圆柱螺旋压缩(拉伸)弹簧的设计计算
- 格式:doc
- 大小:204.50 KB
- 文档页数:16
圆柱螺旋压缩弹簧计算
一、螺旋弹簧
1、什么是螺旋弹簧
螺旋弹簧是一种非常常见的弹簧装置,由一根圆柱形螺旋卷筒和一根
螺旋杆组成。
它可以在圆柱形螺旋卷筒内盘绕螺旋卷筒的外部螺旋杆,形
成一种紧凑的压缩弹簧,具有优良的弹性性能。
2、有什么作用
螺旋弹簧用于缓冲和支撑,它由一小根金属圆柱状螺旋组成,具有优
良的弹性性能,可以抗震,分散压力,减少振动,降低噪声,是广泛应用
于航天,医疗,机械,汽车,石油,能源,玩具,电子等行业的理想产品。
3、如何计算
(1)确定载荷:载荷是指在伸长或压缩时的弹簧所受的最大负荷。
(2)确定伸长:伸长是指弹簧伸长或变形的距离。
(3)确定螺旋弹簧尺寸:螺旋弹簧的外径和层数将根据载荷和伸长
来确定,而螺旋弹簧的任何变形都将影响其尺寸。
(4)确定弹簧材料:根据螺旋弹簧在应用中的工作环境,从材料的
质量、硬度、耐腐蚀性和覆盖层等方面来选择弹簧材料。
二、圆柱螺旋压缩弹簧
1、什么是圆柱螺旋压缩弹簧。
弹簧螺旋角计算公式弹簧螺旋角是在弹簧设计和制造中一个非常重要的参数。
它的计算对于确保弹簧能够正常工作,满足特定的性能要求具有关键意义。
咱们先来说说弹簧螺旋角到底是啥。
想象一下一个弹簧,就像咱们常见的那种压缩弹簧或者拉伸弹簧,它一圈一圈绕起来的那个角度,就是螺旋角啦。
这个角度的大小会影响弹簧的很多性能,比如它的弹性、承载能力等等。
那怎么计算这个螺旋角呢?一般来说,我们可以用下面这个公式:tanα = p / (πd)这里的α就是螺旋角,p 是弹簧的螺距,d 是弹簧的中径。
可能有人会问,啥是螺距?啥又是中径?别着急,咱们一个一个来解释。
螺距呢,就是弹簧相邻两圈对应点之间的轴向距离。
比如说,你拿一个弹簧,从这一圈的某个点,到相邻的下一圈的对应点,这之间的距离就是螺距。
中径呢,就是弹簧钢丝中心线所在圆柱的直径。
我给您举个例子哈。
比如说有一个弹簧,它的螺距是 10 毫米,中径是 50 毫米。
那咱们来算算它的螺旋角。
tanα = 10 / (π×50) ,算出来之后,再用反正切函数就可以求出螺旋角α啦。
在实际的工程应用中,弹簧螺旋角的计算可不是这么简单就完事儿的。
还得考虑很多其他的因素,比如说材料的特性、工作环境的要求等等。
我记得有一次,我们工厂要生产一批特殊规格的弹簧,用于一种新型的机械设备。
客户对弹簧的性能要求特别高,其中就包括对螺旋角的精确控制。
我们的工程师们可真是费了好大的劲儿,反复计算、试验,不断调整参数,就为了能让弹簧达到最佳的性能。
那几天,整个车间都弥漫着紧张的气氛。
大家都知道,这批弹簧要是做不好,不仅影响订单,还可能影响咱们厂的声誉。
最后,经过大家的努力,终于算出了合适的螺旋角,生产出了让客户满意的弹簧。
所以说啊,别看这小小的弹簧螺旋角,里面的学问可大着呢!它需要我们仔细计算,精心设计,才能让弹簧发挥出最好的作用。
总之,弹簧螺旋角的计算公式虽然看起来不复杂,但要真正运用好,还得结合实际情况,综合考虑各种因素。
圆柱螺旋弹簧设计计算
圆柱螺旋弹簧设计计算:
1. 理论背景:
a) 圆柱螺旋弹簧的原理:圆柱螺旋弹簧,也叫圆柱形螺旋弹簧,是由一组相互
交错的螺旋体和螺母组成的。
