● 命题:设()12,,,n X X X 是n 个相互独立的随机变量,且()~0,1,1,2,,i X N i n =,则22212n X X X X=+++的密度函数为()1122221;e,022n x n x n xx n χ--=>⎛⎫Γ ⎪⎝⎭.● Γ函数:()()10e 0a x a x dx a +∞--Γ=>⎰.●2χ分布:一个随机变量X 称为服从以n 为自由度的2χ分布,如果其密度函数由()1122221;e,022n x n x n xx n χ--=>⎛⎫Γ ⎪⎝⎭给出,记作()2~X n χ.● 命题:①若()()22~,~X m Y n χχ,且X 与Y 相互独立,则()2~X Y m n χ++. ②若()2~X n χ,则,2EX n DX n ==.(3)F 分布 ● 命题:设Z 由/=/X m n X Z Y n m Y=(设()()22~,~X m Y n χχ,且X 与Y 相互独立.)所定义,则Z 的密度函数为()()11221;,1,0,22m m n m m m f x m n x x x m n n n n --+⎛⎫⎛⎫⎛⎫=+> ⎪⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭B ⎪⎝⎭.● B 函数:()()()1110,=10,0q p p q x x dx p q --B ->>⎰.●F 分布:如果一个随机变量X 的密度函数由()()11221;,1,0,22m m n m m m f x m n x x x m n n n n --+⎛⎫⎛⎫⎛⎫=+> ⎪⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭B ⎪⎝⎭给出,则称其服从第一自由度为m ,第二自由度为n 的F 分布,记作()~,X F m n . ● 若()~,X F m n ,则()1~,XF n m -.● 当α接近1时,可利用()()11,=,F m n F n m αα-求出所需上侧分位数.(3)t 分布● 定义式:设()()2~0,1,~X N Y n χ,且X 与Y相互独立,记T =,则()2~1,/X T F n Y n=.● 命题:T 的密度函数为()122;1,n x t x n x n +-⎫=+-∞<<+∞⎪⎭⎝⎭.●t 分布:如果一个随机变量X 的密度函数由()122;1,n x t x n x n +-⎫=+-∞<<+∞⎪⎭⎝⎭给出,则称其为服从自由度为n 的t 分布,记作()~X t n .注意:当自由度n 很大时,t 分布接近于标准正态分布,因为2+11222lim 1=en x n x n --→∞⎛⎫+ ⎪⎝⎭.●当α接近1时,()()1t n t n αα-=-.4.抽样分布(1)正态总体的抽样分布● 定理:设总体()()212~,,,,,n X N X X X μσ是其容量为n 的一个样本,X 与2S 分别为此样本的样本均值与样本方差,则有①2~,X N n σμ⎛⎫⎪⎝⎭;②()2221~1n S n χσ--;③X 与2S 相互独立. ● 单正态总体的抽样分布定理:设()12,,,n X X X 为正态总体()2~,X N μσ的样本,X 与2S 分别为该样本的样本均值与样本方差,则有①()~0,1X U N =;②()2221~1n S n χσ--;③()~1X T t n =-.● 双正态总体的抽样分布定理:设()211~,X N μσ与()222~,Y N μσ是两个相互独立的正态总体.又设()112,,n X X X是总体X 的容量为1n 的样本,X 与21S 分别为该样本的样本均值与样本方差.再设()212,,n Y Y Y 是总体Y 的容量为2n 的样本,Y 与22S 分别为此样本的样本均值与样本方差.记2S 是21S 与22S 的加权平均:222121212121122n n S S S n n n n --=++-+-,则有 ①()()~0,1X Y U N μμ---=;②()222112212~1,1S F F n n S σσ⎛⎫=-- ⎪⎝⎭;③当22212==σσσ时,()12~2X Y T t n n μμ---=+-.(2)一般总体抽样分布的极限分布 ● 定理:设()12,,,n X X X 为总体X 的样本,并设总体X 的数学期望与方差均存在,分别记为2,EX DXμσ==.再记n n X X U T ==X 与S 分别表示上述样本的样本均值与样本方差,则有①()()0n dU F x x −−→Φ; ②()()0n dT F x x =−−→Φ.以上()n U F x ,n T F 与()0x Φ分别表示n U ,n T 及标准正态分布的分布函数.五、参数估计与假设检验1.点估计概述评价估计量的标准 ),n X 为参数的有偏估计量.若),n X 为未知参数}-<=θε),n X 为取自总体①样本均值X 是μ的无偏估计量;②样本方差2S 是σ③未修正的样本方差,即样本二阶中心矩),n X 是取自总体,n .则1n 的相合估计量,,n .(~,X N μ),n X 为其样本,则样本方差2S 是2σ的相合估计2.参数的最大似然估计与矩估计(1)最大似然估计 ● ),n x ,存在),n x ,使()*1,,n x x θ为θ的最大似然估计值,称相应的统),n X 为的最大似然估计量.它们统称为θ的最大似然估计,可MLE . 如果未知参数为12,,,r θθθ,那么似然函数是多元函数(,,)r L θθ.若对任意),n x 存在),,,1,2,=n x i r ,使1*1(,,),,)max (,,)∈Θ=r r r L θθθθθ,则称*i θ为i θ的,1,2,,=MLE i r .