第六章 非参数统计分析方法的SAS编程实现
- 格式:doc
- 大小:85.00 KB
- 文档页数:10
sas使用手册SAS(Statistical Analysis System)是一款广泛使用的统计分析软件,其使用手册对于使用者来说是不可或缺的指南。
以下是一个简短的SAS使用手册,以帮助您快速了解其基本功能和操作。
一、概述SAS是一个模块化、集成化的软件系统,主要用于数据管理、统计分析、预测建模和报告生成。
它支持多种编程语言,包括SAS语言、SAS宏语言和SAS SQL语言,使得用户可以根据自己的需求进行定制化操作。
二、安装与启动要使用SAS,您需要先将其安装到您的计算机上。
您可以从SAS官网下载适合您操作系统的安装程序,并按照屏幕提示进行安装。
安装完成后,您可以通过启动SAS Enterprise Guide或SAS Studio来使用SAS。
三、数据管理SAS提供了一系列数据管理工具,可以帮助您导入、清洗、合并和转换数据。
您可以使用DATA步来创建、修改和删除数据集,使用SQL语言进行更高级的数据查询和操作。
四、统计分析SAS提供了广泛的统计分析方法,包括描述性统计、方差分析、回归分析、聚类分析、主成分分析等。
您可以使用PROC步来调用相应的过程,并指定所需的参数和选项。
例如,要执行回归分析,您可以编写以下代码:PROC REG DATA=your_dataset; MODELdependent_variable = independent_variable / VIF; RUN;五、模型构建与预测SAS提供了多种预测模型,包括线性回归模型、逻辑回归模型、决策树模型、神经网络模型等。
您可以使用PROC步来构建和评估模型,例如:PROC SVM DATA=your_dataset; CLASS target_variable; MODEL dependent_variable = independent_variable; CROSSVALIDATE; RUN;六、报告生成SAS支持将分析结果导出为各种格式的报告,包括HTML、PDF、Word等。
学习使用SAS进行数据分析的基础教程一、SAS介绍与安装SAS(全称Statistical Analysis System,统计分析系统)是一种非常强大的数据分析软件。
它提供了丰富的统计分析、数据挖掘和数据管理功能。
在学习使用SAS之前,首先需要下载并安装SAS软件。
在安装过程中,需要根据操作系统选择相应的版本,并按照安装向导进行操作。
安装完成后,可以通过启动菜单找到SAS软件并打开它。
二、SAS基本语法与数据集1. SAS语法基础SAS语法是一种类似于编程语言的语法。
在SAS中,每一个语句都以分号作为结尾。
常用的SAS语句包括DATA、PROC和RUN。
DATA语句用于创建数据集,PROC语句用于执行数据分析过程,RUN语句用于执行SAS语句的运行。
2. SAS数据集SAS数据集是SAS中最重要的数据组织形式。
它可以包含多个数据变量,并且每个变量可以拥有不同的数据类型,如字符型、数值型、日期型等。
通过DATA语句可以创建一个新的SAS数据集,并通过INPUT语句指定每个变量的属性。
使用SET语句可以将现有的数据集读入到SAS数据集中,以供后续分析使用。
三、SAS数据清洗与变换1. 数据清洗数据清洗是数据分析的第一步,其目的是去除数据中的错误或无效信息,保证数据质量。
在SAS中,可以使用IF和WHERE语句来筛选出符合条件的数据观测值,并使用DELETE和KEEP语句删除或保留特定的变量。
2. 数据变换数据变换是对原始数据进行转换,以满足具体的分析需求。
在SAS中,常用的数据变换操作包括缺失值处理、变量重编码、数据排序和数据合并等。
可以使用IF、ELSE和DO语句进行逻辑判断和循环操作,通过FORMAT语句对数据进行格式化。
四、SAS统计分析1. 描述统计分析描述统计分析是对数据的基本特征进行分析,包括均值、标准差、中位数、分位数和频数等。
在SAS中,可以使用PROC MEANS进行基本统计分析,使用PROC FREQ进行频数分析。
SAS数据分析常用操作指南在当今数据驱动的时代,数据分析成为了企业决策、科学研究等领域的重要手段。
SAS 作为一款功能强大的数据分析软件,被广泛应用于各个行业。
本文将为您介绍 SAS 数据分析中的一些常用操作,帮助您更好地处理和分析数据。