当加载时,弹簧体得到延伸,而螺母围绕弹簧体旋转,除把压缩和拉伸联结在一起发挥缓冲作用外,还具有润滑作用。
b) 圆柱螺旋弹簧设计原则:圆柱螺旋弹簧的设计应遵循计算公式、材料要求、
可行性等原则。
计算公式需要仔细考虑,其结果取决于弹簧的存在位置,构造形状和材料等因素,都受常规制造工艺条件的制约。
2. 设计流程:
a) 需求确定:确定所使用的圆柱螺旋弹簧的类型、材料、构造形状、尺寸和其
他设计要求。
b) 计算设计:根据设计要求和原则,运用有关计算公式,计算出所需弹簧的中
心周长和绕线转折处周长等参数。
c) 设计校核:根据实际使用情况及要求,综合分析由计算设计结果确定的弹簧
尺寸,进行结构安全性分析和性能验证,设计完善。
3. 成品检测:
a) 符合要求:圆柱螺旋弹簧成品检查,校验其各尺寸参数是否符合要求,确保
图纸尺寸的准确性。
b) 功能测试:检查弹簧的功能是否正常,测试弹簧的位移、压缩、伸出和伸长
量是否符合要求。
c) 耐久性测试:测试圆柱螺旋弹簧的耐久性,检测其在一定环境条件下的使用
寿命和安全性。
4. 总结:
圆柱螺旋弹簧的设计计算是一个复杂的过程,在设计计算前要确定需求,根据
设计原则完成计算设计流程,确保设计质量,对成品进行检测,及时发现存在的质量问题,提高质量水平。
圆柱螺旋弹簧设计计算表
4 - 16
外径Demax. 350 mm工作线圈数nmin. 3比
率b/h1:5 - 5:1自由长度L0max. 1500 mm长细
比L0/D1 - 15间距p(0.2 - 0.4) D - 无预压弹簧
弹簧收尾设计
.
A =半圈
B = 整圈
C = 侧面整圈
D =双扭曲整圈
E = 侧面双扭曲整圈
F = 内部整圈
G =. 提高的挂勾H = 侧面提高的挂勾L = 锥形旋转小圈收尾I = 小圈J = 侧面小圈K = 倾斜的整圈
M = 锥形旋转螺栓收尾N = 螺丝状收尾O = 螺丝状束缚收尾
拉伸弹簧通常使用几种不同高度和特性的挂钩来固定(A..J)。
从技术角度讲,固定挂钩是最好的解决方案,但是,这也带来弹簧负载的一些确定问题。
弹簧负载带给挂钩集中的负载应力,该负载应力可能明显地高于弹簧线圈所计算的应力。
针对在挂钩中产生的弯曲应力,小圈(类别 I, J)或双圈(类别 D, E)是最佳方案。
针对由线变成线圈所产生的集中的扭转应力,侧边整圈(类别 C,E,I)是最佳方案。
对于挂钩的独立设计,以下挂钩高度值指定如下:
热成型弹簧,方形线圈弹簧以及循环负载弹簧通常无弹簧卡钩使用(M..O. design)。
无固定挂钩弹簧使用边缘线圈固定,弹簧功能变形中线圈间距不会变化。
弹簧线长度计算公式一、弹簧线长度计算的基本原理。
1. 螺旋弹簧。
- 对于圆柱螺旋弹簧,其线长度(展开长度)计算基于螺旋线的几何形状。
- 假设圆柱螺旋弹簧的中径为D(弹簧外径减去钢丝直径),节距为t,有效圈数为n。
- 弹簧一圈的展开长度可以根据圆周长公式l = π D(这里D为弹簧中径)。
- 那么弹簧的总长度L=π Dn+钩部展开长度(如果有钩部的话)。
- 如果考虑两端并紧磨平,一般并紧圈数为n_1(通常取n_1 = 1.5 - 2.5圈),此时弹簧总长度L=π D(n + n_1)+钩部展开长度。