当似然函数关于未知参数可微时,一般可通过求导数得到MLE ,其主要步骤①写出似然函数1(,,)r L θθ;0∂=∂L θ或ln 0,1,,∂==∂L i r θ,从中求得驻点注意,函数L 与ln L有相同的最值点,而使用后者往往更方便;③判断驻点为最大值点; MLE .● 最大似然估计的不变性:如果ˆθ为θ的最大似然估计,()=u g θ是θ的函数且存在单值反函数()=h u θ.那么()ˆg θ是()g θ的最大似然估计. (2)矩估计 ● 1,2,,ˆ2,3,=k B β.这种求点估计的方用矩法确定的估计量称为矩估计量,相应的估计值为矩估计值,矩估计量. 表示为总体矩的函数,即)2,;,l s αββ; k B 分别替换g 中的k α,)()1212ˆˆˆˆ,,;,,;,,=l s l sg A A B B ααββ即为θ的3.置信区间(1)寻求置信区间的方法● ①选取θ的一个较优的点估计ˆθ; ②围绕ˆθ寻找一个依赖于样本与θ的函数()1,,;=n u u X X θ.u 的分布为已知分布.像u 这样的函数,称为枢轴量;③对给定的置信水平1-α,确定1λ与2λ,使{}121<<=-P u λλα,一般可选取满足{}{}122≤=≥=P u P u αλλ的1λ与2λ;④利用不等式变形导出套住θ的置信区间(),θθ. (2)正态总体参数的置信区间4.假设检验概述假设检验的一般步骤 ①建立零假设0H ;②构造一个含待检验参数θ(不含其他未知参数)且分布已知的枢轴量()12,,,;n u X X X θ,并确定其分布;③对给定的显著性水平α,由上述枢轴量及其分布,结合零假设0H ,确定拒绝域C ,使得(){}120,,,∈≤n P X X X C H α;④根据样本值()12,,,n x x x 是否落在C 中做出是否拒绝0H 的统计决断:如果()12,,,∈n x x x C ,则拒绝0H ,如果()12,,,∉n x x x C ,则不能拒绝0H .5.单正态总体的参数假设检验编辑:李雪伟 2013年5月25日。
概率知识点总结概率是数学中的一个重要分支,它研究随机事件的发生可能性以及随机现象的规律。
概率理论既有广泛的应用价值,又有深刻的理论内涵。
下面就概率的基本概念、基本原理和常见应用进行总结。
首先是概率的基本概念。
概率是描述随机事件发生可能性的数值,通常用0到1之间的实数表示。
概率可以通过频率法、古典概型和几何概型三种方法进行计算。
频率法是指通过大量重复实验来求出事件发生的频率,并将其作为概率的估计值。
古典概型是指在有限个等可能的结果中,每一个结果发生的可能性相同,并且事件是由其中几个结果组成的。
几何概型是指把随机现象的区域看作是一个几何图形,概率即为该几何图形所占的面积与总面积之比。
此外,还有条件概率、独立性和全概率公式等概念。
其次是概率的基本原理。
概率的基本原理由公理化的四条性质构成,即非负性、规范性、可列可加性和随机变量的可测性。
其中非负性要求概率值必须大于等于0;规范性规定整个样本空间的概率为1;可列可加性要求如果事件组成的序列两两互不相容,则它们的概率可通过相加得到;随机变量的可测性是指对于任意实数x,随机变量落在(x,+∞)这个区间的概率保持非减。
最后是概率的常见应用。
概率理论在实际生活中有广泛的应用,如生活中的抽奖、赌博和彩票等。
此外,概率还被广泛应用于统计学中的假设检验、置信区间和回归分析等领域。
通过概率,可以用数学语言描述和解释诸多现象,对问题进行量化,提高决策的科学性和准确性。
而在科学研究中,概率理论也是一个强有力的分析工具,在物理、化学、生物和计算机科学等领域都有重要的应用。
综上所述,概率是描述随机现象的规律性的数学理论,它包括了基本概念、基本原理和常见应用。
概率的计算可以通过频率法、古典概型和几何概型等方法进行。
概率的基本原理由四条公理性质构成,它们是概率论的基石。
概率理论在生活和科学研究中有广泛的应用,可以帮助我们更好地了解和解释现象,从而提高决策的科学性和准确性。
《概率论》总复习提纲【精选】精⼼总结ang 《概率论与数理统计》总复习提纲第⼀块随机事件及其概率内容提要基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,⼏何概率,条件概率,与条件概率有关的三个公式,事件的独⽴性,贝努⾥试验.1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为E .1)试验可在相同的条件下重复进⾏;2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果; 3)每次试验前不能确定哪⼀个结果会出现.(2)样本空间:随机试验E 的所有可能结果组成的集合称为E 的样本空间ω记为Ω;试验的每⼀个可能结果,即Ω中的元素,称为样本点,记为w .(3)随机事件:在⼀定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的⼦集,必然事件(记为Ω)和不可能事件(记为Φ). 2、事件的关系与运算(1)包含关系与相等:“事件A 发⽣必导致B 发⽣”,记为B A ?或A B ?;B A B A ??=且A B ?.(2)互不相容性:φ=AB ;B A 、互为对⽴事件Ω=??B A 且Φ=AB . (3)独⽴性:(1)设A B 、为事件,若有)()()(B P A P AB P =,则称事件A 与B 相互独⽴. 等价于:若)|()(A B P B P =(0)(>A P ).