全国中考数学试题分类汇编视图投影空间几何体及答案
- 格式:docx
- 大小:7.18 MB
- 文档页数:10
(2013•衡阳)下列几何体中,同一个几何体的主视图与俯视图不同的是( ) A .B .C .D .考点: 简单几何体的三视图. 分析: 主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形. 解答:解:A 、圆柱的主视图与俯视图都是矩形,错误; B 、正方体的主视图与俯视图都是正方形,错误;C 、圆锥的主视图是等腰三角形,而俯视图是圆和圆心,正确;D 、球体主视图与俯视图都是圆,错误; 故选C . 点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,俯视图是从物体的上面看得到的视图.(2013•益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为( )A . 2个B . 3个C . 5个D . 10个考点: 由三视图判断几何体. 分析:从主视图与左视图可以得出此图形只有一排,从俯视图可以验证这一点,从而确定个数. 解答:解:从主视图与左视图可以得出此图形只有一排,只能得出一共有5个小正方体, 从俯视图可以验证这一点,从而确定小正方体总个数为5个. 故选;C . 点评:此题主要考查了由三视图判定几何体的形状,此问题是中考中热点问题,同学们应熟练掌握.(( )株洲)下列几何体中,有一个几何体的俯视图的形状与其它三个不一样,这个几何体是()A BC DA .正方体 B .圆柱C .圆锥 D .球 考点: 简单几何体的三视图 分析: 俯视图是分别从物体上面看所得到的图形.分别写出四个几何体的俯视图即可得到答案. 解答:解:正方体的俯视图是正方形;圆柱体的俯视图是圆;圆锥体的俯视图是圆;球的俯视图是圆. 故选:A . 点评:本题主要考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中. (2013,成都)如图所示的几何体的俯视图可能是( )(2013•达州)下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是( )A .(3)(1)(4)(2)B .(3)(2)(1)(4)C .(3)(4)(1)(2)D .(2)(4)(1)(3) 答案:C解析:因为太阳从东边出来,右边是东,所以,早上的投影在左边,(3)最先,下午的投影在右边,(2)最后,选C 。
2017-2018年中考数学专题复习题:投影与视图、选择题1. 图中三视图对应的几何体是2. 如图是由若干小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是3. 如图,上下底面为全等的正六边形礼盒,其正视图与侧视图均由矩形构成,正视图中大矩形边长如图所示,侧视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为I IA. B. C. D.3112—60cm -—20cm M CE正视图侧视图A. 320 cmB. 讥IH .- ;C. 4 1, 一二’D. 480 cm4. 如图,一个正方体切去一个三棱锥后所得几何体的俯视图是A.5. 有一圆柱形的水池,已知水池的底面直径为 4米,水面离池口 2米,水池内有一小青蛙,它每天晚上都会浮在水面上赏月,则它能观察到的最大视角为如图,直立于地面上的电线杆 AB 在阳光下落在水平地面和坡面上的影子分别是 BC CD 测得BC=6米, = -米,二 二:二FC',在D 处测得电线杆顶端 A 的仰角为:Ej ,则电线杆AB 的高度为,A. 2+ 2逅B. 4+ 2V3C. 2+D.4+8. 在阳光下,一名同学测得一根长为 1米的垂直地面的竹竿的影长为1七米,同时另一名同学测量树的高度时,发现树的影 子不全落在地面上,有一部分落在教学楼的第一级台阶上,6.如图所示,在房子外的屋檐E 处安有一台监视器,a一 一 -邛1■ 口 口FA B CA. _ -.1B. A BFDC.四边形 BCEDD. - -5;7.测得此影子长为米,一级台阶高为)d米,如图所示,若此时落在地面上的影长为丄丄]米,则树高为I IA. ■> -■ ■米B. 8 米C. .1 =米D. 12 米9. 如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是I .10. 圆桌面•桌面中间有一个直径为:.4-;的圆洞I正上方的灯泡I看作一个点I发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影,已知桌面直径为_.?:■,桌面离地面1m若灯泡离地面3m则地面圆环形阴影的面积是()A. 1.1. A1 1. ■B.丄,‘C.D. 0.72rm:、填空题11.如图,光源P在横杆AB的正上方,I' ^「,」3 = 1.;,「二二•:;「,则AB离地面的距离为12.如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影圆形»已知灯泡距离地面2 4 ;,桌面距离地面■I “桌面厚度不计算「,若桌面的面积是一.J:'-,则地面上体的俯视图的周长是 _______ ,面积是 _______15. 如图,AB 和DE 是直立在地面上的两根立柱,-F 二F 米,某一时刻 AB 在阳光下的投影3 ? = :■米,在测量AB 的投影时,同时测量出DE 在阳光下的投影长为 6米,则 DE 的长为 _______ 16. 如图,在一面与地面垂直的围墙的同侧有一根高13米的旗杆AB 和一根高度未知的电线杆CD 它们都与地面垂直,为了侧得电线杆的高度,数学兴趣小组的同学进 行了如下测量.某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF 的长度为3米,落在地面上的影子 BF 的长为8 米,而电信杆落在围墙上的影子 GH 的长度为:-2 米,落在地面上的银子 DH 的长为6米,依据这些数据,该小组的同学计算出了电 线杆的高度是的阴影面积是 ______ m 町13.如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为 ______ .1 !r1 ■ ■ 1 ■ ■ ■ ■ ■ ■14.如图,正三棱柱的底面周长为15,截去一个底面周长为 6的正三棱柱,所得几何__________________ 米・地面的距离CD = ________19. ___________________________________________________________ 桌面上放两件物体,它们的三视图图,则这两个物体分别是 _____________________________ ,它们的位置20.桌上放着一个三棱锥和一个圆柱体, 如图的三幅图分别是从哪个方向看的?按图填17. 如图是王芳同学某一天观察到的一棵树在不同时刻的影子,请你把它们按时间先后顺序进行排列是 ________18.墙壁D 处有一盏灯如图,小明站在A 处测得他的影长与身长相等都为1三「,小明向墙壁走1m 到B 处发现影子刚好落在 A 点,则灯泡与厂□王观圈旗杆电遙杆(A) (B)是 ______21. 如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成亠卩角时,第二次是阳光与地面成 :< 角时,两次测量的影长相差8米,求树高AB多少米,结果保留根号・22. 如图,是住宅区内的两幢楼,它们的高-F = L":=■■ j ,两楼间的距离现需了解甲楼对乙楼的采光的影响情况..当太阳光与水平线的夹角为•工角时,求甲楼的影子在乙楼上有多高|精确到1 : > .厂1 ;若要甲楼的影子刚好不落在乙楼的墙上,此时太阳与水平线的夹角为多少度?23. 某兴趣小组开展课外活动如图,小明从点M出发以]三米秒的速度,沿射线MN方向匀速前进,2秒后到达点B,此时他(4#)在某一灯光下的影长为MB继续按原速行走2秒到达点D,此时他在同一灯光下的影子GD仍落在其身后,并测得这个影长GD为1 1米,然后他将速度提高到原来的一上倍,再行走2秒到达点F,此时点A, C, E三点共线..请在图中画出光源0点的位置,并画出小明位于点F时在这个灯光下的影长- J 不写画法;•求小明到达点F时的影长FH的长.■---------------------------------------M B G D F N24.如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积结果保留根号【答案】J D 1 解:在A - _ "1中,:山 £T |J在丁_.匸〕中,'in 厂AB AB 如&'——^,答:树高AB 为4.-米.22.解:I 如图,延长0B 交DC 于E,作严丄_卫,交AB 于F ,在- 中,1. 2. C 3. C 4. D 5. C 6. D 7. B 8. 9. D 10. D11.12.13. (225 + 25 v 1?) T14. 13; Ml415. 10m16. 1117. B A 、C D18.4.Srn19. 长方体和圆柱;圆柱在前,长方体在后20. 左面、上面、正面21.= :: } ,一 匚二 I 二:口 ,设5-=.,则?5= : . • 根据勾股定理知'二.,. 2.「 「:小"■,:1 j-. 负值舍去, 八'二川;•因此,-—. - •(勻当甲幢楼的影子刚好落在点 C 处时,一 为等腰三角形,因此,当太阳光与水平线夹角为 芟,时,甲楼的影子刚好不落在乙楼的墙上.23.解:|如图,点0和FH 为所作;M B G D K F H M'.■ ■- ' — — '「一 ; . ,4 二一.=,;二二一 ♦一.二'2= - E-,设 -5 = II.二三二二 I :',作;■■-:于K 如图,I ■ ■.",_ j.\ 2、s _;「[ -■,V CD//OK,J 8OX 耐JT'•,即卩二——ffJC OK l.^rDK由注得"亠,解得H,.-m「,_三“_二即'■':OJC KK ffFM5 E答:小明到达点F时的影长FH的长为24. 解:根据该密封纸盒的三视图知道它是一个六棱柱,其高为12cm底面边长为5cm其侧面积为丨<,密封纸盒的上、下底面的面积和为:「「_「. -匚:”」,其表面积为-。
专题16 视图与投影、尺规作图、命题与定理一.选择题1.(2022·山东临沂)如图所示的三棱柱的展开图不可能...是()A.B.C.D.【答案】D【分析】三棱柱的表面展开图的特点,由三个长方形的侧面和上下两个三角形的底面组成.从而可得答案.【详解】解:选项A、B、C均可能是该三棱柱展开图,不符合题意,而选项D中的两个底面会重叠,不可能是它的表面展开图,符合题意,故选:D.【点睛】考查了几何体的展开图,动手折叠一下,有助于空间想象力的培养.2.(2022·江苏常州)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据垂线段最短解答即可.【详解】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A.【点睛】本题考查垂线段最短,熟知垂线段最短是解答的关键.3.(2022·广西贵港)下列命题为真命题的是()A a=B.同位角相等C.三角形的内心到三边的距离相等D.正多边形都是中心对称图形【答案】C【分析】根据判断命题真假的方法即可求解.【详解】解:当0a<a-,故A为假命题,故A选项错误;当两直线平行时,同位角才相等,故B为假命题,故B选项错误;三角形的内心为三角形内切圆的圆心,故到三边的距离相等,故C为真命题,故C选项正确;三角形不是中心对称图形,故D为假命题,故D选项错误,故选:C.【点睛】本题考查了真假命题的判断,熟练掌握其判断方法是解题的关键.4.(2022·湖南邵阳)下列四个图形中,圆柱体的俯视图是()A.B.C.D.【答案】D【分析】根据俯视图是从上面看到的视图进而得出答案即可.【详解】解:竖直放置的圆柱体,从上面看是圆,所以俯视图是圆.故选∶D.【点睛】此题考查了简单几何体的三视图,解题的关键是熟练掌握圆柱体的三视图.5.(2022·湖北鄂州)如图所示的几何体是由5个完全相同的小正方体组成,它的主视图是()A.B.C.D.【答案】A【分析】根据从正面看到的图形是主视图,即可得.【详解】解:从前面看,第一层是两个小正方形,第二层左边一个小正方形,第三层左边1个小正方形,故选A.【点睛】本题考查了简单几何体的三视图,解题的关键是掌握从正面看到的图形是主视图.6.(2022·辽宁锦州)下列命题不正确...的是()A.经过直线外一点,有且只有一条直线与这条直线平行B.负数的立方根是负数C.对角线互相垂直的四边形是菱形D.五边形的外角和是360︒【答案】C【分析】由平行线公理、立方根的定义、菱形的判定定理、多边形的外角和,分别进行判断,即可得到答案.【详解】解:A、经过直线外一点,有且只有一条直线与这条直线平行;故A正确;B、负数的立方根是负数;故B正确;C、对角线互相垂直的平行四边形是菱形,故C错误;D、五边形的外角和是360︒,故D正确;故选:C【点睛】本题考查了判断命题的真假,以及考查了平行线公理、立方根的定义、菱形的判定定理、多边形的外角和,解题的关键是掌握所学的知识,正确的进行判断.7.(2022·内蒙古通辽)下列命题:①()3235m n m n⋅=;②数据1,3,3,5的方差为2;③因式分解()()3x x x x x-=+-;④平分弦的直径垂直于弦;则1 422x.其≥中假命题的个数是()A.1B.3C.2D.4【答案】C【分析】根据积的乘方,方差的计算,多项的因式分解,垂径定理的推论,二次根式有意义的条件,逐项判断即可求解.【详解】解:①()3362m n m n ⋅=,故原命题是假命题; ②数据1,3,3,5的平均数为()1133534+++= ,所以方差为()()()()222211333335324⎡⎤-+-+-+-=⎣⎦,是真命题; ③()()()324422x x x x x x x -=-=+-,是真命题;④平分弦(不是直径)的直径垂直于弦,故原命题是假命题;10x -≥,即1≥x ,是真命题;∴假命题的个数是2.故选:C【点睛】本题主要考查了积的乘方,方差的计算,多项的因式分解,垂径定理的推论,二次根式有意义的条件,熟练掌握相关知识点是解题的关键.8.(2022·山东威海)过直线l 外一点P 作直线l 的垂线PQ .下列尺规作图错误的是( )A .B .C .D .【答案】C【分析】根据线段垂直平分线的逆定理及两点确定一条直线一一判断即可.【详解】A 、如图,连接AP 、AQ 、BP 、BQ ,AP=BP,AQ=BQ,∴点P在线段AB的垂直平分线上,点Q在线段AB的垂直平分线上,∴直线PQ垂直平分线线段AB,即直线l垂直平分线线段PQ,本选项不符合题意;B、如图,连接AP、AQ、BP、BQ,AP= AQ,BP =BQ,∴点A在线段PQ的垂直平分线上,点B在线段PQ的垂直平分线上,∴直线AB垂直平分线线段PQ,即直线l垂直平分线线段PQ,本选项不符合题意;C、C项无法判定直线PQ垂直直线l,本选项符合题意;D、如图,连接AP、AQ、BP、BQ,AP= AQ,BP =BQ,∴点A在线段PQ的垂直平分线上,点B在线段PQ的垂直平分线上,∴直线AB垂直平分线线段PQ,即直线l垂直平分线线段PQ,本选项不符合题意;故选:C.