- 对于节距t,在计算总长度时,如果没有特殊说明,当考虑弹簧的压缩或拉伸行程时,在有效圈数n的范围内,总长度还可以表示为L=(n - 1)t+2d+钩部展开长度(d为弹簧丝直径)。
2. 圆锥螺旋弹簧。
- 圆锥螺旋弹簧的中径是变化的。
设圆锥弹簧的大端中径为D_1,小端中径为D_2,节距为t,有效圈数为n。
- 其一圈的平均展开长度l=π(D_1 + D_2)/(2)。
- 则弹簧的总长度L=π(D_1 + D_2)/(2)n+钩部展开长度(如果有钩部)。
二、实际应用中的注意事项。
1. 材料特性影响。
- 在计算弹簧线长度时,有时需要考虑材料的弹性变形等因素。
例如,当弹簧受到较大的拉力或压力时,其实际长度会发生变化,在精确计算时需要根据材料的弹性模量等参数进行修正。
2. 制造工艺的影响。
- 实际制造过程中,弹簧的绕制工艺可能会导致一定的误差。
如在绕制过程中钢丝的拉伸、弯曲半径的微小变化等,这些因素在高精度要求的弹簧线长度计算中需要考虑。
在设计时,可以根据制造工艺的精度等级,预留一定的长度余量。
圆柱螺旋扭转弹簧设计计算目前,广泛应用的弹簧应力和变形的计算公式是根据材料力学推导出来的。
若无一定的实际经验,很难设计和制造出高精度的弹簧,随着设计应力的提高,以往的很多经验不再适用。
例如,弹簧的设计应力提高后,螺旋角加大,会使弹簧的疲劳源由簧圈的内侧转移到外侧,所有的计算也只是给我们一个大的方向从而减少研发成本。
下面我给大家介绍下大至的计算方法。
(见图一)圆线弹黄64 • 180 ∙Af ∙ // ∙ D12∙180∙Λ∕∙∏∙Z)1 2∙ 180-螺旋线圈构成的圆柱形弹簧,工作线圈间为恒定间距,能够承受垂直于环绕轴沿着卷绕方向和反方向的扭力。
线径大于16mm的弹簧通常为冷卷。
热成型弹簧用于强负载的直径大于IOnIm的较大尺寸弹簧。
备注:该计算设计用于线圈卷绕方向的扭转负载,不计入弹簧内部或外部导向零件的支撑效果。
也不计入出现的摩擦效果。
线圈之间的可能的摩擦也不计入在内。
适合中低负载、线性工作特性、相关低弹簧系数、低费用。
扭簧按两种基本设计制造:紧和松(线圈间隙)。
如果是静态负载,紧凑的线圈为推荐选项。
但是,工作线圈之间出现摩擦,这将导致弹簧寿命减少。
另外,线圈的过于接近的间隙阻止弹簧完美喷丸。
备注:承载负载过程中,在卷绕方向上的负载弹簧长度增加。
热成型弹簧通常一定在线圈之间会有间隙。
C二弹簧指数(c=D∕d; c=D∕t)[-]b二线宽[单位:mm, in]d二线径[单位:mm, in]D二中心弹簧直径[单位:mm, in]M二弹簧负载[Nmπι, Ib in]E=拉伸弹性模量[MPa, psi]k二扭转弹簧率[Nmm∕° , Ib in∕° ]Kb=曲线修正因数[-]LK=卷绕部分的长度[单位:mm, in]n=工作线圈数[-]P二线圈间距[单位:mm, in]廿线厚度[单位:mm, in]a=角度偏移[° ]dθ=自由弹簧的角度[。
]S=弹簧材料的弯曲应力[MPa, psi]曲线修正因数、修正因数显示弹簧来自曲线的额外应力、弹簧功能尺寸。