(2)多个事件的独⽴:设n A A A ,,,21 是n 个事件,如果对任意的)1(n k k ≤<,任意的n i i i k ≤<<<≤ 211,具有等式)()()()(2121k k i i i i i i A P A P A P A A A P =,称n 个事件n A A A ,,,21 相互独⽴. 3、事件的运算(1)和事件(并):“事件A 与B ⾄少有⼀个发⽣”,记为B A ?. (2)积事件(交):“ 事件A 与B 同时发⽣”,记为B A ?或AB .(3)差事件、对⽴事件(余事件):“事件发⽣A ⽽B 不发⽣”,记为A B -称为A 与B 的差事件;B B =-Ω称为B 的对⽴事件;易知:B A B A =-. 4、事件的运算法则1) 交换律:A B B A ?=?,BA AB =;2) 结合律:C B A C B A ??=??)()(,)()(BC A C AB =; 3) 分配律:BC AC C B A ?=?)(,))(()(C B C A C AB ??=?; 4) 对偶(De Morgan)律:B A B A =?,B A AB ?=,可推⼴kkkkkkAA A A ==,5、概率的概念(1)概率的公理化定义:(了解)ΩΩ设是⼀个样本空间,为的某些⼦集组成F()A P A ?∈的⼀个事件域.,定义在上的⼀个集值函数满⾜:F.F 1()0;P A ≥)⾮负性: 2()1;P Ω=)规范性: 123,,A A )可列可加性:设是可列个互不相容事件,则11()()n n n n P A P A ∞∞===∑().P A A 则称为事件的概率(2)频率的定义:(了解)事件A 在n 次重复试验中出现A n 次,则⽐值n n A 称为事件A 在n 次重复试验中出现的频率,记为)(A f n ,即n n A f An =)(.(3)概率的统计定义:(了解)频率具有稳定性,即()n kf A n=随n 的增⼤越来越靠近某个常数p ,称p 为事件A 的(统计)概率.在实际问题中,当n 很⼤时,取()().n P A p f A =≈(4)古典概率(有限等可能型):若试验的基本结果数为有限个,且每个事件发⽣的可能性相等,则(试验对应古典概型)事件A 发⽣的概率为:n A k n k A A P )()(==中样本点总数中所含样本点数Ω=.(5)⼏何概率(⽆限等可能型):(了解)若试验基本结果数⽆限,随机点落在某区域g 的概率与区域g 的测度(长度、⾯积、体积等)成正⽐,⽽与其位置及形状⽆关,则(试验对应⼏何概型),“在区域Ω中随机地取⼀点落在区域A 中”这⼀事件A 发⽣的概率为:()A P A Ω的测度的测度.(6)主观概率:(了解)⼈们根据经验对该事件发⽣的可能性所给出的个⼈信念. 6、概率的基本性质(1)不可能事件概率为零: ()0P Φ=. (2)有限可加性:设n A A A ,,,21 是n 个两两互不相容的事件,即i jA A =Φ,(i j ≠)n j i ,2,1,,=,则有)(21n A A A P =)(1A P +)()(2n A P A P ++ .(3)单调不减性:若事件,()()B A P B P A ?≥则,且()()()P B A P B P A -=-.(4)互逆性:()1()P A P A =-且()1P A ≤.(5)加法公式:对任意两事件B A 、,有=?)(B A P )()(B P A P +-)(AB P ;此性质可推⼴到任意n 个事件n A A A ,,,21 的情形.(6)可分性:对任意两事件B A 、,有)()()(B A P AB P A P +=,且()()()P A B P A P B ?≤+7、条件概率与乘法公式(1)条件概率:设B A 、是两个事件,若()0,P A >则)()()|(A P AB P A B P =称为事件A 发⽣的条件下事件B 发⽣的条件概率.(2)乘法公式:设()0,()0,P A P B >>则)|()()|()()(B A P B P A B P A P AB P ==.称为事件B A 、的概率乘法公式.其可推⼴成有即个的情形,详见书上第16页,其主要的意义在说明了前⾯的事件对后⾯的事件发⽣的概率产⽣影响. 8、全概率公式与贝叶斯(Bayes)公式(1)全概率公式:设n A A A ,,,21 是Ω的⼀个划分,且0)(>i A P ,),,2,1(n i =,则对任何事件B ∈F.,有∑=ni i i A B P A P B P 1)|()()(=称为全概率公式.应⽤背景:若影响某⼀事件(“结果”)发⽣有⼏种不同的情况(“原因”),那么计算结果的概率就要⽤全概率公式, 相当于其是由原因计算结果.(2)贝叶斯(Bayes)公式:设n A A A ,,,21 是Ω的⼀个划分,且0)(>i A P ),,2,1(n i =,则对任何事件B ∈F.,有),,1(,)|()()n j A B P A P A B P A P B A P ni iij j j ==∑=称为贝叶斯公式或逆概率公式.应⽤背景:若影响某⼀事件(“结果”)发⽣有⼏种不同的情况(“原因”),那么若告诉你结果已发⽣,那么要计算某⼀种情况(“原因”)发⽣的概率时,就要⽤到贝叶斯公式,相当其主要的应⽤是要由结果计算原因. 9、贝努⾥(Bernoulli)概型(1)只有两个可能结果的试验称为贝努⾥试验,常记为E .E 也叫做“成功—失败”试验,“成功”的概率常⽤)(A P p =表⽰,其中A =“成功”.(2)把E 重复独⽴地进⾏n 次,所得的试验称为n 重贝努⾥试验,记为nE .(3)把E 重复独⽴地进⾏可列多次,所得的试验称为可列重贝努⾥试验,记为∞E .以上三种贝努⾥试验统称为贝努⾥概型.(4)nE 中成功k 次的概率是:)0(,)1(n k q p C p p C k n k k n kn k k n ≤≤=---其中1(01)p q p +=≤≤.