一、数据导入与导出数据是分析的基础,首先要将数据导入到 SAS 中。
SAS 支持多种数据格式的导入,如 CSV、Excel、TXT 等。
以下是常见的导入方法:1、通过`PROC IMPORT` 过程导入 CSV 文件```sasPROC IMPORT DATAFILE='your_filecsv'OUT=your_datasetDBMS=CSV REPLACE;RUN;```在上述代码中,将`'your_filecsv'`替换为实际的 CSV 文件路径,`your_dataset` 替换为要创建的数据集名称。
2、从 Excel 文件导入```sasPROC IMPORT DATAFILE='your_filexlsx'OUT=your_datasetDBMS=XLSX REPLACE;RUN;```导出数据同样重要,以便将分析结果分享给他人。
可以使用`PROC EXPORT` 过程将数据集导出为不同格式,例如:```sasPROC EXPORT DATA=your_datasetOUTFILE='your_filecsv'DBMS=CSV REPLACE;RUN;```二、数据清洗与预处理导入的数据往往存在缺失值、异常值等问题,需要进行清洗和预处理。
1、处理缺失值可以使用`PROC MEANS` 过程查看数据集中变量的缺失情况,然后根据具体情况选择合适的处理方法,如删除包含缺失值的观测、用均值或中位数填充等。
2、异常值检测通过绘制箱线图或计算统计量(如均值、标准差)来检测异常值。
对于异常值,可以选择删除或进行修正。
3、数据标准化/归一化为了消除不同变量量纲的影响,常常需要对数据进行标准化或归一化处理。
如何使用SAS进行数据分析和建模的教程一、SAS的简介及基本操作SAS(Statistical Analysis System)是一款强大的统计分析软件,被广泛应用于各个领域的数据分析和建模中。
下面将介绍SAS的简单操作流程。
1. 安装和启动SAS:根据官方指南,下载并安装SAS软件。
启动SAS后,会出现主界面,包括编辑窗口和日志窗口。
2. 导入数据:点击编辑窗口中的“Import Data”按钮,选择要导入的数据文件,并按照提示完成导入过程。
导入的数据可以是CSV、Excel等格式。
3. 数据探索:通过使用SAS的数据探索功能,可以查看数据的基本信息,如变量名、数据类型等。
点击编辑窗口中的“Explore Data”按钮,选择导入的数据文件,即可查看数据的摘要统计信息。
二、数据预处理在进行数据分析和建模之前,需要对原始数据进行预处理,以确保数据的质量和完整性。
1. 缺失值处理:SAS提供了多种处理缺失值的方法,如删除含有缺失值的观测样本、插补缺失值等。
通过使用SAS的函数和命令,可以快速处理数据中的缺失值。
2. 异常值处理:SAS可以通过绘制箱线图、散点图等图形,来检测和处理数据中的异常值。
针对异常值,可以选择删除、替换或者离群点处理。
3. 数据标准化:标准化数据可以使得不同变量之间具有可比性,常用的方法包括Z-score标准化、最大-最小标准化等。
在SAS中,可以使用相应的函数和过程来进行数据标准化。
三、探索性数据分析(EDA)探索性数据分析是数据分析的关键步骤之一,它旨在通过可视化和统计方法,了解数据的分布和关系,为后续建模做准备。
1. 描述性统计:使用SAS的summary、means等函数,可以计算数据的均值、方差、中位数等统计量,从而对数据进行初步的描述。
2. 可视化分析:SAS提供了多种绘图函数,如histogram、scatter plot等,可以绘制直方图、散点图等图形,来展示变量之间的关系和分布情况。
sas使用方法范文SAS(Statistical Analysis System)是一种统计分析软件,广泛应用于数据管理和分析。
它提供了一系列功能强大的工具和处理数据的方法。
下面将介绍SAS的使用方法,包括数据导入、数据处理、数据分析和数据可视化等。
1.数据导入:SAS可以导入多种格式的数据文件,如Excel、CSV和文本文件。
使用SAS的数据步骤(data step),可以将数据导入到SAS数据集中。
以下是一个导入Excel文件的示例代码:```data mydata;infile 'path_to_file\myfile.xlsx'dbms=xlsx replace;sheet='sheet1';getnames=yes;run;```2.数据处理:SAS提供了多种数据处理的方法。