弹簧的几何尺寸计算公式作者:转载关键词:弹簧的几何尺寸计算公式录入时间:2005年7月6日表12-1 圆柱形压缩、拉伸螺旋弹簧的几何尺寸计算公式名称与代号压缩螺旋弹簧拉伸螺旋弹簧弹簧直径d/mm由强度计算公式确定弹簧中径D2/mm D2=Cd弹簧内径D1/mm D1=D2-d弹簧外径D/mm D=D2+d弹簧指数C C=D2/d一般4≤C≤6螺旋升角γ/°对压缩弹簧,推荐γ=5°~9°有效圈数n由变形条件计算确定一般n>2总圈数n1压缩n1=n+(2~2.5);拉伸n1=nn1=n+(1.5~2)(YⅠ型热卷);n1的尾数为1/4、1/2、3/4或整圈,推荐1/2圈自由高度或长度H0/mm两端圈磨平n1=n+1.5时,H0=np+dn1=n+2时,H0=np+1.5dn1=n+2.5时,H0=np+2d两端圈不磨平n1=n+2时,H0=np+3dn1=n+2.5时,H0=np+3.5dLI型H0=(n+1)d+D1LⅡ型H0=(n+1)d+2D1LⅦ型H0=(n+1.5)d+2D1工作高度或长度H n/mmH n=H0-λn H n=H0+λn,λn-变形量节距p/mm p=d间距δ/mmδ=p-dδ=0压缩弹簧高径比b b=H0/D2展开长度L/mm L=πD2n1/cosγL=πD2n+钩部展开长度弹簧设计基本公式作者:转载关键词:设计录入时间:2005年4月13日(1)强度计算公式式中,K为曲度系数,;F为载荷;C为弹簧指数(亦称旋绕比),C = D2/d;[τ] 为弹簧材料的许用扭转应力。
由此可计算弹簧丝直径d。
(2)刚度计算公式式中,n 为弹簧的有效圈数;G为弹簧的切变模量;λ为弹簧变形量;D为弹簧圈中径;2其它符号意义同前。
(3)稳定性计算公式为了限制弹簧载荷F小于失稳时的临界载荷F cr。
一般取F = F cr/(2~2.5),其中临界载荷可按下式计算F cr = C B kH0式中,C B 为不稳定系数注:1---两端固定;2---一端固定;3---两端自由转动。
圆柱螺旋压缩(拉伸)弹簧的设计计算 (一)几何参数计算 普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中
径D2、内径D1、节距p、螺旋升角α及弹 簧丝直径d。由下图圆柱螺旋弹簧
的几何尺寸参数图可知,它们的关系为: 式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。
圆柱螺旋弹簧的几何尺寸参数 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表([color=#0000ff普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。
普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式 参数名称及代号 计算公式 备注 压缩弹簧 拉伸弹簧
中 径D2 D2=Cd 按普通圆柱螺旋弹簧尺寸系列表取标准值
内 径D1 D1=D2-d 外 径D D=D2+d 旋绕比C C=D2/d 压缩弹簧长细比b b=H0/D2
b在1~5.3的范
围内选取
自由高度或长度H0
H0≈pn+(1.5~2)d (两端并紧,磨平) H0≈pn+(3~3.5)d (两端并紧,不磨
H0=nd+钩环轴向长
度 平) 工作高度或长度 H1,H2,…,Hn
Hn=H0-λn Hn=H0+λn λn--工作变形量