疑难分析1、必然事件与不可能事件必然事件是在⼀定条件下必然发⽣的事件,不可能事件指的是在⼀定条件下必然不发⽣的事件.它们都不具有随机性,是确定性的现象,但为研究的⽅便,把它们看作特殊的随机事件.2、互逆事件与互斥(不相容)事件如果两个事件A 与B 必有⼀个事件发⽣,且⾄多有⼀个事件发⽣,则A 、B 为互逆事件;如果两个事件A 与B 不能同时发⽣,则A 、B 为互斥事件.因⽽,互逆必定互斥,互斥未必互逆.区别两者的关键是:当样本空间只有两个事件时,两事件才可能互逆,⽽互斥适⽤与多个事件的情形.作为互斥事件在⼀次试验中两者可以都不发⽣,⽽互逆事件必发⽣⼀个且只发⽣⼀个. 3、两事件独⽴与两事件互斥两事件A 、B 独⽴,则A 与B 中任⼀个事件的发⽣与另⼀个事件的发⽣⽆关,这时)()()(B P A P AB P =⽣,这两事件的发⽣是有影响的,这时0)(,=Φ=AB P AB .可以⽤图形作⼀直观解释.在图1.1左边的正⽅形中,)(21)(,41)(B P A P AB P ===,表⽰样本空间中两事件的独⽴关系,⽽在右边的正⽅形中,0)(=AB P ,表⽰样本空间中两事件的互斥关系.4、条件概率)|(B A P 与积事件概率)(AB P)(AB P 是在样本空间Ω内,事件AB 的概率,⽽)|(B A P 是在试验E 增加了新条件B发⽣后的缩减的样本空间B Ω中计算事件A 的概率.虽然A 、B 都发⽣,但两者是不同的,⼀般说来,当A 、B 同时发⽣时,常⽤)(AB P ,⽽在有包含关系或明确的主从关系时,⽤)|(B A P .如袋中有9个⽩球1个红球,作不放回抽样,每次任取⼀球,取2次,求:(1)第⼆次才取到⽩球的概率;(2)第⼀次取到的是⽩球的条件下,第⼆次取到⽩球的概率.问题(1)求的就是⼀个积事件概率的问题,⽽问题(2)求的就是⼀个条件概率的问题. 5、全概率公式与贝叶斯(Bayes)公式当所求的事件概率为许多因素引发的某种结果,⽽该结果⼜不能简单地看作这诸多事件之和时,可考虑⽤全概率公式,在对样本空间进⾏划分时,⼀定要注意它必须满⾜的两个条件.贝叶斯公式⽤于试验结果已知,追查是何种原因(情况、条件)下引发的概率.第⼆块随机变量及其分布内容提要基本内容:随机变量,随机变量的分布的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率分布,常见随机变量的分布,随机变量函数的分布.1、随机变量设Ω是随机试验的样本空间,如果对于试验的每⼀个可能结果Ω∈ω,都有唯⼀的实数)(ωX 与之对应,则称)(ωX 为定义在Ω上的随机变量,简记为X .随机变量通常⽤⼤写字母Z Y X 、、等表⽰.根据其取值的情形可以分成为离散型随机变量(可能取值⾄多可列)随机变量连续型随机变量(可能取值充满某个区间)奇异型随机变量2、离散型随机变量及其分布列如果随机变量X 只能取有限个或可列个可能值,则称X 为离散型随机变量.如果X 的⼀切可能值为 ,,21x x ,并且X 取k x 的概率为k p ,则称),3,2,1}({ ===k x X P p k k 为离散型随机变量X 的概率函数(概率分布或分布律).也称分布列,常记为1212n nx x x p p p ?? ???其中1,0=≥∑i常见的离散型随机变量的分布有:(1)两点分布(0-1分布):记为(1,)((1,))Xb p B p ,分布列为10,1,0,)1(}{1<<=-==-p k p p k X P k k或1~X q p ??(2)⼆项分布:记为(,)((,))X b n p B n p ,概率函数10,,,1,0,)1(}{<<=-==-p n k p p C k X P k n kk n(3)泊松分布,记为()(())X P πλλ,概率函数,,1,0,!}{>===-λλλk k e k X P k泊松定理:设0>λ是⼀常数,n 是任意正整数,设λ=nnp ,则对于任⼀固定的⾮负整数k ,有!)1(lim k e p p C k kn n k nknn λλ--∞→=-.根据泊松定理可得,当n 很⼤(⼤于50)且p 很⼩(⼀般是⼩于0.05)时,⼆项分布可以⽤泊松分布近似代替,即!)1(k e p p C k kn k k nλλ--≈-,其中np =λ3、分布函数及其性质分布函数的定义:设X 为随机变量,x 为任意实数,函数)}({)(+∞<<-∞≤=x x X P x F分布函数完整地描述了随机变量取值的统计规律性,具有以下性质:(1)有界性: )(1)(0+∞<<-∞≤≤x x F;(2)单调性:如果21x x <,则)()(21x F x F ≤;(3)右连续:即)()0(x F x F =+;(4)极限性:1)(lim ,0)(lim ==+∞→-∞→x F x F x x ;(5)完美性: )()(}{}{}{121221x F x F x X P x X P x X x P -=≤-≤=≤<.4、连续型随机变量及其分布如果对于随机变量X 的分布函数)(x F ,存在⾮负函数()p x ,使对于任⼀实数x ,有()()xF x p t dt -∞=?,则称X 为连续型随机变量.函数()p x 称为X 的概率密度函数,简称为概率密度.概率密度函数具有以下性质:(1)()0p x ≥;(2)()1p x dx +∞-∞=?;(3)2112{}()x x P x X x p t dt<≤=?;(4)0}{1==x X P ;(5)如果()p x 在x 处连续,则()()F x p x '=. 常⽤连续型随机变量的分布:(1)均匀分布:记为),(~b a U X ,概率密度为1,,()0,a x b p x b a≤≤=-其它分布函数为>≤≤--<=b x bx a ab a x a x x F ,1,,0)(P c X d b a-<<=- (2)指数分布:记为()XExp θ,概率密度为/1,0,()0,x e x p x θθ-?