例如,通过数据步骤可以对数据进行清洗、转换和整理。
以下是一些常用的数据处理操作:-选择变量:使用KEEP或DROP语句选择需要的变量。
-变量变换:使用COMPUTE语句创建新变量。
-数据过滤:使用WHERE语句根据条件筛选数据。
-数据合并:使用MERGE语句将多个数据集合并在一起。
3.数据分析:SAS提供了丰富的数据分析功能,可以进行统计分析、建模和预测等操作。
以下是一些常用的数据分析方法:-描述统计:使用PROCMEANS、PROCFREQ和PROCSUMMARY等过程进行数据的描述统计分析。
-方差分析:使用PROCANOVA进行方差分析。
-回归分析:使用PROCREG进行线性回归分析。
-聚类分析:使用PROCFASTCLUS进行聚类分析。
-因子分析:使用PROCFACTOR进行因子分析。
-时间序列分析:使用PROCARIMA进行时间序列分析。
4.数据可视化:SAS提供了多种方法用于数据可视化。
通过使用SAS的图形过程(PROCGPLOT和PROCSGPLOT等),可以绘制各种类型的图表,如柱状图、散点图、折线图和饼图等。
非参数统计分析――Nonparametric Tests菜单详解非参数统计分析――Nonparametric Tests菜单详解平时我们使用的统计推断方法大多为参数统计方法,它们都是在已知总体分布的条件下,对相应分布的总体参数进行估计和检验。
比如单样本u检验就是假定该样本所在总体服从正态分布,然后推断总体的均数是否和已知的总体均数相同。
本节要讨论的统计方法着眼点不是总体参数,而是总体分布情况,即研究目标总体的分布是否与已知理论分布相同,或者各样本所在的分布位置/形状是否相同。
由于这一类方法不涉及总体参数,因而称为非参数统计方法。
SPSS的的Nonparametric Tests菜单中一共提供了8种非参数分析方法,它们可以被分为两大类:1、分布类型检验方法:亦称拟合优度检验方法。
即检验样本所在总体是否服从已知的理论分布。
具体包括:Chi-square test:用卡方检验来检验二项/多项分类变量的几个取值所占百分比是否和我们期望的比例有没有统计学差异。
Binomial Test:用于检测所给的变量是否符合二项分布,变量可以是两分类的,也可以使连续性变量,然后按你给出的分界点一分为二。
Runs Test:用于检验样本序列随机性。
观察某变量的取值是否是围绕着某个数值随机地上下波动,该数值可以是均数、中位数、众数或人为制定。
一般来说,如果该检验P值有统计学意义,则提示有其他变量对该变量的取值有影响,或该变量存在自相关。
One-Sample Kolmogorov-Smirnov Test:采用柯尔莫哥诺夫-斯米尔诺夫检验来分析变量是否符合某种分布,可以检验的分布有正态分布、均匀分布、Poission分布和指数分布。
2、分布位置检验方法:用于检验样本所在总体的分布位置/形状是否相同。
具体包括:Two-Independent-Samples Tests:即成组设计的两独立样本的秩和检验。
Tests for Several Independent Samples:成组设计的多个独立样本的秩和检验,此处不提供两两比较方法。
1 第六章 非参数统计分析方法的SAS编程实现 作者:薛富波 最终修改日期: 一、npar1way过程语句格式简介 二、不同类型资料的非参数检验方法 1. 两独立样本差别的秩和检验 2.配对设计资料的秩检验 3.完全随机设计多组数据分布位置差别的秩和检验 三、几条重要提示
非参数统计分析方法(non-parametric statistics)是相对参数统计分析方法而言的,又称为不拘分布(distribution-free statistics)的统计分析方法或无分布形式假定(assumption free statistics)的统计分析方法。其中包括Wilcoxon秩和检验、Kruskal-Wallis秩和检验、friedman秩和检验等,它们分别对应不同设计类型的资料。
SAS中对于非参数分析方法功能的实现主要由npar1way过程来完成,从过程名字就可以看出,在此过程的处理进程中,只能一次指定一个因素进行分析。下面我们先来了解一下npar1way过程的语句格式以及各语句和选项的基本功能。