有效圈数n 根据要求变形量按式(16-11)计算 n≥2
总圈数n1 n1=n+(2~2.5)(冷卷) n1=n+(1.5~2) (YII型热卷) n1=n 拉伸弹簧n1尾数为1/4,1/2,3/4整圈。推荐用1/2圈
节 距p p=(0.28~0.5)D2 p=d 轴向间距δ δ=p-d
展开长度L L=πD2n1/cosα L≈πD2n+钩环展
开长度
螺旋角α α=arctg(p/πD2)
对压缩螺旋弹簧,推荐 α=5°~9° 质 量ms ms=
γ为材料的密度,对各种钢,
γ=7700kg/;对铍青
• (二)特性曲线 弹簧应具有经久不变的弹性,且不允许产生永久变形。因此在设计弹簧时,务必使其工作应力在弹性极限范围内。在这个范围内工作的压缩弹 簧,当承受轴向载荷P时,弹簧将产生相应的弹性变 形,如右图a所示。为了表示弹簧的载荷与变形的关系,取纵坐标表示弹簧承受的载荷,横坐标表示弹簧的变形,通常载荷和变形成直线关系(右图b)。 这种表示载荷与变形的关系的曲线称为弹簧的特性曲线。对拉伸弹簧,如图性曲线> 所示,图b为无预应力的拉伸弹簧的特性曲线;图c为有预应力的拉伸弹簧的特性曲线。
右图a中的H0是压缩弹簧在没有承受外力时的自由长度。弹簧在安装时,通常预加一个压力 Fmin,使它可靠地稳定在安装位置上。Fmin称为弹簧的最小载荷(安装载
荷)。在它的作用下,弹簧的长度 被压缩到H1其压缩变形量为λmin。
Fmax为弹簧承受的最大工作载荷。
在Fmax作用下,弹簧长度减到H2, 其压缩变形量增到λmax。λmax与λmin的差即为弹簧的 工作行程
圆柱螺旋压缩弹簧的特性曲线 h,h=λmax-λmin。 Flim为弹簧的
极限载荷。在该力的作用下,弹簧丝内的应力达到了材料的弹性极
限。与Flim对应的弹簧长度为H3,
压缩变形量为λlim。 等节距的圆柱螺旋压缩弹簧的特性曲线为
一直线,亦即
压缩弹簧的最小工作载荷通常取为
Fmin=(0.1~
0.5)Fmax;但对有预应力的拉伸弹簧(图螺旋拉伸弹簧的特性曲
线>), Fmin>F0,F0为使只有预应力的拉伸弹簧开始变形时所需的初拉力。弹簧的最大工作
载荷Fmax,由弹簧在机构中的工作条件决定。但不应到达它的极限载荷,通常应保持Fmax≤0.8Flim。 弹簧的特性曲线应绘在弹簧工作图中,作为检验和试验时的依据 圆柱螺旋拉伸弹簧的特性曲线 之一。此外,在设计弹簧时,利用特性曲线分析受载与变形的关系也较方便。
(三) 圆柱螺旋压缩(拉伸)弹簧受载时的应力及变形 圆柱螺旋弹簧受压或受拉时,弹簧丝的受力情况是完全一样的。现就下图<圆柱螺旋压缩弹簧的受力及应力分析>所示的圆形截面弹簧丝的压缩弹簧承受轴向载荷P的情况进行分析。
由图(图中弹簧下部断去,末示出)
可知,由于弹簧丝具有升角α,故在通过弹簧轴线 的截面上,弹簧丝的截面
A-A呈椭圆形,该截面上作用着力F及扭矩。因而在弹簧 丝的法向截面B-B上则作用有横向力Fcosα、轴向力Fsinα、弯矩M=Tsinα及扭矩Tˊ= Tcosα。 由于弹簧的螺旋升角一般取为α=5°~9°,故sinα≈0;
cosα≈1(下图),则截面B-B上的应力
(下图)可近似地取为