【点睛】本题考查作图-复杂作图,线段垂直平分线的逆定理及两点确定一条直线等知识,读懂图像信息是解题的关键,属于中考常考题型.9.(2022·湖南长沙)如图,在ABC中,按以下步骤作图:①分别过点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交于P 、Q 两点; ②作直线PQ 交AB 于点D ;③以点D 为圆心,AD 长为半径画弧交PQ 于点M 、连接AM 、BM .若AB =AM 的长为( )A .4B .2 CD【答案】B 【分析】根据作图可知PM 垂直平分AB ,12DM AB =,ABM 是等腰直角三角形,据此即可求解.【详解】解:由作图可得PM 垂直平分AB ,12AD DM AB ===则ADM 是等腰直角三角形∴由勾股定理得:2AM =故选:B .【点睛】本题考查了作垂线,等腰直角三角形的性质,勾股定理,掌握基本作图理解题意是解题的关键.11.(2022·贵州毕节)在ABC 中,用尺规作图,分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N .作直线MN 交AC 于点D ,交BC 于点E ,连接AE .则下列结论不一定正确的是( )A .AB AE =B .AD CD =C .AE CE =D .ADE CDE ∠=∠【答案】A【分析】根据作图可知AM =CM ,AN =CN ,所以MN 是AC 的垂直平分线,根据垂直平分线的性质,线段垂直平分线上的点到线段两端的距离相等,且平分此点到线段两端构成的夹角,分别对各选项进行判断.【详解】由题意得,MN 垂直平分线段AC ,∴AD CD =,AE CE =,ADE CDE ∠=∠所以B 、C 、D 正确,因为点B 的位置不确定,所以不能确定AB =AE ,故选 A【点睛】本题考查了线段垂直平分线,熟练掌握线段垂直平分线的作图方法和性质是解题的关键. 10.(2022·四川广安)下列说法正确的是( )A .对角线相等的四边形是矩形.B .相似三角形的面积的比等于相似比.C .方差越大,数据的波动越大;方差越小,数据的波动越小.D .过一点有且只有一条直线与已知直线平行.【答案】C【分析】根据矩形的判定,相似三角形的性质,方差的意义,平行公理逐项分析判断即可求解.【详解】解:A. 对角线相等的平行四边形是矩形,故该选项不正确,不符合题意;B. 相似三角形的面积的比等于相似比的平方,故该选项不正确,不符合题意;C. 方差越大,数据的波动越大;方差越小,数据的波动越小,故该选项正确,符合题意;D. 同一平面内,过直线外一点有且只有一条直线与已知直线平行,故该选项不正确,不符合题意; 故选C【点睛】本题考查了矩形的判定,相似三角形的性质,方差的意义,平行公理,掌握相关知识是解题的关键.12.(2022·山东烟台)如图,是一个正方体截去一个角后得到的几何体,则该几何体的左视图是( )A .B .C .D .【答案】A【分析】根据左视图是从左面看到的图形判定则可.【详解】解:从左边看,可得如下图形:故选:A.【点睛】本题考查三视图、熟练掌握三视图的定义是解决问题的关键.13.(2022·山东聊城)如图,该几何图形是沿着圆锥体的轴切割后得到的“半个”圆锥体,它的左视图是()A.B.C.D.【答案】B【分析】根据左视图的定义及画法即可判定.【详解】解:从左边看该几何体是一个斜边在左侧的直角三角形,故选:B.【点睛】本题考查画简单几何的三视图,熟练掌握和运用简单几何三视图的画法是解决本题的关键.14.(2022·内蒙古赤峰)下面几何体的俯视图是()A.B.C.D.【答案】B【分析】俯视图是从物体的上面看得到的视图.【详解】圆台的俯视图是一个同心圆环.故选:B.【点睛】本题考查几何体的三视图,主要考查学生空间想象能力及对立体图形的认知能力.15.(2022·黑龙江)如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7B.8C.9D.10【答案】B【分析】这个几何体共有2层,由俯视图可得第一层小正方体的个数,由左视图可得第二层小正方体的最多个数,再相加即可.【详解】由俯视图可知最底层有5个小正方体,由左视图可知这个几何体有两层,其中第二层最多有3个,+=个.那么搭成这个几何体所需小正方体最多有538故选:B.【点睛】本题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.16.(2022·广西贵港)一个圆锥如右图所示放置,对于它的三视图,下列说法正确的是()A.主视图与俯视图相同B.主视图与左视图相同C.左视图与俯视图相同D.三个视图完全相同【答案】B【分析】根据三视图的定义即可求解.【详解】解:主视图为等腰三角形,左视图为等腰三角形,俯视图为有圆心的圆,故主视图和左视图相同,主视图俯视图和左视图与俯视图都不相同,故选:B.【点睛】本题考查了几何体的三视图,掌握三视图的定义,会看得出三视图是解题的关键.17.(2022·山东青岛)如图①.用一个平面截长方体,得到如图②的几何体,它在我国古代数学名著《九章算术》中被称为“堑堵”.图②“堑堵”的俯视图是()A.B.C.D.【答案】C【分析】根据几何体的俯视图是从上面看进行判断解答即可.【详解】解:由图可知,该“堑堵”的俯视图是,故选:C.【点睛】本题考查几何体的俯视图,理解俯视图的概念是解答的关键.18.(2022·辽宁)如图所示的几何体是由4个完全相同的小正方体搭成的,它的主视图是()A.B.C.D.【答案】C【分析】根据几何体的三视图可直接进行排除选项.【详解】解:由题意得:该几何体的主视图为;故选C.【点睛】本题主要考查三视图,熟练掌握几何体的三视图是解题的关键.19.(2022·辽宁营口)如图是由五个相同的正方体搭成的几何体,这个几何体的左视图是()A.B.C.D.【答案】B【分析】左视图是从物体的左边观察得到的图形,结合选项进行判断即可.【详解】解:从左边看,有两列,从左到右第一列是两个正方形,第二列底层是一个正方形.故选:B.【点睛】本题考查了简单组合体的三视图,属于基础题,解答本题的关键是掌握左视图的定义.20.(2022·广西玉林)如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】根据几何体的三视图可进行求解.【详解】解:由题意可知该几何体的主视图为;故选B.【点睛】本题主要考查三视图,熟练掌握三视图是解题的关键.21.(2022·四川广安)如图所示,几何体的左视图是()A.B.C.D.【答案】B【分析】根据从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图形是俯视图判断即可.【详解】解:几何体的左视图是故选:B.【点睛】本题考查了几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图形是俯视图.掌握以上知识是解题的关键.22.(2022·内蒙古呼和浩特)图中几何体的三视图是()A.B.C.D.【答案】C【分析】根据图示确定几何体的三视图即可得到答案.【详解】由几何体可知,该几何体的三视图为故选C【点睛】本题考查了简单几何体的三视图,掌握三视图的视图方位及画法是解题的关键,注意实际存在又没有被其他棱所挡,在所在方向看不到的棱应用虚线表示.23.(2022·贵州遵义)如图是《九章算术》中“堑堵”的立体图形,它的左视图为()A.B.C.D.【答案】A【分析】根据左视图的意义和画法可以得出答案.【详解】解:∵该几何体为放倒的三棱柱,∴根据左视图的画法,从左往右看,看到的是一个直角在左边的直角三角形,故选:A.【点睛】本题考查简单几何体的三视图,熟练掌握简单几何体的三视图是解答本题的关键.从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图.24.(2022·黑龙江哈尔滨)六个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【答案】D【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看下面一层是两个小正方形,上面一层左边一个小正方形,故选:D.【点睛】本题主要考查左视图,掌握三视图是解题的关键.25.(2022·吉林)吉林松花石有“石中之宝”的美誉,用它制作的砚台叫松花砚,能与中国四大名砚媲美.下图是一款松花砚的示意图,其俯视图为()A.B.C.D.【答案】C【分析】根据俯视图的定义(从上面观察物体所得到的视图)即可得.【详解】解:其俯视图是由两个同心圆(不含圆心)组成,即为,故选:C.【点睛】本题考查了俯视图,熟记定义是解题关键.26.(2022·江苏泰州)如图为一个几何体的表面展开图,则该几何体是()A.三棱锥B.四棱锥C.四棱柱D.圆锥【答案】B【分析】底面为四边形,侧面为三角形可以折叠成四棱锥.【详解】解:由图可知,底面为四边形,侧面为三角形,∴该几何体是四棱锥,故选:B.【点睛】本题主要考查的是几何体的展开图,熟记常见立体图形的展开图特征是解题的关键.27.(2022·贵州贵阳)如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【答案】B【分析】根据圆锥体的立体图形判断即可.【详解】用平行底面的平面截圆锥体,截面是圆形,故选:B.【点睛】本题考查了截面图形的判断,具有一定的空间想象力是解答本题的关键.28.(2022·江苏常州)下列图形中,为圆柱的侧面展开图的是()A.B.C.D.【答案】D【分析】根据题意,注意其按圆柱的侧面沿它的一条母线剪开,分析得到图形的性质,易得答案.【详解】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,得到其侧面展开图是对边平行且相等的四边形;又有母线垂直于上下底面,故可得是矩形.故选:D.【点睛】本题考查的是圆柱的展开图,解题的关键是需要对圆柱有充分的理解;难度不大.29.(2022·四川内江)如图是正方体的表面展开图,则与“话”字相对的字是()A.跟B.党C.走D.听【答案】C【分析】根据正方体表面展开图的特征进行判断即可.【详解】解:由正方体表面展开图的“相间、Z端是对面”可知,“话”与“走”是对面,故答案为:C.【点睛】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的前提.30.(2022·北京)下面几何体中,是圆锥的为()A.B.C.D.【答案】B【分析】观察所给几何体,可以直接得出答案.【详解】解:A选项为圆柱,不合题意;B选项为圆锥,符合题意;C选项为三棱柱,不合题意;D选项为球,不合题意;故选B.【点睛】本题考查常见几何体的识别,熟练掌握常见几何体的特征是解题的关键.圆锥面和一个截它的平面,组成的空间几何图形叫圆锥.31.(2022·广西)下列几何体中,主视图为矩形的是()A.B.C.D.【答案】C【分析】根据常见几何体的主视图,依次判断即可.【详解】A.该三棱锥的主视图为中间有条线段的三角形,故不符合题意;B.该圆锥的主视图为三角形,故不符合题意;C.该圆柱的主视图为矩形,故符合题意;D.该圆台的主视图为梯形,故不符合题意;故选:C.【点睛】本题考查常见几何体的三视图,掌握常见几何体的三视图是解答本题的关键.32.(2022·湖北恩施)下图是一个正方体纸盒的展开图,将其折叠成一个正方体后,有“振”字一面的相对面上的字是()A.“恩”B.“乡”C.“村”D.“兴”【答案】D【分析】根据正方体的平面展开图的特点即可得.【详解】解:由正方体的平面展开图的特点得:“恩”字与“乡”字在相对面上,“施”字与“村”字在相对面上,“振”字与“兴”字在相对面上,故选:D.【点睛】本题考查了正方体的平面展开图,熟练掌握正方体的平面展开图的特点是解题关键.33.(2022·四川广元)如图是某几何体的展开图,该几何体是()A.长方体B.圆柱C.圆锥D.三棱柱【答案】B【分析】根据几何体的展开图可直接进行排除选项.【详解】解:由图形可得该几何体是圆柱;故选B.【点睛】本题主要考查几何体的展开图,熟练掌握几何体的展开图是解题的关键.34.(2022·湖北武汉)如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【答案】A【分析】根据从正面所看得到的图形为主视图,据此解答即可.【详解】解:从正面可发现有两层,底层三个正方形,上层的左边是一个正方形.故选:A.【点睛】本题主要考查了三视图的知识,掌握主视图是从物体的正面看得到的视图成为解答本题的关键.35.(2022·四川凉山)如图所示的几何体的主视图是()A.B.C.D.【分析】根据主视图的定义(从正面观察物体所得到的视图叫主视图)即可得.【详解】解:这个几何体的主视图是故选:C.【点睛】本题考查了主视图,熟记定义是解题关键.36.(2022·四川泸州)如图是一个由6个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.【答案】C【分析】观察图中几何体中正方体摆放的位置,根据俯视图是从上面看到的图形即可判定.【详解】解:由俯视图的定义可知:从上往下观察发现∶故选C.【点睛】本题考查三视图,解题的关键是熟练掌握俯视图是从物体上面看所得到的图形.37.(2022·浙江湖州)如图是由四个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【答案】D【分析】主视图就是从主视方向看到的正面的图形,也可以理解为该物体的正投影,据此求解即可.【详解】解:观察该几何体发现:从正面看到的应该是三个正方形,上面左边1个,下面2个,【点睛】本题考查了简单组合体的三视图,解题的关键是了解主视图的定义,属于基础题,难度不大.38.(2022·四川眉山)下列立体图形中,俯视图是三角形的是()A.B.C.D.【答案】B【分析】俯视图是从物体上面看所得到的图形,据此判断得出物体的俯视图.【详解】解:A、圆锥体的俯视图是圆,故此选项不合题意;B、三棱柱的俯视图是三角形,故此选项符合题意;C、球的俯视图是圆,故此选项不合题意;D、圆柱体的俯视图是圆,故此选项不合题意;故选:B.【点睛】本题考查了几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.39.(2022·浙江台州)如图是由四个相同的正方体搭成的立体图形,其主视图是()A.B.C.D.【答案】A【分析】找到几何体的正面看所得到的图形即可.【详解】解:从几何体的正面看可得如下图形,故选:A.【点睛】此题主要考查了简单几何体的三视图,关键是掌握主视图是从正面所看到的图形.40.(2022·黑龙江绥化)下列命题中是假命题的是()A.三角形的中位线平行于三角形的第三边,并且等于第三边的一半B.