一、npar1way过程语句格式简介 npar1way过程属于SAS的STAT模块,对于统计学教科书上所涉及的非参数统计方法几乎都可以通过此过程来完成。Npar1way过程的基本语句格式如下。
PROC NPAR1WAY ; BY 变量名; CLASS变量名; EXACT 统计量选项 ; FREQ变量名; OUTPUT < OUT=数据集名 > < 选项 > ; VAR 变量名; RUN; QUIT;
Proc npar1way语句标志npar1way过程的开始,默认情况下(不列举任何选项):npar1way过程对最新创建的数据集进行分析,将缺失数据排除在分析过程之外;执行方差分析过程(等同于ANOVA选项),对样本分布位置的差异进行 2
检验(与选项WILCOXON, MEDIAN, SAVAGE以及VW等效),并进行经验分布函数检验(等同于EDF选项)。此语句后可用的选项见表6.1。
表6.1 Proc npar1way语句选项及其含义 选项名称 选项功能或含义 AB 运用Ansari-Bradley评分进行分析 DATA=数据集名 指定要进行分析的数据集 MEDIAN 运用中位数评分进行分析,即进行中位数检验 NOPRINT 禁止所有的输出,用在仅需要创建输出数据集时 ST 运用Siegel-Tukey评分进行分析 ANOVA 对原始数据进行方差分析 EDF 要求计算基于经验分布的统计量 MISSING 指定分组变量的缺失值为一有效的分组水平 SAVAGE 运用Savage评分进行分析 VW 运用Van der Waerden评分进行分析计算 CORRECT=NO 在两样本时,禁止Wilcoxon和Siegel-Tukey检验的连续性校正过程 KLOTZ 运用Klotz评分进行分析 MOOD 运用Mood评分进行分析 SCORES=DATA 以原始数据为评分值进行分析 WILCOXON 对两样本进行Wilcoxon秩和检验,对多样本进行Kruskal-Wallis检验
在构成npar1way过程的语句中,by语句、class语句以及freq语句和其它我们已经讨论过的过程完全相同,不再多嘴。
1. exact语句 exact语句要求SAS对指定的统计量(选项)进行精确概率的计算。其后的统计量选项可为以下项目,分别对应相应的统计计算方式(可参见表6.1)。
AB,KLOTZ,KS,MEDIAN,MOOD,SAVAGE,SCORES=DATA,ST,WILCOXON,VW等。
运算选项为精确概率的计算过程指定一些控制项目,如选项“mc”要求以Monte Carlo方法计算精确概率。
2. output语句 output语句与其它过程中相应的语句大同小异,不同之处在于语句最后的选项。此处的选项绝大多数包括在表6.1中,指定在输出数据集中包含所指定项目所对应的统计量。
3. var语句 3
此处的var语句与其它过程的也基本相同,用以指定要进行分析的变量,变量必须为数值型。若省略此语句,SAS将对除by语句、class语句以及freq语句中指定的变量之外的所有数值型变量进行分析。
关于npar1way过程的内容基本上就这些,了解这么多足够处理一般的统计学问题,下面我们结合实例来演示非参数检验的SAS编程实现过程。
二、不同类型资料的非参数检验方法 1. 两独立样本差别的秩和检验 例6-1 下表(表6.2)为来自两个样本A、B的测量数据,经检验知两样本方差不齐,试做非参数检验比较两组数据的差别。
表6.2 两独立样本A、B测量数据 A组 B组 7 3 14 5 22 6 36 10 40 17 48 18 63 20 98 39
对于此资料,我们应选用Wilcoxon秩和检验(rank sum test)方法,编制SAS程序如下。 data temp; do g=1 to 2; input x@@; output; end; datalines; 7 3 14 5 22 6 36 10 40 17 48 18 63 20 98 39 ; proc npar1way wilcoxon; class g; var x; Run;quit; 4
程序中因素“g”分组因素,“1”代表A组,“2”代表B组,“x”为待分析的变量。Proc npar1way语句后的选项“Wilcoxon”指定SAS进行Wilcoxon秩和检验。提交以上程序,运行结果如下。