式中C=D2/d 称为旋绕比(或弹簧指数)。为了使弹簧本身较为稳定,不致颤动和过软,C值不能太大;但为避免卷绕时弹簧丝受到强烈弯曲,C值又不应太小。C值的范围为4~16(表), 常用值为5~8。 圆柱螺旋压缩弹簧的受力及应力分析 常用旋绕比C值
d(mm) 0.2~0.4 0.45~1 1.1~2.2 2.5~6 7~16 18~42
C=D2/d 7~14 5~12 5~10 4~9 4~8 4~6
为了简化计算,通常在上式中取1+2C≈2C(因为当C=4~16时,2C>>l,实质上即为略去了 τp),由于弹簧丝升角和曲率的影响,弹簧丝截面中的应力分布将如图c中的粗实线所示。由图可知,最大应力产生在弹簧丝截面内侧的m点。实践证明,弹簧的破坏也大多由这点开始。为了考虑弹簧丝的升角和曲率对弹簧丝中应力的影响,现引进一个补偿系数K(或称曲度系数),则弹簧丝内侧的最大应力及强度条件可表示为
式中补偿系数K,对于圆截面弹簧丝可按下式计算:
圆柱螺旋压缩(拉伸)弹簧受载后的轴向变形量λ可根据材料力学关于圆柱螺旋弹簧变形量的公式求得: 式中:n—弹簧的有效圈数; G—弹簧材料的切变模量,见前一节表。
如以Pmax代替P则 最大轴向变形量为:
1) 对于压缩弹簧和无预应力的拉伸弹簧:
2)对于有预应力的拉伸弹簧: 拉伸弹簧的初拉力(或初应力)取决于材料、弹簧丝直径、弹簧旋绕比和加工方法。
用不需淬火的弹簧钢丝制成的拉伸弹簧,均有一定的初拉力。如不需要初拉力时,各圈间应 有间隙。经淬火的弹簧,没有初拉力。当选取初拉力时,推荐初应力τ0'值在下图的阴影区内选取。
初拉力按下式计算:
使弹簧产生单位变形所需的载荷kp称为弹簧刚度,即
弹簧初应力的选择范围 弹簧刚度是表征弹簧性能的主要参数之一。它表示使弹簧产生单位变形时所需的力,刚度愈大,需要的力愈大,则弹簧的弹力就愈大。但影响弹簧刚度的因
素很多,由于kp与C的三次方成反比,即C值对kp的影响很大。所以,合理地选择C值就能控制弹簧的弹力。 另外,kp还和G、d、n有关。在调整弹簧刚度时,应综合考虑这些因素的影响。
• (四) 承受静载荷的圆柱螺旋压缩(拉伸)弹簧的设计
弹簧的静载荷是指载荷不随时间变化,或虽有变化但变化平稳,且总的重复次数不超过次的交变载荷或脉动载荷而言。在这些情况下,弹簧是按静载强度来设计的。 在设计时,通常是根据弹簧的最大载荷、最大变形、以及结构要求(例如安装空间对弹簧尺寸的限制)等来决定弹簧丝直径、弹簧中径、工作圈数、弹簧的螺旋升角和长度等。
具体设计方法和步骤如下:
1) 根据工作情况及具体条件选定材料,并查取其机械性能数据。 2) 选择旋绕比C,通常可取C≈5~8(极限状态时不小于4或超过16),并算出补偿系数 K值。 3) 根据安装空间初设弹簧中径D2,乃根据C值估取弹簧丝直径d,并查取弹簧丝的许用应力。
4) 试算弹簧丝直径d ' 必须注意,钢丝的许用应力决定于其σB,而σB是随着钢丝的直径变化的,又因[τ]是按估取的d值查得σB的H计算得来的,所以此时试算所得的d '值,必须与原来估取的d值相比较,如果两者相等或很接近,即可按标准圆整为邻近的标准弹簧钢丝直径d,并按D2=Cd 以求出 ;如果两者相差较大,则应
参考计算结果重估d值,再查其而计算[τ],代入上式进行试算,直至满意后才能计算D2.计算出的D2,值也要按表进行圆整。 5) 根据变形条件求出弹簧工作圈数:
对于有预应力的拉伸弹簧