如果两个角互为邻补角,那么这两个角一定相等C.从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角D.直角三角形斜边上的中线等于斜边的一半【答案】B【分析】利用三角形的中位线定理、邻补角性质、切线长定理以及直角三角形斜边上的中线的性质分别判断后即可确定正确的选项.【详解】解:A. 三角形的中位线平行于三角形的第三边,并且等于第三边的一半,是真命题,故此选项不符合题意;B. 如果两个角互为邻补角,那么这两个角不一定相等,故此选项是假命题,符合题意;C. 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角,是真命题,故此选项不符合题意;D. 直角三角形斜边上的中线等于斜边的一半,是真命题,故此选项不符合题意;故选:B【点睛】考查了命题与定理的知识,解题的关键是了解三角形的中位线定理、邻补角性质、切线长定理以及直角三角形斜边上的中线的性质.41.(2022·广西河池)下列几何体中,三视图的三个视图完全相同的几何体是()A.B.C.D.【答案】D【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.【详解】解:A.三棱柱的俯视图与主视图和左视图都不同,故此选项错误;B.圆柱的俯视图与主视图和左视图不同,故此选项错误;C.圆锥的俯视图与主视图和左视图不同,故此选项错误;D.球的三视图完全相同,都是圆,故此选项正确.故选:D.【点睛】本题主要考查了三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.42.(2022·辽宁锦州)如图是某几何体的三视图,该几何体是( )A .B .C .D .【答案】C【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体是圆锥.故选:C .【点睛】本题考查了由三视图判断几何体,主视图和左视图的大致轮廓为三角形的几何体为锥体. 43.(2022·内蒙古呼和浩特)以下命题:①面包店某种面包售价a 元/个,因原材料涨价,面包价格上涨10%,会员优惠从打八五折调整为打九折,则会员购买一个面包比涨价前多花了0.14a 元;②等边三角形ABC 中,D 是BC 边上一点,E 是AC 边上一点,若AD AE =,则3∠=∠BAD EDC ;③两边及第三边上的中线对应相等的两个三角形全等;④一列自然数0,1,2,3,55,依次将该列数中的每一个数平方后除以100,得到一列新数,则原数与对应新数的差,随着原数的增大而增大.其中真命题的个数有( )A .1个B .2个C .3个D .4个【答案】C【分析】根据全等三角形的判定与性质、二次函数的性质等知识逐项判断即可,【详解】解:①项,会员原来购买一个面包需要0.85a 元,现在需要a ×(1+10%)×0.9=0.99a ,则会员购买一个面包比涨价前多花了0.99a -0.85a =0.14a 元,故①项正确;②项,如图,∵△ABC是等边三角形,∴∠B=∠C=60°,∵∠B+∠BAD=∠ADE+∠EDC,∠C+∠EDC=∠AED,又∵AD=AE,∴∠ADE=∠AED,∴∠B+∠BAD=∠ADE+∠EDC=∠C+∠EDC+∠EDC,∴∠BAD=∠EDC+∠EDC=2∠EDC,故②项错误;③项,如图,△ABC和△DEF,AB=DE,AC=DF,AM是△ABC的BC边上的中线,DN是△DEF的边EF上的中线,AM=DN,即有△ABC≌△DEF,理由如下:延长AM至G点,使得AM=GM,连接GC,延长DN至H点,使得DN=NH,连接HF,∵AM是中线,∴BM=MC,∵AM=MG,∠AMB=∠GMC,∴△AMB≌△GMC,∴AB=GC,同理可证DE=HF,∵AM=DN,∴AG=2AM=2DN=DH,∵AB =DE ,∴GC =HF ,∴结合AC =DF 可得△ACG ≌△DFH ,∴∠GAC =∠HDF ,同理可证∠GAB =∠HDE ,∴∠BAC =∠GAB +∠GAC =∠HDF +∠HDE =∠EDF ,∵AB =DE ,AC =DF ,∴△ABC ≌△DEF ,故③正确;④设原数为x ,则新数为21100x ,设原数与新数之差为y , 即21100y x x =-,变形为:21(50)25100y x =--+, 将x 等于0、1、2、3、55分别代入可知,y 随着x 的增大而增大,故④正确;即正确的有三个,故选:C ,【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、二次函数的应用等知识,掌握全等三角形的判定与性质是解答本题的关键.44.(2022·吉林长春)如图,在ABC 中,根据尺规作图痕迹,下列说法不一定正确的是( )A .AF BF =B .12AE AC = C .90DBF DFB ∠+∠=︒D .BAF EBC ∠=∠【答案】B 【分析】根据尺规作图痕迹,可得DF 垂直平分AB ,BE 是ABC ∠的角平分线,根据垂直平分线的性质和角平分线的定义,直角三角形两锐角互余,等边对等角的性质进行判断即可.【详解】根据尺规作图痕迹,可得DF 垂直平分AB ,BE 是ABC ∠的角平分线,,90,AF BF BDF ABF CBE ∴=∠=︒∠=∠,。
专题21 视图与投影一、投影1.投影:在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光下形成的物体的投影叫做中心投影,点光叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光近的物体的影子短,离点光远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.(3)正投影:投射线与投影面垂直时的平行投影,叫做正投影.二、视图1.视图:由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图:1)主视图:从正面看得到的视图叫做主视图.2)左视图:从左面看得到的视图叫做左视图.3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.三、几何体的展开与折叠1.常见几何体的展开图几何体立体图形表面展开图侧面展开图圆柱圆锥三棱柱2.正方体的展开图正方体有11种展开图,分为四类:第一类,中间四连方,两侧各有一个,共6种,如下图:第二类,中间三连方,两侧各有一、二个,共3种,如下图:第三类,中间二连方,两侧各有二个,只有1种,如图10;第四类,两排各有三个,也只有1种,如图11.考向一三视图1.下列立体图形中,主视图是三角形的是()A.B.C.D.2.如图所示的几何体从上面看到的形状图是()A.B.C.D.3.某立体图形如图,其从正面看所得到的图形是()A.B.C.D.4.如图的几何体由若干个棱长为1的正方体堆放而成,则这个几何体的俯视图面积.考向二几何体的还原5.下列几何体中,俯视图与主视图完全相同的几何体是()A.圆锥B.球C.三棱柱D.四棱锥6.如图是某几何体的三视图,这个几何体是()A.三棱柱B.三棱锥C.长方体D.正方体7.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A.3cm3B.14cm3C.5cm3D.7cm38.如图是由一些相同的小正方体构成的立体图形的三种视图,则构成这个立体图形的小正方体的个数是个.考向三组合正方体的最值问题9.如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5B.6C.7D.810.如图,是一个由若干个小正方体组成的几何体的主视图和左视图,则该几何体最多可由多少个小正方体组合而成?()A.12个B.13个C.14个D.15个11.如图是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则m+n=()A.14B.16C.17D.1812.如图,用小立方块搭一几何体,从正面看相从上面看得到的图形如图所示,这样的几何体至少要个立方块.考向四几何体的计算问题13.长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是()A.10cm2B.12cm2C.15cm2D.20cm214.如图所示的三棱柱,其俯视图的内角和为()A.180°B.360°C.540°D.720°15.如图,是一个几何体的三视图,则该几何体的表面积是()A.7πcm2B.(+2)πcm2C.6πcm2D.(+5)πcm2 16.某几何体从三个方向看到的图形分别如图,则该几何体的体积为.考向五立体图形的展开与折叠17.下面图形中是正方体的表面展开图的是()A.B.C.D.18.如图是一个几何体的展开图,则这个几何体是()A.B.C.D.19.从如图所示的7个小正方形中剪去一个小正方形,使剩余的6个小正方形折叠后能围成一个正方体,则应剪去标记为()的小正方形A.祝或考B.你或考C.好或绩D.祝或你或成20.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1、2、3、6的小正方形中不能剪去的是(填编号).考向六投影21.下列投影不是中心投影的是()A.B.C.D.22.在同一时刻,将两根长度不等的竹竿置于阳光之下,但它们的影长相等,那么这两根竹竿的相对位置是()A.两根竹竿都垂直于地面B.以两根竹竿平行斜插在地上C.两根竹竿不平行D.无法确定23.如图,晚上小明在路灯下沿路从A处径直走到B处,这一过程中他在地上的影子()A.一直都在变短B.先变短后变长C.一直都在变长D.先变长后变短24.如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4m.则路灯的高度OP为m.一.选择题1.如图所示的几何体的俯视图是()A.B.C.D.2.如图所示,圆柱的主视图是()A.B.C.D.3.下面四个几何体中,左视图为圆的是()A.B.C.D.4.如图,是一个几何体的三视图,则这个几何体是()A.B.C.D.5.如图是一个几何体的三视图,则该几何体的体积为()A.1B.2C.D.46.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体的小正方体的个数最少是()A.6B.5C.4D.3二.填空题7.一个几何体的三视图如图所示,则该几何体的表面积为.8.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是(结果保留π).9.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)10.如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是面.(填字母,注意:字母只能在多面体外表面出现)11.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.12.如图是某物体的三视图,则此物体的体积为(结果保留π).三.解答题13.已知某几何体的三视图如图所示,其中俯视图为正六边形,求该几何体的表面积.14.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是(立方单位),表面积是(平方单位)(2)画出该几何体的主视图和左视图.15.一个正方体的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示.(1)A的对面是,B的对面是,C的对面是;(直接用字母表示)(2)若A=﹣2,B=|m﹣3|,C=m﹣3n﹣,E=(+n)2,且小正方体各对面上的两个数都互为相反数,请求出F所表示的数.16.用若干个棱长为1cm的小正方体搭成如图所示的几何体.(1)这个几何体的体积为cm3.(2)请在方格纸中用实线画出该几何体的主视图,左视图,俯视图.(3)这个几何体的表面积为cm2.。
(2022•玉林中考)如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【解析】选B.这个几何体的主视图如下:(2022·安徽中考)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.【解析】选A.从上面看,是一个矩形.(2022•江西中考)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()A.B.C.D.【解析】选A.如图,它的俯视图为:(2022•云南中考)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥(2022•丽水中考)如图是运动会领奖台,它的主视图是()A.B.C.D.【解析】选A.从正面看,可得如下图形:(2022•绍兴中考)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.【解析】选B.由图可得,题目中图形的主视图是(2022•舟山中考)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A. B. C. D.【解析】选B.从正面看底层是三个正方形,上层左边是一个正方形.(2022•温州中考)某物体如图所示,它的主视图是()A.B.C.D.【解析】选D.某物体如图所示,它的主视图是:(2022•扬州中考)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱B.四棱锥C.三棱柱D.三棱锥【解析】选B.由于主视图与左视图是三角形,俯视图是正方形,故该几何体是四棱锥(2022•凉山州中考)如图所示的几何体的主视图是()A.B.C.D.【解析】选C.从正面看,底层是三个小正方形,上层的中间是一个小正方形(2022•泸州中考)如图是一个由6个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.【解析】选C.从物体上面看,底层有一个正方形,上层有四个正方形(2022•湖州中考)如图是由四个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【解析】选B.观察该几何体发现:从正面看到的应该是三个正方形,上面1个左齐,下面2个(2022•宁波中考)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.【解析】选C.根据题意可得,球体的俯视图是一个圆,圆柱的俯视图也是一个圆,圆柱的底面圆的半径大于球体的半径,如图,,故C选项符合题意(2022•黄冈中考)某几何体的三视图如图所示,则该几何体是()A.圆锥 B.三棱锥 C.三棱柱 D.四棱柱【解析】选C.由三视图可知,这个几何体是直三棱柱.(2022•宜宾中考)如图是由5个相同的正方体搭成的几何体,从正面看,所看到的图形是()A.B.C.D.