>?=其他,分布函数为/1,0,()0,x e x F x θ-?->=??其他.⽆记忆性质:对于任意,0,s t >有{|}{}P X s t X s P X t >+>=>.(3)正态分布:记为),(~2σµN X ,概率密度为2()2(),x p x X µσ--=-∞<<+∞,相应的分布函数为∞---=xx dtex F 222)(21)(σµπ当1,0==σµ时,即)1,0(~N X 时,称X 服从标准正态分布.这时分别⽤)(x ?和)(x Φ表⽰X 的密度函数和分布函数,即-=Φ=x t x dte x ex 222221)(,21)(ππ性质:①若2(,)XN µσ,则其密度函数关于x µ=对称,从⽽1()()2P X P X µµ>=<=. ② )(1)(x x Φ-=-Φ. ③若2(,)XN µσ,则(0,1)X N µσ-,即⼀般正态分布),(~2σµN X 的分布函数)(x F 与标准正态分布的分布函数)(x Φ有关系:)()(σµ-Φ=x x F .5、随机变量函数的分布(1)离散型随机变量函数的分布设X 为离散型随机变量,其分布列为(表2-2):则)(X g Y =任为离散型随机变量,其分布列为(表2-3):表2-3i y 有相同值时,要合并为⼀项,对应的概率相加.(2)连续型随机变量函数的分布设X 为离散型随机变量,概率密度为()X p x ,则)(X g Y =的概率密度有两种⽅法可求.1)定理法:若)(x g y =在X 的取值区间内有连续导数)(x g ',且)(x g 单调时,)(X g Y =是连续型随机变量,其概率密度为<<'=其它,0,)()]([)(βαy y h y h f y f XY .其中)()}.(),(max{)},(),(min{y h g g g g +∞-∞=+∞-∞=βα是)(x g 的反函数. 2)分布函数法:先求)(X g Y =的分布函数∑=≤=≤=k y xY k dxx fy X g P y Y P y F )()(})({}{)(然后求 ()[()]Y Y p y F y '=. 结论:若2(,)X N µσ,则22(0)(,)aX b a N a b a µσ+≠+.疑难分析1、随机变量与普通函数随机变量是定义在随机试验的样本空间Ω上,对试验的每⼀个可能结果Ω∈ω,都有唯⼀的实数)(ωX 与之对应.从定义可知:普通函数的取值是按⼀定法则给定的,⽽随机变量的取值是由统计规律性给出的,具有随机性;⼜普通函数的定义域是⼀个区间,⽽随机变量的定义域是样本空间. 2、分布函数)(x F 的连续性定义左连续或右连续只是⼀种习惯.有的书籍定义分布函数)(x F 左连续,但⼤多数书籍定义分布函数)(xF为右连续. 左连续与右连续的区别在于计算)F时,xX=点的概率是否计算在内.对于连续型随机变量,由于}{1==xXP,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于}{1≠=xXP,则定义左连续或右连续时)(xF值就不相同,这时,就要注意对)(xF定义左连续还是右连续.第三块多维随机变量及其分布内容提要基本内容:多维随机变量及其分布函数⼆维离散型随机变量的联合分布列,⼆维连续型随机变量的联合分布函数和联合密度函数,边际分布,随机变量的独⽴性和不相关性,常⽤多维随机变量,随机向量函数的分布.1、⼆维随机变量及其联合分布函数 12(),(),,()(,,),n X X X F P ωωωΩ如果随机变量定义在同⼀概率空间上则称12(),(),,()n X X X X ωωωω=()(为n 维(n 元)随机变量或随机向量.n 当=2时,称为⼆维随机变量,常记为(,).X Y 联合分布函数的定义:设12(),(),,()n XX X X n ωωωω=()()是维随机变量,,nx R n ?∈则称元函数121122(,,,),,,)n n n F x x x P X x X x X x =≤≤≤(为随机向量12(),(),,()n X X X X ωωωω=()(的联合分布函数2,,n =特别时称为⼆维联合分布函数即(,)(,)F x y P X x Y y =≤≤⼆维联合分布函数具有以下基本性质:(1)单调性: ),(y x F 是变量x 或y 的⾮减函数;(2)有界性: 1),(0≤≤y x F ;(3)极限性:1),(0),(0),(0),(=+∞+∞=-∞-∞=-∞=-∞F F x F y F , , ,,但注意(,)(),(,)()Y X F y F y F x F x +∞=+∞=,其中()X F x 与()Y F y 分别表⽰X 与Y 的分布函数.(4)连续性: ),(y x F 关于x 右连续,关于y 也右连续;(5)⾮负性: 对任意点),(),,(2211y x y x ,若2121,y y x x <<,则0),(),(),(),(11211222≥+--y x F y x F y x F y x F .上式表⽰随机点),(Y X 落在区域],[2121y Y y x X x ≤<≤<内的概率为:},{2121y Y y x X x P ≤<≤<.2、⼆维离散型随机变量及其联合分布列如果⼆维随机变量),(Y X 所有可能取值是有限对或可列对,则称),(Y X 为⼆维离散型随机变量.设),(Y X 为⼆维离散型随机变量,它的所有可能取值为,2,1,),,(=j i y x j i 将),2,1,(},{ ====j i p y Y x X P ij j i 或表3.1称为),(Y X 的联合分布列.