The SAS System 22:08 Tuesday, December 10, 2002 1 The NPAR1WAY Procedure Wilcoxon Scores (Rank Sums) for Variable x Classified by Variable g
Sum of Expected Std Dev Mean g N Scores Under H0 Under H0 Score ---------------------------------------------------------------------------------------------------- 1 8 89.0 68.0 9.521905 11.1250 2 8 47.0 68.0 9.521905 5.8750
Wilcoxon Two-Sample Test Statistic 89.0000 Normal Approximation Z 2.1529 One-Sided Pr > Z 0.0157 Two-Sided Pr > |Z| 0.0313
t Approximation One-Sided Pr > Z 0.0240 Two-Sided Pr > |Z| 0.0480
Z includes a continuity correction of 0.5. The SAS System 22:08 Tuesday, December 10, 2002 2 The NPAR1WAY Procedure Kruskal-Wallis Test Chi-Square 4.8640 DF 1 Pr > Chi-Square 0.0274
SAS给出的结果较为详细,比医学统计教科书上的内容要多很多,首先给出两组数据的的基本信息(样本量、秩和等),还给出在零假设下各组统计量(Sum of scores项)的期望值(Ecpected Under H0项)及标准差(Std Dev Under H0项),最后还给出以近似z检验以及近似t检验所得的统计量和所对应的单、双侧概率值。另外,默认状态下,SAS还同时给出Kruskal-Wallis检验的结果。
所不同的是,在两样本量相同时,SAS以秩和较大者作为对象统计量进行概率值的计算,而非医学统计学教材上所说的以较小秩和为对象统计量。在两样本量不同时,SAS以样本量较小组的秩和为对象统计量,这一点则与教材上的相同。
下面我们再对两组等级资料的非参数检验方法进行练习。 5
例6-2 用某药治疗不同病情的老年慢性支气管炎病人, 疗效见表6.3,试比较该药对两种病情的疗效。
表6.3 某药对两种不同病情的支气管炎疗效 疗效 单纯型 单纯型合并肺气肿 控制 65 42 显效 18 6 有效 30 23 近控 13 11
对于此例,我们将疗效看成待分析的变量x,从“控制”到“近控”分别对其赋值1、2、3、4,病情则作为分组因素,同时需引入一个频度因素f,以代表不同取值状态下x的频数。编制程序如下。 data temp; do x=1 to 4; do g=1 to 2; input f@@; output; end; end; datalines; 65 42 18 6 30 23 13 11 ; proc npar1way wilcoxon; class g; var x; freq f; run; quit;
程序和例6-1的基本相同,只根据资料特点增加了freq语句。提交程序,运行结果如下。
The SAS System 22:08 Tuesday, December 10, 2002 7 The NPAR1WAY Procedure Wilcoxon Scores (Rank Sums) for Variable x Classified by Variable g
Sum of Expected Std Dev Mean g N Scores Under H0 Under H0 Score -------------------------------------------------------------------------------------------------- 1 126 12955.50 13167.0 389.776482 102.821429 2 82 8780.50 8569.0 389.776482 107.079268
Average scores were used for ties.