【解析】选D.从正面看,底层是三个相邻的小正方形,上层的右边是一个小正方形.(2022•十堰中考)下列几何体中,主视图与俯视图的形状不一样的几何体是()A. B. C. D.【解析】选C.A.正方体的主视图与俯视图都是正方形,故A不符合题意;B.圆柱的主视图与俯视图都是长方形,故B不符合题意;C.圆锥的主视图是等腰三角形,俯视图是一个圆和圆心,故C符合题意;D.球体的主视图与俯视图都是圆形,故D不符合题意.(2022•武汉中考)如图是由4个相同的小正方体组成的几何体,它的主视图是()A. B. C. D.【解析】选A.从正面看共有两层,底层三个正方形,上层左边是一个正方形.A.主视图和左视图 B.主视图和俯视图C.左视图和俯视图 D.三个视图均相同【解析】选A.该几何体的三视图中完全相同的是主视图和左视图,均为半圆;俯视图是一个实心圆. (2022•邵阳中考)下列四个图形中,圆柱体的俯视图是()A.B.C.D.【解析】选D.从圆柱体的上面看到是视图是圆,则圆柱体的俯视图是圆(2022•天津中考)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【解析】选A.从正面看底层是两个正方形,左边是三个正方形,则立体图形的主视图是A中的图形(2022•嘉兴中考)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【解析】选C.由图可知主视图为:(2022•衡阳中考)石鼓广场供游客休息的石板凳如图所示,它的主视图是()A.B.C.D.【解析】选A.从正面看,可得如下图形,(2022•湘潭中考)下列几何体中,主视图是三角形的是()A.B.C.D.【解析】选A.A、圆锥的主视图是三角形,故此选项符合题意;B、圆柱的主视图是长方形,故此选项不符合题意;C、球的主视图是圆,故此选项不符合题意;D、三棱柱的主视图是长方形,中间还有一条实线,故此选项不符合题意(2022•眉山中考)下列立体图形中,俯视图是三角形的是()A.B.C.D.【解析】选B.A、圆锥体的俯视图是圆,故此选项不合题意;B、三棱柱的俯视图是三角形,故此选项符合题意;C、球的俯视图是圆,故此选项不合题意;D、圆柱体的俯视图是圆,故此选项不合题意(2022•台州中考)如图是由四个相同的正方体搭成的立体图形,其主视图是()A.B.C.D.【解析】选A.根据题意知,几何体的主视图为:(2022•福建中考)如图所示的圆柱,其俯视图是()A.B.C.D.【解析】选A.根据题意可得,圆柱的俯视图如图,.大致形状是()A.B.C.D.【解析】选B.根据长鼓舞中使用的“长鼓”内腔挖空,两端相通,可知俯视图中空,两端鼓口为圆形可知俯视图是圆形.(2022•雅安中考)下列几何体的三种视图都是圆形的是()A.B.C.D.【解析】选B.A选项的主视图和左视图为长方形,A选项不符合题意;∵B选项的三种视图都是圆形,∴B选项符合题意;∵C选项的主视图和左视图为等腰三角形,∴C选项不符合题意;∵D选项主视图和左视图为等腰梯形,∴D选项不符合题意;综上,B选项的三种视图都是圆形.(2022•贺州中考)下面四个几何体中,主视图为矩形的是()A.B.C.D.【解析】选A.A.长方体的主视图是矩形,故本选项符合题意;B.三棱锥的主视图是三角形,故本选项不符合题意;C.圆锥的主视图是等腰三角形,故本选项不符合题意;D.圆台的主视图是等腰梯形,故本选项不符合题意.(2022•黔东南州中考)一个物体的三视图如图所示,则该物体的形状是()A.圆锥B.圆柱C.四棱柱D.四棱锥【解析】选B.根据主视图和左视图都是长方形,判定该几何体是个柱体,∵俯视图是个圆,∴判定该几何体是个圆柱.(2022•哈尔滨中考)六个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【解析】选D.由题意知,题中几何体的左视图为:(2022•齐齐哈尔中考)由一些大小相同的小正方体搭成的几何体的主视图、左视图和俯视图都是如图所示的“田”字形,则搭成该几何体的小正方体的个数最少为()A.4个B.5个C.6个D.7个【解析】选C.由俯视图知最下面一层一定有四个小正方体,由主视图和左视图知上面一层至少有处在对角的位置上的两个小正方体,故搭成该几何体的小正方体的个数最少为6个.(2022•鄂州中考)如图所示的几何体是由5个完全相同的小正方体组成,它的主视图是()A.B.C.D.【解析】选A.该几何体的主视图为:一共有两列,左侧有三个正方形,右侧有一个正方形,所以A选项正确.(2022•仙桃中考)如图是一个立体图形的三视图,该立体图形是()A.长方体B.正方体C.三棱柱D.圆柱【解析】选A.根据三视图可知,该立体图形是长方体.(2022•威海中考)如图所示的几何体是由五个大小相同的小正方体搭成的.其俯视图是()A.B.C.D.【解析】选B.从上面看,底层左边是一个小正方形,上层是三个小正方形.(2022•梧州中考)在下列立体图形中,主视图为矩形的是()A.B.C.D.【解析】选A.A.圆柱的主视图是矩形,故本选项符合题意;B.球的主视图是圆,故本选项不符合题意;C.圆锥的主视图是等腰三角形,故本选项不符合题意;D.三棱锥形的主视图是三角形,故本选项不符合题意.(2022•龙东中考)如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7B.8C.9D.10【解析】选B.从俯视图课看出前后有三层,从左视图可看出最后面有2层高,中间最高是2层,要是最多就都是2层,最前面的最高是1层,所以最多的为:2+2×2+1×2=8.(2022•长沙中考)如图是由5个大小相同的正方体组成的几何体,该几何体的主视图是()A.B.C.D.【解析】选B.根据主视图的概念,可知选B.(2022•包头中考)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.9【解析】选B.由俯视图可以得出几何体的左视图为:则这个几何体的左视图的面积为4.(2022•赤峰中考)下面几何体的俯视图是()A.B.C.D.【解析】选B.几何体的俯视图是:(2022·遵义中考)如图是《九章算术》中“堑堵”的立体图形,它的左视图为()A.B.C.D.【解析】选A.这个“堑堵”的左视图如图:(2022•海南中考)如图是由5个完全相同的小正方体摆成的几何体,则这个几何体的主视图是()A.B.C.D.【解析】选C.这个组合体的主视图如图:(2022·牡丹江中考)如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A.B.C.D.【解析】选A.由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成,由主视图可知,一共有前后2排,第一排有3个正方体,第二排有2层位于第一排中间的后面.(2022•吉林中考)吉林松花石有“石中之宝”的美誉,用它制作的砚台叫松花砚,能与中国四大名砚媲美.如图是一款松花砚的示意图,其俯视图为()A.B.C.D.【解析】选C.俯视图是从物体的上面向下面投射所得的视图,由松花砚的示意图可得其俯视图为C.(2022•抚顺中考)如图是由6个完全相同的小正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.【解析】选B.从上面看,底层右边是一个小正方形,上层是三个小正方形.(2022•杭州中考)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=9.88m.【解析】∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.(2022•北部湾中考)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是134米.【解析】据相同时刻的物高与影长成比例,设金字塔的高度BO为x米,则可列比例为4268=2x,解得:x=134.答案:134.。
01基础题-2021中考数学真题分类汇编-投影与视图(含答案,60题)一.简单几何体的三视图(共16小题)1.(2021•宁夏)如图所示三棱柱的主视图是( )A.B.C.D.2.(2021•兰州)如图,该几何体的主视图是( )A.B.C.D.3.(2021•内江)下列几何体中,其主视图、左视图和俯视图完全相同的是( )A.B.C.D.4.(2021•青岛)如图所示的几何体,其左视图是( )A.B.C.D.5.(2021•镇江)如图所示,该几何体的俯视图是( )A.正方形B.长方形C.三角形D.圆6.(2021•淮安)如图所示的几何体的俯视图是( )A.B.C.D.7.(2021•湘潭)下列几何体中,三视图不含圆的是( )A.B.C .D .8.(2021•阜新)一个几何体如图所示,它的左视图是( )A .B .C .D .9.(2021•淄博)下列几何体中,其俯视图一定是圆的有( )A .1个B .2个C .3个D .4个10.(2021•铜仁市)如图,是一个底面为等边三角形的正三棱柱,它的主视图是( )A .B .C .D .11.(2021•柳州)如下摆放的几何体中,主视图为圆的是( )A .B .C .D .12.(2021•贺州)下列几何体中,左视图是圆的是( )A .B .C .D .13.(2021•鄂州)下列四个几何体中,主视图是三角形的是( )A.B.C.D.14.(2021•济宁)一个圆柱体如图所示,下面关于它的左视图的说法其中正确的是( )A.既是轴对称图形,又是中心对称图形B.既不是轴对称图形,又不是中心对称图形C.是轴对称图形,但不是中心对称图形D.是中心对称图形,但不是轴对称图形15.(2021•苏州)如图,圆锥的主视图是( )A.B.C.D.16.(2021•泸州)下列立体图形中,主视图是圆的是( )A.B.C.D.二.简单组合体的三视图(共41小题)17.(2021•阿坝州)如图所示的几何体的左视图是( )A.B.C.D.18.(2021•兰州)如图,该几何体的主视图是( )A.B.C.D.19.(2021•沈阳)如图是由6个相同的小立方块搭成的几何体,这个几何体的主视图是( )A.B.C.D.20.(2021•朝阳)如图所示的几何体是由6个大小相同的小立方块搭成的,它的左视图是( )A.B.C.D.21.(2021•锦州)如图所示的几何体是由5个完全相同的小正方体搭成的,它的左视图是( )A.B.C.D.22.(2021•河池)如图是由几个小正方体组成的几何体,它的左视图是( )A.B.C.D.23.(2021•滨州)如图所示的几何体是由几个相同的小正方体组合而成的,其俯视图为( )A.B.C.D.24.(2021•德阳)图中几何体的三视图是( )A.B.C.D.25.(2021•西藏)如图是由五个相同的小正方体组成的几何体,其主视图为( )A.B.C.D.26.(2021•抚顺)如图是由5个相同的正方体搭成的几何体,这个几何体的左视图是( )A.B.C.D.27.(2021•郴州)由5个相同的小立方体搭成的物体如图所示,则它的俯视图为( )A.B.C.D.28.(2021•梧州)如图是由5个大小相同的正方体搭成的几何体,则这个几何体的主视图是( )A.B.C.D.29.(2021•丹东)如图是由几个完全相同的小正方体组成的立体图形,它的俯视图是( )A.B.C.D.30.(2021•泰州)如图所示几何体的左视图是( )A.B.C.D.31.(2021•毕节市)如图所示的几何体,其左视图是( )A.B.C.D.32.(2021•哈尔滨)八个大小相同的正方体搭成的几何体如图所示,其主视图是( )A.B.C.D.33.(2021•湘西州)工厂某零件如图所示,以下哪个图形是它的俯视图( )A.B.C.D.34.(2021•鄂尔多斯)如图所示的几何体是由五个小正方体组合而成的,它的左视图是( )A.B.C.D.35.(2021•烟台)一个正方体沿四条棱的中点切割掉一部分后,如图所示,则该几何体的左视图是( )A.B.C.D.36.(2021•襄阳)如图所示的几何体的主视图是( )A.B.C.D.37.(2021•威海)如图所示的几何体是由5个大小相同的小正方体搭成的.其左视图是( )A.B.C.D.38.(2021•黑龙江)如图是由5个小正方体组合成的几何体,则该几何体的主视图是( )A.B.C.D.39.(2021•张家界)如图所示的几何体,其俯视图是( )A.B.C.D.40.(2021•湖北)如图所示的几何体的左视图是( )A.B.C.D.41.(2021•绥化)如图所示,图中由7个完全相同小正方体组合而成的几何体,则这个几何体的左视图是( )A.B.C.D.42.(2021•河南)如图是由8个相同的小正方体组成的几何体,其主视图是( )A.B.C.D.43.(2021•海南)如图是由5个大小相同的小正方体组成的几何体,则它的主视图是( )A.B.C.D.44.(2021•福建)如图所示的六角螺栓,其俯视图是( )A.B.C.D.45.(2021•盐城)如图是由4个小正方形体组合成的几何体,该几何体的主视图是( )A.B.C.D.46.(2021•青海)如图所示的几何体的左视图是( )A.B.C.D.47.(2021•随州)如图是由4个相同的小正方体构成的一个组合体,该组合体的三视图中完全相同的是( )A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同48.(2021•荆州)如图是由一个圆柱和一个长方体组成的几何体,则该几何体的俯视图是( )A.B.C.D.49.(2021•十堰)由5个相同的小立方体搭成的几何体如图所示,则它的俯视图为( )A.B.C.D.50.(2021•黄冈)如图是由四个相同的正方体组成的几何体,其俯视图是( )A.B.C.D.51.(2021•达州)如图,几何体是由圆柱和长方体组成的,它的主视图是( )A.B.C.D.52.(2021•乐山)如图是由4个相同的小正方体堆成的物体,将它在水平面内顺时针旋转90°后,其主视图是( )A.B.C.D.53.(2021•绍兴)如图的几何体由五个相同的小正方体搭成,它的主视图是( )A.B.C.D.54.(2021•宁波)如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是( )A.B.C.D.55.(2021•成都)如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是( )A.B.C.D.56.(2021•丽水)如图是由5个相同的小立方体搭成的几何体,它的主视图是( )A .B .C .D .57.(2021•嘉兴)如图是由四个相同的小正方体组成的立体图形,它的俯视图为( )A .B .C .D .三.由三视图判断几何体(共3小题)58.(2021•攀枝花)如图是一个几何体的三视图,则这个几何体是( )A .圆锥B .圆柱C .三棱柱D .三棱锥59.(2021•大庆)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小正方块的个数,能正确表示该几何体的主视图的是( )A .B .C .D .60.