表3.1联合分布列具有下列性质:(1)≥ij p ;(2)111=∑∑∞=∞=i j ijp.3、⼆维连续型随机变量及其概率密度函数如果存在⼀个⾮负函数),(y x p ,使得⼆维随机变量),(Y X 的分布函数),(y x F 对任意实数y x ,有∞-∞-=xydydx y x p y x F ),(),(,则称),(Y X 是⼆维连续型随机变量,称),(y x p 为),(Y X 的联合密度函数(或概率密度函数).联合密度函数具有下列性质:(1)⾮负性对⼀切实数y x ,,有0),(≥y x p ;(2)规范性1),(=??+∞∞-+∞∞-dy dx y x p ;(3)在任意平⾯域D 上,),(Y X 取值的概率=∈Ddxdyy x p D Y X P ),(}),{(;(4)如果),(y x p 在),(y x 处连续,则),(),(2y x p y x y x F =.常⽤连续型随机变量的分布:(1) 设D 是平⾯上的⼀个有界区域,其⾯积为A .若⼆维随机变量(,)X Y 的联合概率密度为1,(,),(,)0,x y D f x y A ?∈?=其它,则称(,)X Y 服从区域D 上的⼆维均匀分布.(2) ⼆元正态分布:其密度函数不要求背,具体的请见课本P67. 4、⼆维随机变量的边缘分布设),(Y X 为⼆维随机变量,则称},{)(+∞<<-∞≤=Y x X P x F X },{)(y Y X P y F Y ≤+∞<<-∞=分别为),(Y X 关于X 和关于Y 的边缘(边际)分布函数.当),(Y X 为离散型随机变量,则称),2,1(),2,1(1.1. ====∑∑∞=∞=j p p i p p i ij j j ij i分别为),(Y X 关于X 和关于Y 的边缘分布列.当),(Y X 为连续型随机变量,则称+∞∞-+∞∞-==dxy x p y p dy y x p x p Y X ),()(,),()(分别为),(Y X 关于X 和关于Y 的边缘密度函数. 性质:221212(,)(,,,,)X Y N µµσσρ,则211(,)XN µσ,222(,)Y N µσ.5、随机变量的独⽴性设),(y x F 及)()(y F x F Y X 、分别是),(Y X 的联合分布函数及边缘分布函数.如果对任何实数y x ,有)()(),(y F x F y x F Y X ?=则称随机变量X 与Y 相互独⽴.设),(Y X 为⼆维离散型随机变量,X 与Y 相互独⽴的充要条件是),2,1,(.. ==j i p p p j i ij .设),(Y X 为⼆维连续型随机变量,X 与Y 相互独⽴的充要条件是对⼏乎⼀切实数y x ,,有)()(),(y p x p y x p Y X =.性质:221212(,)(,,,,)X Y N µµσσρ,则0X Y ρ=?与相互独⽴.6、两个随机变量函数的分布设⼆维随机变量),(Y X 的联合概率密度函数为),(y x p ,),(Y X Z ?=是Y X ,的函数,则Z 的分布函数为dxdyy x p z F zy x Z ??≤=),(),()(?.对于⼀般的函数?,求()Z F z 通过分布函数的⽅法,如第三章,习题29就是使⽤这种⽅法.但对于以下的⼏个,更加常⽤的是公式的⽅法. 若),(Y X 为连续型随机变量,概率密度函数为),(y x p .(1)Y X Z +=的分布:dyy y z p dx x z x p z p Z ??+∞∞-+∞∞--=-=),(),()(.特别地,若X 与Y 相互独⽴,则()()()()().Z X Y X Y p z p x p z x dx p z y p y dy +∞+∞-∞-∞=-=-?(2)Z X Y =-的分布:()(,).Z p z p z y y dy +∞-∞=+?特别地,若X 与Y 相互独⽴,则()()().Z X Y p z p z y p y dy +∞-∞=+?(3)Z XY =的分布:1()(,).||Z zp z p x dx x x+∞-∞=?特别地,若X 与Y 相互独⽴,则1()()().||Z X Y zp z p x p dx x x+∞-∞=?(4)Y XZ =的分布若),(Y X 为连续型随机变量,概率密度函数为),(y x p ,则Z 的概率函数为:+∞∞-=dyy yz p y z p Z ),()(.性质:①若(,),(,),(,)X b n p Y b m p X Y X Y b n m p ++且与相互独⽴,则.②若1212(),()().XY X Y X Y πλπλπλλ++且与相互独⽴,则③若221122(,),(,)XN YN µσµσ,且X 与Y 相互独⽴的,则22221212(,).X bY cN a b c a b µµσσ+++++a7.最⼤值与最⼩值的分布 1,,n X X n 设是相互独⽴的个随机变量,则1()()(max(,,))Y n F y P Y y P X X y =≤=≤1()ni i F y ==∏1()()(min(,,))Y n F y P Y y P X X y =≤=≤11(1())n i i F y ==--∏其中的()i F y 表⽰的是随机变量i X 的分布函数.疑难分析1、事件},{y Y x X ≤≤表⽰事件}{x X ≤与}{y Y ≤的积事件,为什么},{y Y x X P ≤≤不⼀定等于}{}{y Y P x X P ≤?≤?如同仅当事件B A 、相互独⽴时,才有)()()(B P A P AB P ?=⼀样,这⾥},{y Y x X P ≤≤依乘法原理}|{}{},{x X y Y P x X P y Y x X P ≤≤?≤=≤≤.