(2021•云南)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为 .参考答案与试题解析一.简单几何体的三视图(共16小题)1.(2021•宁夏)如图所示三棱柱的主视图是( )A.B.C.D.【解析】解:主视图为,【答案】C.2.(2021•兰州)如图,该几何体的主视图是( )A.B.C.D.【解析】解:从正面看,可得如下图形:【答案】C.3.(2021•内江)下列几何体中,其主视图、左视图和俯视图完全相同的是( )A.B.C.D.【解析】解:A.圆柱的主视图和左视图都是矩形,但俯视图是一个圆形,不符合题意;B.圆锥的主视图和左视图都是等腰三角形,俯视图是圆(带圆心),不符合题意;C.长方体的三视图都是长方形,但这些矩形的长与宽不尽相同,不符合题意;D.球的三视图都是大小相同的圆,符合题意.【答案】D.4.(2021•青岛)如图所示的几何体,其左视图是( )A.B.C.D.【解析】解:这个几何体的左视图为:.【答案】A.5.(2021•镇江)如图所示,该几何体的俯视图是( )A.正方形B.长方形C.三角形D.圆【解析】解:从上面看该几何体,所看到的图形是三角形.【答案】C.6.(2021•淮安)如图所示的几何体的俯视图是( )A.B.C.D.【解析】解:从上面看该几何体,所看到的图形如下:【答案】A.7.(2021•湘潭)下列几何体中,三视图不含圆的是( )A.B.C.D.【解析】解:A、圆柱的俯视图是圆,故不符合题意;B、球的三视图都是圆,故不符合题意;C、正方体的三视图都是正方形,故符合题意;D、圆锥的俯视图是圆,故不符合答题,【答案】C.8.(2021•阜新)一个几何体如图所示,它的左视图是( )A.B.C.D.【解析】解:从左面看该几何体,所得到的图形如下:【答案】B.9.(2021•淄博)下列几何体中,其俯视图一定是圆的有( )A.1个B.2个C.3个D.4个【解析】解:其俯视图一定是圆的有:球,圆柱,共2个.【答案】B.10.(2021•铜仁市)如图,是一个底面为等边三角形的正三棱柱,它的主视图是( )A.B.C.D.【解析】解:如图所示的正三棱柱,其主视图是矩形,矩形中间有一条纵向的虚线.【答案】A.11.(2021•柳州)如下摆放的几何体中,主视图为圆的是( )A.B.C.D.【解析】解:A.三棱锥的主视图为三角形,三角形的内部有一条纵向的实线,故本选不合题意;B.三棱柱的主视图为矩形,矩形中间有一条纵向的虚线,故本选不合题意;C.长方体的主视图为矩形,故本选不合题意;D.球的主视图为圆,故本选项符合题意;【答案】D.12.(2021•贺州)下列几何体中,左视图是圆的是( )A.B.C.D.【解析】解:A.球的左视图是圆,故本选项符合题意.;B.圆柱的左视图是矩形,故本选项不合题意;C.圆锥的左视图是等腰三角形,故本选项不合题意;D.圆台的左视图是等腰梯形,故本选项不合题意;【答案】A.13.(2021•鄂州)下列四个几何体中,主视图是三角形的是( )A.B.C.D.【解析】解:正方体的主视图是正方形,故A选项不合题意,圆柱的主视图是长方形,故B选项不合题意,圆锥的主视图是三角形,故C选项符合题意,球的主视图是圆,故D选项不合题意,【答案】C.14.(2021•济宁)一个圆柱体如图所示,下面关于它的左视图的说法其中正确的是( )A.既是轴对称图形,又是中心对称图形B.既不是轴对称图形,又不是中心对称图形C.是轴对称图形,但不是中心对称图形D.是中心对称图形,但不是轴对称图形【解析】解:圆柱体的左视图是长方形,而长方形既是轴对称图形,也是中心对称图形,【答案】A.15.(2021•苏州)如图,圆锥的主视图是( )A.B.C.D.【解析】解:圆锥的主视图是一个等腰三角形,【答案】A.16.(2021•泸州)下列立体图形中,主视图是圆的是( )A.B.C.D.【解析】解:三棱柱的主视图是中间有一条线的长方形,圆柱的主视图是长方形,圆锥的主视图是三角形,球的主视图是圆,【答案】D.二.简单组合体的三视图(共41小题)17.(2021•阿坝州)如图所示的几何体的左视图是( )A.B.C.D.【解析】解:从左面看,能看到上下两个小正方形.【答案】D.18.(2021•兰州)如图,该几何体的主视图是( )A.B.C.D.【解析】解:从正面看该几何体,可得:【答案】B.19.(2021•沈阳)如图是由6个相同的小立方块搭成的几何体,这个几何体的主视图是( )A.B.C.D.【解析】解:从几何体的正面看,底层是四个小正方形,上层的左端是一个小正方形.【答案】B.20.(2021•朝阳)如图所示的几何体是由6个大小相同的小立方块搭成的,它的左视图是( )A.B.C.D.【解析】解:从左边看,底层是两个小正方形,上层的左边是一个小正方形,【答案】A.21.(2021•锦州)如图所示的几何体是由5个完全相同的小正方体搭成的,它的左视图是( )A .B .C .D .【解析】解:从左边看,底层是两个小正方形,上层的左边是一个小正方形,【答案】A .22.(2021•河池)如图是由几个小正方体组成的几何体,它的左视图是( )A .B .C .D .【解析】解:从左边看,是一列3个小正方形.【答案】A .23.(2021•滨州)如图所示的几何体是由几个相同的小正方体组合而成的,其俯视图为( )A .B .C .D .【解析】解:由图可得,俯视图为:,【答案】B .24.(2021•德阳)图中几何体的三视图是( )A.B.C.D.【解析】解:该几何体的三视图如下:【答案】A.25.(2021•西藏)如图是由五个相同的小正方体组成的几何体,其主视图为( )A.B.C.D.【解析】解:从正面看,底层是三个小正方形,上层的右边是两个小正方形.【答案】C.26.(2021•抚顺)如图是由5个相同的正方体搭成的几何体,这个几何体的左视图是( )A.B.C.D.【解析】解:从左边看,有两列,从左到右第一列是两个正方形,第二列底层是一个正方形.【答案】A.27.(2021•郴州)由5个相同的小立方体搭成的物体如图所示,则它的俯视图为( )A.B.C.D.【解析】解:该组合体的俯视图如下:【答案】D.28.(2021•梧州)如图是由5个大小相同的正方体搭成的几何体,则这个几何体的主视图是( )A.B.C.D.【解析】解:从正面看该组合体,所看到的图形如下:【答案】C.29.(2021•丹东)如图是由几个完全相同的小正方体组成的立体图形,它的俯视图是( )A.B.C.D.【解析】解:从上面看该组合体看到是两列,每列有1个正方形,看到的图形如下:【答案】B.30.(2021•泰州)如图所示几何体的左视图是( )A.B.C.D.【解析】解:从左边看,是一列两个矩形.【答案】C.31.(2021•毕节市)如图所示的几何体,其左视图是( )A.B.C.D.【解析】解:这个几何体的左视图为:【答案】C.32.(2021•哈尔滨)八个大小相同的正方体搭成的几何体如图所示,其主视图是( )A .B .C .D .【解析】解:从正面看,共有三列,每列的小正方形个数分别为2、1、2,【答案】C .33.(2021•湘西州)工厂某零件如图所示,以下哪个图形是它的俯视图( )A .B .C .D .【解析】解:从上面看该几何体,是两个同心圆.【答案】B .34.(2021•鄂尔多斯)如图所示的几何体是由五个小正方体组合而成的,它的左视图是( )A .B .C .D .【解析】解:此几何体的左视图有两列,左边一列有2个小正方形,右边一列有1个小正方形,【答案】B .35.(2021•烟台)一个正方体沿四条棱的中点切割掉一部分后,如图所示,则该几何体的左视图是( )A.B.C.D.【解析】解:从左边看,是一个正方形,正方形的中间有一条横向的虚线.【答案】C.36.(2021•襄阳)如图所示的几何体的主视图是( )A.B.C.D.【解析】解:从正面看该组合体,所看到的图形为:【答案】B.37.(2021•威海)如图所示的几何体是由5个大小相同的小正方体搭成的.其左视图是( )A.B.C.D.【解析】解:从左边看,底层是三个小正方形,上层的中间是一个小正方形,【答案】A.38.(2021•黑龙江)如图是由5个小正方体组合成的几何体,则该几何体的主视图是( )A.B.C.D.【解析】解:从正面看,底层是三个小正方形,上层的左边是一个小正方形.【答案】C.39.(2021•张家界)如图所示的几何体,其俯视图是( )A.B.C.D.【解析】解:从上面看,是一个带圆心的圆,【答案】D.40.(2021•湖北)如图所示的几何体的左视图是( )A .B .C .D .【解析】解:从几何体的左面看,是两个同心圆.【答案】A .41.(2021•绥化)如图所示,图中由7个完全相同小正方体组合而成的几何体,则这个几何体的左视图是( )A .B .C .D .【解析】解:从几何体的左面看,共有三列,从左到右每列小正方形的个数分别为3、1、1.【答案】C .42.(2021•河南)如图是由8个相同的小正方体组成的几何体,其主视图是( )A .B .C .D .【解析】解:该几何体的主视图有三层,从上而下第一层主视图为一个正方形,第二层主视图为两个正方形,第三层主视图为三个正方形,且左边是对齐的.【答案】A .43.(2021•海南)如图是由5个大小相同的小正方体组成的几何体,则它的主视图是( )A.B.C.D.【解析】解:从正面看易得有两层,底层两个正方形,上层左边是一个正方形.【答案】B.44.(2021•福建)如图所示的六角螺栓,其俯视图是( )A.B.C.D.【解析】解:从上边看,是一个正六边形,六边形内部是一个圆,【答案】A.45.(2021•盐城)如图是由4个小正方形体组合成的几何体,该几何体的主视图是( )A.B.C.D.【解析】解:该组合体的主视图如下:【答案】A.46.(2021•青海)如图所示的几何体的左视图是( )A.B.C.D.【解析】解:该几何体的左视图如图所示:【答案】C.47.(2021•随州)如图是由4个相同的小正方体构成的一个组合体,该组合体的三视图中完全相同的是( )A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同【解析】解:如图所示:故该组合体的三视图中完全相同的是主视图和左视图,【答案】A.48.(2021•荆州)如图是由一个圆柱和一个长方体组成的几何体,则该几何体的俯视图是( )A.B.C.D.【解析】解:从上边看,是一个矩形,矩形的内部有一个与矩形两边相切的圆.【答案】A.49.(2021•十堰)由5个相同的小立方体搭成的几何体如图所示,则它的俯视图为( )A.B.C.D.【解析】解:从上面看,底层有3个正方形,上层右边有一个正方形.【答案】A.50.(2021•黄冈)如图是由四个相同的正方体组成的几何体,其俯视图是( )A.B.C.D.【解析】解:从上面看,是一行三个小正方形.【答案】C.51.(2021•达州)如图,几何体是由圆柱和长方体组成的,它的主视图是( )A.B.C.D.【解析】解:从正面看下面是一个比较长的矩形,上面是一个比较窄的矩形.【答案】A.52.(2021•乐山)如图是由4个相同的小正方体堆成的物体,将它在水平面内顺时针旋转90°后,其主视图是( )A.B.C.D.【解析】解:顺时针旋转90°后,从正面看第一列有一层,第二列有两层,【答案】C.53.(2021•绍兴)如图的几何体由五个相同的小正方体搭成,它的主视图是( )A.B.C.D.【解析】解:从正面看,底层是三个小正方形,上层左边一个小正方形,【答案】D.54.(2021•宁波)如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是( )A.B.C .D .【解析】解:从正面看,底层是一个比较长的矩形,上层中间是一个比较窄的矩形.【答案】C .55.(2021•成都)如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是( )A .B .C .D .【解析】解:从上面看,底层的最右边是一个小正方形,上层是四个小正方形,右齐.【答案】C .56.(2021•丽水)如图是由5个相同的小立方体搭成的几何体,它的主视图是( )A .B .C .D .【解析】解:从正面看底层是三个正方形,上层中间是一个正方形.【答案】B .57.(2021•嘉兴)如图是由四个相同的小正方体组成的立体图形,它的俯视图为( )A.B.C.D.【解析】解:从上面看,底层右边是一个小正方形,上层是两个小正方形,右齐.【答案】C.三.由三视图判断几何体(共3小题)58.(2021•攀枝花)如图是一个几何体的三视图,则这个几何体是( )A.圆锥B.圆柱C.三棱柱D.三棱锥【解析】解:由于俯视图为圆形可得为球、圆柱,圆锥,主视图和左视图为三角形可得此几何体为圆锥,【答案】A.59.(2021•大庆)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小正方块的个数,能正确表示该几何体的主视图的是( )A.B.C.D.【解析】解:由所给图可知,这个几何体从正面看共有三列,左侧第一列最多有4块小正方体,中间一列最多有2块小正方体,最右边一列有3块小正方体,所以主视图为B.【答案】B.60.(2021•云南)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为 3π .【解析】解:由三视图知几何体为圆柱,且底面圆的半径是1,高是3,∴这个几何体的体积为:π×12×3=3π.【答案】3π.。
中考数学视图投影空间几何体试题分类汇编一、选择题1、如图(1)放置的一个机器零件,若其主视图如图(2),则其俯视图是( )D2、一物体及其正视图如下图所示,则它的左视图与俯视图分别是右侧图形中的( )B(A)①② (B)③② (C)①④ (D)③④3、一个几何体的三视图如图所示,那么这个几何体是( )。
C4、如图所示圆柱的左视图是( ).BA .B .C .D .5、将如图的Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图是( )D•DCB AC BA5 题图6、如图是小玲在九月初九“重阳节”送给她外婆的礼盒,图中所示礼盒的主视图是( )A7、下面的三个图形是某几何体的三种视图,则该几何体是( C ) A 、正方体 B 、圆柱体 C 、圆锥体 D 、球体 8、下面四个几何体中,主视图、左视图、俯视图是全等图形的几何图形是( )B(A ) (B ) (C ) (D )( 2)( 1) (第1题) 第4题图正面 A . B . C . D .俯视图侧视图主视图A.圆柱B.正方体C.三棱柱D.圆锥9、一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多..可由多少个这样的正方体组成?()BA.12个B.13个C.14个D.18个10、右图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为()C11、下图几何体的主视图是()C12、如图所示的几何体的右视图(从右边看所得的视图)是()A13、与如图所示的三视图对应的几何体是( )B14、一个几何体的三视图如图所示,这个几何体是()DA.正方体B.球C.圆锥D.圆柱15、下列三视图所对应的直观图是()C主视图左视图(第10题)A.B.C.D.正视图左视图俯视图第13题A.B.C.D.DCBAA .B .C .D .16、下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是( )D A.球体 B.长方体 C.圆锥体 D.圆柱体 17、如图,这是一幅电热水壶的主视图,则它的俯视图是( )D(第16题图) A . B . C . D .18、桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()C19、小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是( )A20、小明拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上形成的投影不可能...是( )B左面(第15题)A .B .C.D.21、如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( )A (A)24m (B)22m (C)20 m (D)18 m22、如图10,晚上小亮在路灯下散步,在小亮由A 处走 到B 处这一过程中,他在地上的影子( ) A.逐渐变短 B.逐渐变长 C.先变短后变长 D.先变长后变短 二、填空题1、如果一个立体图形的主视图为矩形,则这个立体图形可能是 (•只需填上一个立体图形). 答案不唯一如:长方体、圆柱等2、星期天小川和他爸爸到公园散步,小川身高是160cm ,在阳光下他的影长为80cm ,爸爸身高180cm ,则此时爸爸的影长为____cm.。
中考数学真题专项汇编解析—投影与视图、命题、尺规作图一.选择题1.(2022·新疆·中考真题)如图是某几何体的展开图,该几何体是()A.长方体B.正方体C.圆锥D.圆柱【答案】C【分析】观察所给图形可知展开图由一个扇形和一个圆构成,由此可以判断该几何体是圆锥.【详解】解:∵展开图由一个扇形和一个圆构成,∵该几何体是圆锥.故选C.【点睛】本题考查圆锥的展开图,熟记圆锥展开图的形状是解题的关键.2.(2022·江苏宿迁·中考真题)下列展开图中,是正方体展开图的是()A.B.C.D.【答案】C【分析】根据正方体的表面展开图共有11种情况,A,D是“田”型,对折不能折成正方体,B是“凹”型,不能围成正方体,由此可进行选择.【详解】解:根据正方体展开图特点可得C答案可以围成正方体,故选:C.【点睛】此题考查了正方体的平面展开图.关键是掌握正方体展开图特点.3.(2022·浙江金华·中考真题)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A.B.C.D.【答案】C【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:∵AB为底面直径,∵将圆柱侧面沿AC“剪开”后,B点在长方形上面那条边的中间,∵两点之间线段最短,故选:C.【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.4.(2022·四川遂宁·中考真题)如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是()A.大B.美C.遂D.宁【答案】B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“美”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手.5.(2022·四川自贡·中考真题)如图,将矩形纸片ABCD绕边CD所在的直线旋转一周,得到的立体图形是()A.B.C.D.【答案】A【分析】根据矩形绕一边旋转一周得到圆柱体示来解答.【详解】解:矩形纸片ABCD绕边CD所在的直线旋转一周,得到的立体图形是圆柱体.故选:A.【点睛】本题考查了点、线、面、体,熟练掌握“面动成体”得到的几何体的形状是解题的关键.6.(2022·湖南衡阳·中考真题)石鼓广场供游客休息的石板凳如图所示,它的主视图是()A.B.C.D.【答案】A【分析】根据主视图的定义和画法进行判断即可.【详解】解:从正面看过去,看到上下共三个矩形,所以主视图是:故选A【点睛】本题考查简单几何体的主视图,主视图就是从正面看物体所得到的图形.7.(2022·云南·中考真题)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.圆柱【答案】D【分析】根据三视图逆向即可得.【详解】解:此几何体为一个圆柱.故选:D.【点睛】此题考查由三视图还原几何体,既要考虑各视图的形状,还要把各视图的情况综合考虑才能得到几何体的形状.8.(2022·天津·中考真题)下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】A【分析】画出从正面看到的图形即可得到它的主视图.【详解】解:几何体的主视图为:故选:A【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.9.(2022·江西·中考真题)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()A.B.C.D.【答案】A【分析】从上面观察该几何体得到一个“T”字形的平面图形,横着两个正方形,中间有一个正方形,且有两条垂直的虚线,下方有半个正方形.画出图形即可.【详解】俯视图如图所示.故选:A.【点睛】本题主要考查了几何体的三视图,俯视图是从上面观察几何体得出的平面图形..注意:能看到的线用实线,看不到而存在的线用虚线.10.(2022·浙江温州·中考真题)某物体如图所示,它的主视图是()A.B.C.D.【答案】D【分析】根据主视图的定义和画法进行判断即可.【详解】解:某物体如图所示,它的主视图是:故选:D.【点睛】本题考查简单几何体的主视图,主视图就是从正面看物体所得到的图形.11.(2022·浙江宁波·中考真题)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.【答案】C【分析】根据俯视图的意义和画法可以得出答案.【详解】根据俯视图的意义可知,从上面看物体所得到的图形,选项C符合题意,故答案选:C.【点睛】本题主要考查组合体的三视图,注意虚线、实线的区别,掌握俯视图是从物体的上面看得到的视图是解题的关键.12.(2022·江苏扬州·中考真题)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱B.四棱锥C.三棱柱D.三棱锥【答案】B【分析】根据各个几何体三视图的特点进行求解即可.【详解】解:∵该几何体的主视图与左视图都是三角形,俯视图是一个矩形,而且两条对角线是实线,∵该几何体是四棱锥,故选B.【点睛】本题主要考查了由三视图还原几何体,熟知常见几何体的三视图是解题的关键.13.(2022·浙江绍兴·中考真题)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.【答案】B【分析】根据题目中的图形,可以画出主视图,本题得以解决.【详解】解:由图可得,题目中图形的主视图是,故选:B.【点睛】本题考查简单组合体的三视图,解题的关键是画出相应的图形.14.(2022·浙江嘉兴·中考真题)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】主视图有3列,每列小正方形数目分别为2,1,1.【详解】如图所示:它的主视图是:.故选:B.【点睛】此题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.15.(2022·浙江丽水·中考真题)如图是运动会领奖台,它的主视图是()A.B.C.D.【答案】A【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:领奖台的主视图是:故选:A.【点睛】本题考查了简单几何体的三视图,从正面看得到的图形是主视图.16.(2022·安徽·中考真题)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.【答案】A【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:该几何体的俯视图为:,故选:A【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.17.(2022·浙江舟山·中考真题)用尺规作一个角的角平分线,下列作法中错误的是( )A .B .C .D .【答案】D【分析】根据作图轨迹及角平分线的定义判断即可得出答案.【详解】A 、如图,由作图可知:,OA OC AB BC ==,又∵OB OB =,∵OAB OCB ≅,∵AOB COB ∠=∠,∵OB 平分AOC ∠.故A 选项是在作角平分线,不符合题意;B 、如图,由作图可知:,OA OB OC OD ==,又∵COB AOD ∠=∠,∵OBC OAD ≅,∵OA OB OAD OBC OCB ODA =∠=∠∠=∠,,,∵AC BD =,∵CEA BED ∠=∠,ECA EDB ∠=∠,∵AEC BED ≅△△,∵AE BE =,∵,EAO EBO OA OB ∠=∠=,∵AOE BOE ∠=∠,∵OE 平分AOB ∠.故B 选项是在作角平分线,不符合题意;C 、如图,由作图可知:,AOB MCN OC CD ∠=∠=,∵CD OB ∥,COD CDO =∠∠,∵DOB CDO ∠=∠,∵COD DOB ∠=∠,∵OD 平分AOB ∠.故C 选项是在作角平分线,不符合题意;D 、如图,由作图可知:,OA BC OC AB ==,又∵OB OB =,∵AOB CBO ≅,∵,,AOB OBC COB ABO ∠=∠∠=∠故D 选项不是在作角平分线,符合题意;故选:D【点睛】本题考查了角平分线的作图,全等三角形的性质与判定,掌握以上知识是解题的关键.18.(2022·山东泰安·中考真题)某种零件模型如图所示,该几何体(空心圆柱)的俯视图是( )A .B .C .D .【答案】C【详解】找到从上面看所得到的图形即可:空心圆柱由上向下看,看到的是一个圆环.故选C19.(2022·湖北十堰·中考真题)如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.三角形两边之和大于第三边【答案】B【分析】由直线公理可直接得出答案.【详解】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故选:B.【点睛】此题主要考查了直线的性质,要想确定一条直线,至少要知道两点.20.(2022·四川达州·中考真题)下列命题是真命题的是()A.相等的两个角是对顶角B.相等的圆周角所对的弧相等C.若a b<,则22ac bc<D.在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是1 3【答案】D【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案.【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A选项错误,不符合题意;在同圆或等圆中,相等的圆周角所对的弧相等,故B选项错误,不符合题意;若a b<,则22ac bc≤,故C选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13,故D选项正确,符合题意;故选:D.【点睛】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键.21.(2022·湖北随州·中考真题)如图是一个放在水平桌面上的半球体,该几何体的三视图中完全相同的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同【答案】A【分析】根据三视图的形成,从正面、左面和上面三个方向看立体图形得到的平面图形,注意所有的看到的或看不到的棱都应表现在三视图中,看得见的用实线,看不见的用虚线,虚实重合用实线.【详解】解:从正面和左面看,得到的平面图形均是半圆,而从上面看是一个圆,因此该几何体主视图与左视图一致,故选:A.【点睛】本题考查了三视图的知识,准确把握从正面、左面和上面三个方向看立体图形得到的平面图形是解决问题的关键.22.(2022·湖北黄冈·中考真题)某几何体的三视图如图所示,则该几何体是()A.圆锥B.三棱锥C.三棱柱D.四棱柱【答案】C【分析】由主视图和左视图得出该几何体是柱体,再结合俯视图可得答案.【详解】解:由三视图知,该几何体是三棱柱,故选:C.【点睛】本题主要考查由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.23.(2022·广西梧州·中考真题)下列命题中,假命题...是()A.2-的绝对值是2-B.对顶角相等C.平行四边形是中心对称图形D.如果直线,∥∥,那么直线a ba cb c∥【答案】A【分析】根据绝对值的意义,对顶角的性质,平行四边形的性质,平行线的判定逐一判断即可.【详解】解:A.2-的绝对值是2,故原命题是假命题,符合题意;B.对顶角相等,故原命题是真命题,不符合题意;C.平行四边形是中心对称图形,故原命题是真命题,不符合题意;D.如果直线,a cb c∥∥,那么直线a b∥,故原命题是真命题,不符合题意;故选:A.【点睛】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.24.(2022·内蒙古包头·中考真题)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.9【答案】B【分析】根据该几何体的俯视图以及该位置小正方体的个数,可以画出左视图,从而求出左视图的面积;【详解】由俯视图以及该位置小正方体的个数,左视图共有两列,第一列两个小正方体,第二列两个小正方体,可以画出左视图如图,所以这个几何体的左视图的面积为4故选:B【点睛】本题考查了物体的三视图,解题饿到关键是根据俯视图,以及该位置小正方体的个数,正确作出左视图.25.(2022·湖北武汉·中考真题)如图是一个立体图形的三视图,该立体图形是()A.长方体B.正方体C.三棱柱D.圆柱【答案】A【分析】根据题意可得这个几何体的三视图为长方形和正方形,即可求解.【详解】解:根据题意得:该几何体的三视图为长方形和正方形,∵该几何体是长方体.故选:A【点睛】本题考查由三视图确定几何体的名称,熟记常见几何体的三视图的特征是解题的关键.26.