只有事件}{x X P ≤与}{y Y P ≤相互独⽴时,才有}{}{},{y Y P x X P y Y x X P ≤?≤=≤≤,因为}{}|{y Y P x X y Y P ≤=≤≤.2、⼆维随机变量),(Y X 的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯⼀确定边缘分布,因⽽也唯⼀确定条件分布.反之,边缘分布与条件分布都不能唯⼀确定联合分布.但由)|()(),(|x y p x p y x p X Y X ?=知,⼀个条件分布和它对应的边缘分布,能唯⼀确定联合分布.但是,如果Y X 、相互独⽴,则}{}{},{y Y P x X P y Y x X P ≤?≤=≤≤,即)()(),(y F x F y x F Y X ?=.说明当Y X 、独⽴时,边缘分布也唯⼀确定联合分布,从⽽条件分布也唯⼀确定联合分布.3、两个随机变量相互独⽴的概念与两个事件相互独⽴是否相同?为什么?两个随机变量Y X 、相互独⽴,是指组成⼆维随机变量),(Y X 的两个分量Y X 、中⼀个分量的取值不受另⼀个分量取值的影响,满⾜}{}{},{y Y P x X P y Y x X P ≤?≤=≤≤.⽽两个事件的独⽴性,是指⼀个事件的发⽣不受另⼀个事件发⽣的影响,故有)()()(B P A P AB P ?=.两者可以说不是⼀个问题.但是,组成⼆维随机变量),(Y X 的两个分量Y X 、是同⼀试验E 的样本空间上的两个⼀维随机变量,⽽B A 、也是⼀个试验1E 的样本空间的两个事件.因此,若把“x X ≤”、“y Y ≤”看作两个事件,那么两者的意义近乎⼀致,从⽽独⽴性的定义⼏乎是相同的.第四块随机变量的数字特征内容提要基本内容:随机变量的数学期望和⽅差、标准差及其性质,随机变量函数的数学期望,原点矩和中⼼矩,协⽅差和相关系数及其性质.1、随机变量的数学期望设离散型随机变量X 的分布列为 ,2,1,}{===k p x X P k k ,如果级数∑∞=1k kk p x 绝对收敛,则称级数的和为随机变量X 的数学期望.设连续型随机变量X 的密度函数为)(x p ,如果⼴义积分+∞∞-dxx xp )(绝对收敛,则称此积分值?+∞∞-=dxx xp X E )()(为随机变量X 的数学期望.数学期望有如下性质:(1)设C 是常数,则C C E =)(;(2)设C 是常数,则)()(X CE CX E =;(3)若21X X 、是随机变量,则)()()(2121X E X E X X E +=+;对任意n 个随机变量n X X X ,,,21 ,有)()()()(2121n n X E X E X E X X X E +++=+++ ;(4)若21X X 、相互独⽴,则)()()(2121X E X E X X E =;对任意n 个相互独⽴的随机变量n X X X ,,,21 ,有)()()()(2121n n X E X E X E X X X E =.2、随机变量函数的数学期望(1)设离散型随机变量X 的分布律为,2,1,}{===k p x X P k k ,则X 的函数)(X g Y =的数学期望为2,1,)()]([1==∑∞=k p x g x g E k k k ,式中级数绝对收敛.。
1 第一、二章 基本概念与基本定理 一、知识点总结 1、排列组合初步 (1)排列组合公式 )!(!nmmPnm 从m个人中挑出n个人进行排列的可能数。 )!(!!nmnmCnm 从m个人中挑出n个人进行组合的可能数。 (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m³n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m³n 种方法来完成。 (4)一些常见排列 ①特殊排列 相邻 彼此隔开 顺序一定和不可分辨 ②重复排列和非重复排列(有序) ③对立事件 ④顺序问题 2、随机试验、随机事件及其运算 (1)随机试验和随机事件 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。 (2)事件的关系与运算 ①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA 如果同时有BA,AB,则称事件A与事件B等价,或称A等于B: 2
A=B。
A、B中至少有一个发生的事件:AB,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,
也可表示为A-AB或者BA,它表示A发生而B不发生的事件。 A、B同时发生:AB,或者AB。AB=Ø,则表示A与B不可能同时发
生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。 -A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发
生的事件。互斥未必对立。 ②运算: 结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
德摩根率:11iiiiAA BABA,BABA 3、概率的定义和性质 (1)概率的公理化定义 设为样本空间,A为事件,对每一个事件A都有一个实数P(A),若满足下列三个条件:
1° 0≤P(A)≤1, 2° P(Ω) =1 3° 对于两两互不相容的事件1A,2A,„有
11)(iiiiAPAP
常称为可列(完全)可加性。 则称P(A)为事件A的概率。
(2)古典概型(等可能概型) 1° n21,,
2° nPPPn1)()()(21。 设任一事件A,它是由m21,组成的,则有 P(A)=)()()(21m =)()()(21mPPP