(2022·黑龙江齐齐哈尔·中考真题)由一些大小相同的小正方体搭成的几何体的主视图、左视图和俯视图都是如图所示的“田”字形,则搭成该几何体的小正方体的个数最少为()A.4个B.5个C.6个D.7个【答案】C【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出第二层的个数,从而算出总的个数.【详解】解:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=6.故选:C.【点睛】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.27.(2022·黑龙江绥化·中考真题)下列图形中,正方体展开图错误的是()A.B.C.D.【答案】D【分析】利用正方体及其表面展开图的特点解题.【详解】D选项出现了“田字形”,折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,A、B、C选项是一个正方体的表面展开图.故选:D.【点睛】此题考查了几何体的展开图,只要有“田”“凹”字的展开图都不是正方体的表面展开图.28.(2022·广西贺州·中考真题)下面四个几何体中,主视图为矩形的是()A.B.C.D.【答案】A【分析】依次分析每个选项中的主视图,找出符合题意的选项即可.【详解】解:A选项图形的主视图为矩形,符合题意;B选项图形的主视图为三角形,中间由一条实线,不符合题意;C选项图形的主视图为三角形,不符合题意;D选项图形的主视图为梯形,不符合题意;故选:A.【点睛】本题考查了几何体的主视图,解题关键是理解主视图的定义.29.(2022·湖南永州·中考真题)我市江华县有“神州摇都”的美涨,每逢“盘王节”会表演长鼓舞,长鼓舞中使用的“长鼓”内腔挖空,两端相通,两端鼓口为圆形,中间鼓腰较为细小.如图为类似“长鼓”的几何体,其俯视图的大致形状是()A.B.C.D.【答案】B【分析】根据题目描述,判断几何体的俯视图即可;【详解】解:根据长鼓舞中使用的“长鼓”内腔挖空,两端相通,可知俯视图中空,两端鼓口为圆形可知俯视图是圆形,鼓腰也是圆形,且是不能直接看见,所以中间是虚圆;故选:B.【点睛】本题主要考查几何体的三视图中的俯视图,解本题的关键在于需学生具备一定的空间想象能力.30.(2022·湖南岳阳·中考真题)某个立体图形的侧面展开图如图所示,它的底面是正三角形,那么这个立体图形是()A.圆柱B.圆锥C.三棱柱D.四棱柱【答案】C【分析】根据常见立体图形的底面和侧面即可得出答案.【详解】解:A选项,圆柱的底面是圆,故该选项不符合题意;B选项,圆锥的底面是圆,故该选项不符合题意;C选项,三棱柱的底面是三角形,侧面是三个长方形,故该选项符合题意;D选项,四棱柱的底面是四边形,故该选项不符合题意;故选:C.【点睛】本题考查了几何体的展开图,掌握n棱柱的底面是n边形是解题的关键.31.(2022·河南·中考真题)2022年北京冬奥会的奖牌“同心”表达了“天地合·人心同”的中华文化内涵,将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人【答案】D【分析】根据正方体的展开图进行判断即可;【详解】解:由正方体的展开图可知“地”字所在面相对的面上的汉字是“人”;故选:D.【点睛】本题主要考查正方体的展开图相对两个面上的文字,注意正方体的空间图形,从相对面入手是解题的关键.32.(2022·湖南湘潭·中考真题)如图,小明在学了尺规作图后,作了一个图形,其作图步骤是:∵作线段2AB ,分别以点A、B为圆心,以AB长为半径画弧,两弧相交于点C、D;∵连接AC、BC,作直线CD,且CD与AB相交于点H.则下列说法不正确的是()A.ABC是等边三角形B.AB CD⊥C.AH BH=D.45∠=︒ACD【答案】D【分析】根据等边三角形的判定和性质,线段垂直平分线的性质一一判断即可.【详解】解:由作图可知:AB=BC=AC,∵∵ABC是等边三角形,故A选项正确∵等边三角形三线合一,由作图知,CD是线段AB的垂直平分线,∵AB CD⊥,故B选项正确,∵AH BH=,30∠=︒,故C选项正确,D选项错误.故选:D.ACD【点睛】此题考查了作图-基本作图,等边三角形的判定和性质,线段垂直平分线的性质,解题的关键是理解题意,灵活运用所学知识解决问题.33.(2022·四川广元·中考真题)如图,在∵ABC中,BC=6,AC=8,∵C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于大于12点E 、F ,则AE 的长度为( )A .52B .3C .D .103【答案】A【分析】由题意易得MN 垂直平分AD ,AB =10,则有AD =4,AF =2,然后可得4cos 5AC A AB ∠==, 进而问题可求解.【详解】解:由题意得:MN 垂直平分AD ,6BD BC ==,∵1,902AF AD AFE =∠=︒,∵BC =6,AC =8,∵C =90°,∵10AB ,∵AD =4,AF =2,4cos 5AC A AB ∠==,∵5cos 2AF AE A ==∠;故选A . 【点睛】本题主要考查勾股定理、垂直平分线的性质及三角函数,熟练掌握勾股定理、垂直平分线的性质及三角函数是解题的关键.34.(2022·河北·中考真题)∵~∵是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择( )A.∵∵B.∵∵C.∵∵D.∵∵【答案】D【解析】【分析】观察图形可知,∵~∵的小正方体的个数分别为4,3,3,2,其中∵∵组合不能构成长方体,∵∵组合符合题意【详解】解:观察图形可知,∵~∵的小正方体的个数分别为4,3,3,2,其中∵∵组合不能构成长方体,∵∵组合符合题意故选D【点睛】本题考查了立体图形,应用空间想象能力是解题的关键.二、填空题35.(2022·江苏无锡·中考真题)请写出命题“如果a b>,那么0-<”的逆命题:b a________.【答案】如果0-<,那么a b>b a【分析】根据逆命题的概念解答即可.【详解】解:命题“如果a b>,那么0b a-<,那么a b>”,-<”的逆命题是“如果0b a故答案为:如果0-<,那么a b>.b a【点睛】此题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.36.(2022·湖南常德·中考真题)如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.【答案】月【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:由正方体的展开图特点可得:“神”字对面的字是“月”.故答案为:月.【点睛】此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.37.(2022·浙江湖州·中考真题)“如果a b =,那么a b =”的逆命题是___________.【答案】如果a b =,那么a b =【分析】把一个命题的条件和结论互换就得到它的逆命题,从而得出答案.【详解】解:“如果a b =,那么a b =”的逆命题是:“如果a b =,那么a b =”,故答案为:如果a b =,那么a b =.【点睛】本题考查命题与定理,解题的关键是理解题意,掌握逆命题的定义. 38.(2022·浙江温州·中考真题)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M 在旋转中心O 的正下方.某一时刻,太阳光线恰好垂直照射叶片,OA OB ,此时各叶片影子在点M 右侧成线段CD ,测得8.5m,13mMC CD==,垂直于地面的木棒EF与影子FG的比为2∵3,则点O,M之间的距离等于___________米.转动时,叶片外端离地面的最大高度等于___________米.【答案】1010【分析】过点O作AC、BD的平行线,交CD于H,过点O作水平线OJ交BD 于点J,过点B作BI∵OJ,垂足为I,延长MO,使得OK=OB,求出CH的长度,根据23EF OMFG MH==,求出OM的长度,证明BIO JIB∽,得出23BI IJ=,49OI IJ=,求出IJ、BI、OI的长度,用勾股定理求出OB的长,即可算出所求长度.【详解】如图,过点O作AC、BD的平行线,交CD于H,过点O作水平线OJ 交BD于点J,过点B作BI∵OJ,垂足为I,延长MO,使得OK=OB,由题意可知,点O是AB的中点,∵OH AC BD,∵点H是CD的中点,∵13m CD=,∵16.5m2CH HD CD===,∵8.5 6.515m MH MC CH=+=+=,又∵由题意可知:23EF OMFG MH==,∵2153OM=,解得10m=OM,∵点O、M之间的距离等于10m,∵BI∵OJ,∵90BIO BIJ∠=∠=︒,∵由题意可知:90OBJ OBI JBI ∠=∠+∠=︒,又∵90BOI OBI ∠+∠=︒,∵BOI JBI ∠=∠,∵BIO JIB ∽,∵23BI OI IJ BI ==,∵23BI IJ =,49OI IJ =, ∵,OJ CD OH DJ ,∵四边形IHDJ 是平行四边形,∵ 6.5m OJ HD ==, ∵46.5m 9OJ OI IJ IJ IJ =+=+=,∵ 4.5m IJ =,3m BI =,2m OI =,∵在Rt OBI △中,由勾股定理得:222OB OI BI =+,∵OB ,∵OB OK ==,∵(10m MK MO OK =+=,∵叶片外端离地面的最大高度等于(10m,故答案为:10,10+【点睛】本题主要考查了投影和相似的应用,及勾股定理和平行四边形的判定与性质,正确作出辅助线是解答本题的关键.39.(2022·浙江杭州·中考真题)某项目学习小组为了测量直立在水平地面上的旗杆AB 的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .已知B ,C ,E ,F 在同一直线上,AB ∵BC ,DE ∵EF ,DE =2.47m ,则AB =_________m .【答案】9.88【分析】根据平行投影得AC ∵DE ,可得∵ACB =∵DFE ,证明Rt ∵ABC ∵∵Rt ∵DEF ,然后利用相似三角形的性质即可求解.【详解】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .∵AC ∵DE ,∵∵ACB =∵DFE ,∵AB ∵BC ,DE ∵EF ,∵∵ABC =∵DEF =90°,∵Rt ∵ABC ∵∵Rt ∵DEF , ∵AB BC DE EF =,即8.722.47 2.18AB =,解得AB =9.88, ∵旗杆的高度为9.88m .故答案为:9.88.【点睛】本题考查了相似三角形的判定与性质,平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.证明Rt ∵ABC ∵∵Rt ∵DEF 是解题的关键.40.(2022·湖南衡阳·中考真题)如图,在ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径作圆弧,两弧相交于点M 和点N ,作直线MN 交CB 于点D ,连接AD .若8AC =,15BC =,则ACD △的周长为_________.【答案】23【分析】由作图可得:MN 是AB 的垂直平分线,可得,DA DB =再利用三角形的周长公式进行计算即可.【详解】解:由作图可得:MN 是AB 的垂直平分线,,DA DB ∴=8AC =,15BC =,81523,ACD CAC CD AD AC CD BD AC BC 故答案为:23【点睛】本题考查的是线段的垂直平分线的作图,线段的垂直平分线的性质,掌握“线段的垂直平分线的性质”是解本题的关键.三.解答题41.(2022·陕西·中考真题)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB 的影长OC 为16米,OA 的影长OD 为20米,小明的影长FG 为2.4米,其中O 、C 、D 、F 、G 五点在同一直线上,A 、B 、O 三点在同一直线上,且AO ∵OD ,EF ∵FG .已知小明的身高EF 为1.8米,求旗杆的高AB .【答案】旗杆的高AB 为3米.【分析】证明∵AOD ∵∵EFG ,利用相似比计算出AO 的长,再证明∵BOC ∵∵AOD ,然后利用相似比计算OB 的长,进一步计算即可求解. 【详解】解:∵AD ∵EG ,∵∵ADO =∵EGF . 又∵∵AOD =∵EFG =90°,∵∵AOD ∵∵EFG . ∵AO ODEF FG =.∵ 1.820152.4EF OD AO FG ⋅⨯===. 同理,∵BOC ∵∵AOD .∵BO OCAO OD =.∵15161220AO OC BO OD ⋅⨯===. ∵AB =OA −OB =3(米).∵旗杆的高AB 为3米.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.42.(2022·陕西·中考真题)如图,已知,,ABC CA CB ACD =∠△是ABC 的一个外角.请用尺规作图法,求作射线CP ,使CP AB ∥.(保留作图痕迹,不写作法)。
中考数学总复习《投影与视图》专项测试卷-附带有参考答案(测试时间60分钟满分100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(共8题,共40分)1.如图是某几何体的三视图,该几何体是( )A.圆锥B.圆柱C.四棱柱D.正方体2.如图,由5个相同正方体组合而成的几何体,它的主视图是( )A.B.C.D.3.如图,一个由6个大小相同、棱长为1的正方体搭成的几何体,下列关于这个几何体的说法正确的是( )A.主视图的面积为6B.左视图的面积为2C.俯视图的面积为4D.俯视图的面积为34.下列四个几何体中,主视图与左视图相同的几何体有( )A.1个B.2个C.3个D.4个5.如图,该几何体是由7个大小相同,棱长为1的小正方形搭成,关于该几何体的下列说法正确的是( )A.主视图的面积为4B.左视图的面积为5C.俯视图的面积为5D.三种视图的面积都是56.下列几何体中,主视图是矩形,俯视图是圆的几何体是( )A.B.C.D.7.下面四个几何体中,主视图与俯视图不同的共有( )A.1个B.2个C.3个D.4个8.如图所示,该几何体的主视图为( )A.B.C.D.二、填空题(共5题,共15分)9.如图所示是一个几何体的表面展开图,则该几何体的体积为.10.一个几何体的表面展开图如图所示,则这个几何体是.11.下图是一个由圆柱与圆锥组合而成的几何体的三视图,根据图中数据计算这个几何体的侧面积是.12.如图所示为一个长方体,则该几何体主视图的面积为cm2.13.有底面为正方形的四棱柱形容器A和圆柱形容器B,容器材质相同,厚度忽略不计.已知它们的主视图是完全相同的矩形,先将B容器盛满水,再将水全部倒入A容器中,则A容器中水的情况是(填“溢出”“刚好装满”或“未装满”).三、解答题(共3题,共45分)14.一个几何体的三视图如图,根据图示的数据计算该几何体的体积(结果保留π).15.如图是一个几何体的三视图.(1) 写出这个几何体的名称;(2) 根据图中所示数据,求这个几何体的表面积;(3) 若一只蚂蚁要从这个几何体上的点B出发,沿表面爬到AC的中点D处,请你求出最短路程.16.某天,当太阳移动到屋顶斜上方时,太阳光线EF与地面成60∘角,房屋的窗户AB的高为1.5m,现要在窗户外面的上方安装一个水平遮阳篷AC,当AC的宽在什么范围时,太阳光这时不能直接射入室内?参考答案1. 【答案】B2. 【答案】B3. 【答案】C4. 【答案】D5. 【答案】C6. 【答案】A7. 【答案】B8. 【答案】B9. 【答案】24π10. 【答案】四棱锥11. 【答案】185πcm212. 【答案】2013. 【答案】未装满14. 【答案】12π.15. 【答案】(1) 圆锥.(2) 16π(平方厘米).(3) 3√3厘米.m16. 【答案】√32。
初三数学投影与视图试题答案及解析1.一个几何体的三个视图如图所示,这个几何体是()A.圆柱B.球C.圆锥D.正方体【答案】A.【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.因此,由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆形可得为圆柱体.故选A.【考点】由三视图判断几何体.2.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是.【答案】3.【解析】根据从上面看得到的图形是俯视图,可得俯视图,根据矩形的面积公式,可得答案:从上面看三个正方形组成的矩形,矩形的面积为1×3=3.【考点】简单组合体的三视图.3.如图的几何体是由4个完全相同的正方体组成的,这个几何体的左视图是()A B C D【答案】C.【解析】由几何体可知左视图由两列组成,从左至右小正方形的个数分别为2个、1个,故选C.【考点】三视图.4.下列几何体中,同一个几何体的主视图与俯视图不同的是()A.圆柱B.正方体C.圆锥D.球【答案】C【解析】A、主视图是矩形,俯视图是矩形,主视图与俯视图相同,故本选项错误;B、主视图是正方形,俯视图是正方形,主视图与俯视图相同,故本选项错误;C、主视图是三角形,俯视图是圆及圆心,主视图与俯视图不相同,故本选项正确;D、主视图是圆,俯视图是圆,主视图与俯视图相同,故本选项错误.【考点】三视图5.右图是一个由4个相同的正方体组成的立体图形,它的三视图是()【答案】A.【解析】从正面看可得从左往右2列正方形的个数依次为1,2;从左面看可得到从左往右2列正方形的个数依次为2,1;从上面看可得从上到下2行正方形的个数依次为1,2,故选A.【考点】简单组合体的三视图.6.如图,由三个小立方块搭成的俯视图是()【答案】A.【解析】从上面看可得到两个相邻的正方形.故选A.【考点】简单组合体的三视图.7.下列几何体的主视图是三角形的是()A.B.C.D.【答案】B.【解析】找到从正面看所得到的图形即可:A、主视图为矩形,错误;B、主视图为三角形,正确;C、主视图为圆,错误;D、主视图为正方形,错误.故选B.【考点】简单几何体的三视图.8.下图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π【答案】B.【解析】由几何体的三视图得,几何体是高为10,外径为8。
全国中考数学试题分类汇编视图投影空间几何体及答案Modified by JEEP on December 26th, 2020.2007年中考试题分类汇编(视图投影空间几何体)一、选择题1、(2007山东淄博)如图(1)放置的一个机器零件,若其主视图如图(2),则其俯视图是( )D2、()一物体及其正视图如下图所示,则它的左视图与俯视图分别是右侧图形中的( )B(A)①② (B)③② (C)①④ (D)③④3、(2007山东济宁)一个几何体的三视图如图所示,那么这个几何体是( )。
C4、(2007山东青岛)如图所示圆柱的左视图是( ).BA .B .C .D .5、(2007重庆)将如图的Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图是( )D•DCB AC BA5 题图6、(2007浙江金华)如图是小玲在九月初九“重阳节”送给她外婆的礼盒,图中所示礼盒的主视图是( )A(A ) (B ) (C ) (D )( 2)( 1) (第1题) 第4题图正面ABCD7、(2007湖南岳阳)下面的三个图形是某几何体的三种视图,则该几何体是( C ) A 、正方体 B 、圆柱体 C 、圆锥体 D 、球体 8、(2007浙江义乌)下面四个几何体中,主视图、左视图、俯视图是全等图形的几何图形是( )B A.圆柱 B.正方体 C.三棱柱 D.圆锥9、(2007湖南怀化)一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多..可由多少个这样的正方体组成( )BA.12个 B.13个C.14个D.18个10、(2007四川成都)右图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为( )C11、()下图几何体的主视图是( )C12、(2007甘肃白银等)如图所示的几何体的右视图(从右边看所得的视图)是 ( )A13、(2007浙江宁波)与如图所示的三视图对应的几何体是( )B俯视图侧视图主视图主视图左视图(第10A . B . C . D .A .B .C .D .14、(2007江苏扬州)一个几何体的三视图如图所示,这个几何体是( )D A.正方体 B.球 C.圆锥D.圆柱15、(2007四川绵阳)下列三视图所对应的直观图是( )CA .B .C .D .16、(2007江苏南京)下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是( )D A.球体B.长方体C.圆锥体D.圆柱体17、(2007江苏盐城)如图,这是一幅电热水壶的主视图,则它的俯视图是( )D(第16题图)A .B .C .D .18、(2007江西)桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )C正视图 左视图 俯视图第13DCBA19、(2007山东枣庄)小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是( )A20、()小明拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上形成的投影不可能...是( )B21、()如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是 1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB (A)24m (B)22m (C)20 m (D)18 m22、(2007广东梅州)如图10,晚上小亮在路灯下散步,在小亮由A 处走 到B 处这一过程中,他在地上的影子( ) A.逐渐变短B.逐渐变长C.先变短后变长 D.先变长后变短二、填空题1、(2007浙江丽水)如果一个立体图形的主视图为矩形,则这个立体图形可能是 (•只需填上一个立体图形). 答案不唯一如:长方体、圆柱等左面 (第15A .B .CD图10A2、(2007浙江温州)星期天小川和他爸爸到公园散步,小川身高是160cm ,在阳光下他的影长为80cm ,爸爸身高180cm ,则此时爸爸的影长为____cm.。
903、(2007福建龙岩)当太阳光与地面成55°角时,直立于地面的玲玲测得自己的影长为1.16m ,则玲玲的身高约为 m .(精确到0.01m )4、(2007湖北潜江)小华在距离路灯6米的地方,发现自己在地面上的影长是2米,如果小华的身高为1.6米,那么路灯离地面的高度是 米.5、(内蒙古赤峰)某同学的身高为1.4米,某一时刻他在阳光下的影长为1.2米,此时,与他相邻的一棵小树的影长为3.6米,则这棵树的高度为 米.6、(2007辽宁大连)如图,为了测量学校旗杆的高度,小东用长为的竹竿做测量工具。
移动竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m ,与旗杆相距22m ,则旗杆的高为__________m 。
12三、解答题1、()在一次数学活动课上,李老师带领学生去测教学楼的高度。
在阳光下,测得身高1.65米的黄丽同学BC 的影厂BA 为1.1米,与此同时,测得教学楼DE 的影长DF 为12.1米。
(1)请你在图7中画出此时教学楼DE 在阳光下的投影DF 。
(2)请你根据已测得的数据,求出教学楼DE 的高度(精确到0.1米)。
解:(1)如左图,注意AC 与EF 平行; (2)由1.121.165.1DE,解得:DE =≈2、(2007浙江金华)学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为558m 22m (第6题图)1.6m 的小明()AB 的影子BC 长是3m ,而小颖()EH 刚好在路灯灯泡的正下方H 点,并测得6m HB =.(1)请在图中画出形成影子的光线,交确定路灯灯泡所在的位置G ; (2)求路灯灯泡的垂直高度GH ;(3)如果小明沿线段BH 向小颖(点H )走去,当小明走到BH 中点1B 处时,求其影子11B C 的长;当小明继续走剩下路程的13到2B 处时,求其影子22B C 的长;当小明继续走剩下路程的14到3B 处,…按此规律继续走下去,当小明走剩下路程的11n +到n B 处时,其影子n n B C 的长为 m (直接用n的代数式表示).解:(1)(2)由题意得:ABC GHC △∽△,AB BC GH HC ∴=, 1.6363GH ∴=+, 4.8GH ∴=(m ). (3)1111A B C GHC △∽△,11111A B B C GH HC ∴=, 设11B C 长为m x ,则1.64.83x x =+,解得:32x =(m ),即1132B C =(m ). 同理22221.64.82B C B C =+,解得221B C =(m ),31n n B C n =+. 3、(2007广西南宁)如图11所示,点P 表示广场上的一盏照明灯. (1)请你在图中画出小敏在照明灯P 照射下的影子(用线段表示);(2)若小丽到灯柱MO 的距离为4.5米,照明灯P 到灯柱的距离为1.5米,小丽目测照明灯P 的仰角为55°,她的目高QB 为1.6米,试求照明灯P 到地面的距离(结果精确到0.1米). (参考数据:tan55 1.428≈°,sin550.819≈°,cos550.574≈°)GC BA1C 1B 2B H E2A 1A 2CEH 1A1BBACMP解:(1)如图线段AC 是小敏的影子, (画图正确)(2)过点Q 作QE MO ⊥于E ,过点P 作PF AB ⊥于F ,交EQ 于点D , 则PF EQ ⊥在Rt PDQ △中,55PQD ∠=,DQ EQ ED =-4.5 1.53=-=(米) ····································································6分tan 55PDDQ=··············································································7分 3tan55 4.3PD ∴=≈(米) ·····························································8分 1.6DF QB ==米 ·········································································9分 4.3 1.6 5.9PF PD DF ∴=+=+=(米)答:照明灯到地面的距离为5.9米 ··················································· 10分4、(2007山东淮坊)如图,某居民小区内A B ,两楼之间的距离30MN =米,两楼的高都是20米,A 楼在B 楼正南,B 楼窗户朝南.B 楼内一楼住户的窗台离小区地面的距离2DN =米,窗户高1.8CD =米.当正午时刻太阳光线与地面成30角时,A 楼的影子是否影响B 楼的一楼住户采光若影响,挡住该住户窗户多高若不影响,请说明理由. (:2 1.414=,3 1.732=,52.236=)解:如图,设光线FE 影响到B 楼的E 处,C A O B QDE PM55 4.5小丽 灯柱 小敏 图11 A 楼 B 楼C D M N作EG FM ⊥于G ,由题知,30m EG MN ==,30FEG ∠=, 则330tan 303010317.323FG =⨯=⨯==, 则2017.32 2.68MG FM GF =-=-=,因为2 1.8DN CD ==,,所以 2.6820.68ED =-=, 即A 楼影子影响到B 楼一楼采光,挡住该户窗户0.68米.5、(2007辽宁沈阳)如图所给的A 、B 、C 三个几何体中,按箭头所示的方向为它们的正面,设A 、B 、C 三个几何体的主视图分别是A 1、B 1、C 1;左视图分别是A 2、B 2、C 2;俯视图分别是A 3、B 3、C 3.(1)请你分别写出A 1、A 2、A 3、B 1、B 2、B 3、C 1、C 2、C 3图形的名称;(2)小刚先将这9个视图分别画在大小、形状完全相同的9张卡片上,并将画有A 1、A 2、A 3的三张卡片放在甲口袋中,画有B 1、B 2、B 3的三张卡片放在乙口袋中,画有C 1、C 2、C 3的三张卡片放在丙口袋中,然后由小亮随机从这三个口袋中分别抽取一张卡片.① 通过补全下面的树状图,求出小亮随机抽取的三张卡片上的图形名称都相同的概率;② 小亮和小刚做游戏,游戏规则规定:在小亮随机抽取的三张卡片中只有两张卡片上的图形名称相同时,小刚获胜;三张卡片上的图形名称完全不同时,小亮获胜.这个游戏对双方公平吗为什么解:(1) A B C (2)①树状图:解:(1)由已知可得A 1、A 2是矩形,A 3是圆;B 1、B 2、B 3都是矩形;C 1是三角形,C 2、C 3是矩形. ………………………………………………………3分 (2)①补全树状图如下:……………………………………………………………………………………………7分 由树状图可知,共有27种等可能结果,其中三张卡片上的图形名称都相同的结果有12种,∴三张卡片上的图形名称都相同的概率是1227=49 …………9分②游戏对双方不公平.由①可知,三张卡片中只有两张卡片上的图形A楼B楼CE DG F 30m 30 第23题图名称相同的概率是1227=49,即P (小刚获胜)=49三张卡片上的图形名称完全不同的概率是327=19,即P (小亮获胜)=19∵49>19∴这个游戏对双方不公平. ……………………………………………12分。