nm
基本事件总数
所包含的基本事件数A
4、五大公式(加法、减法、乘法、全概、贝叶斯) (1)加法公式 3
P(A+B)=P(A)+P(B)-P(AB) 当P(AB)=0时,P(A+B)=P(A)+P(B) (2)减法公式 P(A-B)=P(A)-P(AB) 当BA时,P(A-B)=P(A)-P(B)
当A=Ω时,P(B)=1- P(B) (3)条件概率和乘法公式 定义 设A、B是两个事件,且P(A)>0,则称)()(APABP为事件A发生条件下,
事件B发生的条件概率,记为)/(ABP)()(APABP。 条件概率是概率的一种,所有概率的性质都适合于条件概率。 例如P(Ω/B)=1P(B/A)=1-P(B/A) 乘法公式:)/()()(ABPAPABP 更一般地,对事件A1,A2,„An,若P(A1A2„An-1)>0,则有 21(AAP„)nA)|()|()(213121AAAPAAPAP„„21|(AAAPn„
)1nA。
(4)全概公式
设事件nBBB,,,21满足 1°nBBB,,,21两两互不相容,),,2,1(0)(niBPi,
2°niiBA1, 则有 )|()()|()()|()()(2211nnBAPBPBAPBPBAPBPAP。
此公式即为全概率公式。 (5)贝叶斯公式 设事件1B,2B,„,nB及A满足 1° 1B,2B,„,nB两两互不相容,)(BiP>0,i1,2,„,n,
2° niiBA1,0)(AP, 则
njjjiiiBAPBPBAPBPABP1)/()(
)/()()/(,i=1,2,„n。
此公式即为贝叶斯公式。 )(iBP,(1i,2,„,n),通常叫先验概率。)/(ABPi,(1i,2,„, 4
n),通常称为后验概率。如果我们把A当作观察的“结果”,而1B,2B,„,
nB理解为“原因”,则贝叶斯公式反映了“因果”的概率规律,并作出了
“由果朔因”的推断。 5、事件的独立性和伯努利试验 (1)两个事件的独立性 设事件A、B满足)()()(BPAPABP,则称事件A、B是相互独立的(这个性质不是想当然成立的)。
若事件A、B相互独立,且0)(AP,则有 )()()()()()()|(BPAPBPAPAPABPABP 所以这与我们所理解的独立性是一致的。 若事件A、B相互独立,则可得到A与B、A与B、A与B也都相互独立。(证明) 由定义,我们可知必然事件和不可能事件Ø与任何事件都相互独立。(证明) 同时,Ø与任何事件都互斥。
(2)多个事件的独立性
设ABC是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足P(ABC)=P(A)P(B)P(C) 那么A、B、C相互独立。 对于n个事件类似。 两两互斥→互相互斥。 两两独立→互相独立? (3)伯努利试验 定义 我们作了n次试验,且满足 每次试验只有两种可能结果,A发生或A不发生;
n次试验是重复进行的,即A发生的概率每次均一样;
每次试验是独立的,即每次试验A发生与否与其他次试验A发生
与否是互不影响的。
这种试验称为伯努利概型,或称为n重伯努利试验。 用p表示每次试验A发生的概率,则A发生的概率为qp1,用)(kPn
表示n重伯努利试验中A出现)0(nkk次的概率, knkknnqpkPC)(
,nk,,2,1,0。 5
随机变量及其分布 第一节 基本概念 在许多试验中,观察的对象常常是一个随同取值的量。例如掷一颗骰子出现的点数,它本身就是一个数值,因此P(A)这个函数可以看作是普通函数(定义域和值域都是数字,数字到数字)。但是观察硬币出现正面还是反面,就不能简单理解为普通函数。但我们可以通过下面的方法使它与数值联系起来。当出现正面时,规定其对应数为“1”;而出现反面时,规定其对应数为“0”。于是
)(XX
,当反面出现,当正面出现01
称X为随机变量。又由于X是随着试验结果(基本事件)不同而变化的,所以X实际上是基本事件的函数,即X=X(ω)。同时事件A包含了 6
一定量的ω(例如古典概型中A包含了ω1,ω2,„ωm,共m个基本事件),于是P(A)可以由P(X(ω))来计算,这是一个普通函数。
定义 设试验的样本空间为,如果对中每个事件都有唯一的实数值X=X(ω)与之对应,则称X=X(ω)为随机变量,简记为X。 有了随机变量,就可以通过它来描述随机试验中的各种事件,能全面反映试验的情况。这就使得我们对随机现象的研究,从前一章事件与事件的概率的研究,扩大到对随机变量的研究,这样数学分析的方法也可用来研究随机现象了。
一个随机变量所可能取到的值只有有限个(如掷骰子出现的点数)或可列无穷多个(如电话交换台接到的呼唤次数),则称为离散型随机变量。 像弹着点到目标的距离这样的随机变量,它的取值连续地充满了一个区间,这称为连续型随机变量。 1、随机变量的分布函数 (1)离散型随机变量的分布率 设离散型随机变量X的可能取值为Xk(k=1,2,„)且取各个值的概率,即事件(X=Xk)的概率为 P(X=xk)=pk,k=1,2,„, 则称上式为离散型随机变量X的概率分布或分布律。有时也用分布列
的形式给出: ,,,,,,,,|)(2121kkkpppxxxxXPX。
显然分布律应满足下列条件:
(1)0kp,,2,1k,
(2)11kkp。 (2)分布函数 对于非离散型随机变量,通常有0)(xXP,不可能用分布率表达。例如日光灯管的寿命X,0)(0xXP。所以我们考虑用X落在某个区间],(ba内的概率表示。 定义 设X为随机变量,x是任意实数,则函数 )()(xXPxF 称为随机变量X的分布函数。 )()()(aFbFbXaP 可以得到X落入区间],(ba的概率。也
就是说,分布函数完整地描述了随机变量X随机取值的统计规律性。