圆柱螺旋压缩弹簧计算
- 格式:doc
- 大小:81.50 KB
- 文档页数:3
圆柱螺旋压缩(拉伸)弹簧的设计计算
一、圆柱螺旋压缩(拉伸)弹簧的设计原理
1、圆柱螺旋压缩(拉伸)弹簧原理
圆柱螺旋压缩(拉伸)弹簧是一种特殊的弹簧,其结构设计使用了螺
旋结构,螺旋结构的形状是一个圆柱形的圆柱螺纹。
圆柱螺旋压缩(拉伸)弹簧的压缩(拉伸)受力分布差异,当进行压缩(拉伸)力作用时,弹簧
的整个螺旋节在不同的力矩作用下会产生相应的弹性变形,从而使得弹簧
的中心轴变长,以缩短弹簧的长度。
2、圆柱螺旋压缩(拉伸)弹簧特性
圆柱螺旋压缩(拉伸)弹簧具有对同直径和外径的小变化具有很强的
适应性的特性,同时,压缩(拉伸)力也有必要时可以根据弹性变形率来
改变。
圆柱螺旋压缩(拉伸)弹簧的压缩(拉伸)受力分布差异,当进行
压缩(拉伸)力作用时,弹簧的整个螺旋节在不同的力矩作用下会产生相
应的弹性变形,从而使得弹簧的中心轴变长,从而缩短弹簧的长度。
此外,这种弹簧具有紧凑结构,能够有效地减少设备装置内的多余空间,重量轻,由于采用细小的钢、不锈钢、铜或其它有良好装配性的金属等材料,具有
良好的耐磨性、耐腐蚀性和耐臭氧性等性能。
圆柱螺旋压缩弹簧计算
公式
-CAL-FENGHAI.-(YICAI)-Company One1
普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式
参数名称及代号计算公式备注
压缩弹簧拉伸弹簧
中径D2 D2=Cd 按普通圆柱螺旋弹簧尺寸系列表取标准值
内径D1 D1=D2-d
外径D D=D2+d
旋绕比C C=D2/d压缩弹簧长细比b b=H0/D2 b在1~的范围内选取自由高度或长度H0 H0≈pn+~2)d(两端并紧,磨平)H0≈pn+(3~d(两端并紧,不磨平) H0=nd+钩环轴向长度工作高度或长度H1,H2,…,Hn Hn=H0-λn Hn= H0+λn λn--工作变形量有效圈数n 根据要求变形量按式(16-11)计算n≥2总圈数n1 n1=n+(2~(冷卷)n1=n+~2) (YII型热卷) n1=n 拉伸弹簧n1尾数为1/4,1/2,3/4整圈。
推荐用1/2圈节距p p=~D2 p=d 轴向间距δ δ=p
-d 展开长度L L=πD2n1/cosα L≈πD2n+钩环展开长度螺旋角α α=arctg(p/πD 2) 对压缩螺旋弹簧,推荐α=5°~9°质量ms ms= γ为材料的密度,对各种钢,γ=7700kg/ ;对铍青铜,γ=8100kg/。
1. 弹簧刚度:
2. 力值: 其中:G 为材料剪切模量,一般不锈钢取71500Mpa,碳钢取
78500Mpa ;
d 为材料直径;
D 为弹簧中径;
n 为弹簧有效圈数;
f 为变形量(拉压行程)。
3. 应力: K 为曲度系数,公式为: 其中C 为弹簧旋绕比,是弹簧中径与线径的比值,即
4. 下表是GB/T23935-2009(圆柱螺旋弹簧设计计算)中压缩弹簧及拉伸弹簧的试验切应力及许用应力表
表2-1
n D d G 34
,
8P =f 8f 34,
⋅==n D Gd P P K PC K ⋅=⋅=2
3d 8d 8PD ππτC
C C K 615.04414+--=d D
C =
比压簧多了初拉力,加上初拉力就行。
初拉力: 其中初拉力τ0按初切应力图选取,见下图。
三.扭簧:
1.计算刚度 Dn
Ed M 3670'4= Nmm/° 2.扭矩 ϕ⋅=Dn
Ed M 36704
Nmm 式中:d---材料直径;
E---材料的弹性模量,一般不锈钢丝取188000Mpa ,碳素钢丝
取206000Mpa ;
D---弹簧外径;
ϕ---弹簧的扭转行程(角度);
4. 应力: K1为曲度系数,顺旋向扭转取1,逆旋向扭转时按下式:
308τπ⋅=D d P 132
.10K d
M ⋅=σ
下表是GB/T23935-2009(圆柱螺旋弹簧设计计算)中扭转弹簧的试验切应力及许用应力表
C
C C C K 4414221---=。
圆柱螺旋压缩弹簧计算1.圆柱螺旋压缩弹簧的计算原理:圆柱螺旋压缩弹簧的计算原理基于胡克定律和弹性力学理论。
胡克定律指出,在弹性范围内,弹簧的变形量与外力之间存在线性关系。
根据弹性力学理论,圆柱螺旋压缩弹簧的变形量与载荷、弹簧材料的物理性质以及弹簧的几何尺寸相关。
2.弹性系数的计算:弹簧的弹性系数是指单位变形量产生的弹力大小,通常用牛顿/米(N/m)表示。
对于圆柱螺旋压缩弹簧,其弹性系数的计算公式为:K=(Gd^4)/(8D^3n)其中,K为弹性系数,G为剪切模量,d为线径,D为弹簧直径,n为弹簧的有效圈数。
3.刚度系数的计算:弹簧的刚度系数是指单位载荷产生的变形量大小,通常用米/牛顿(m/N)表示。
对于圆柱螺旋压缩弹簧,其刚度系数的计算公式为:C=1/K其中,C为刚度系数,K为弹性系数。
4.变形量的计算:ΔL=(F*L)/(n*Gd^4/8D^3)其中,ΔL为变形量,F为外力大小,L为弹簧的自由长度,n为弹簧的有效圈数,G为剪切模量,d为线径,D为弹簧直径。
5.实例分析:假设有一个圆柱螺旋压缩弹簧,其线径为10mm,弹簧直径为50mm,有效圈数为10,剪切模量为80GPa,弹簧的自由长度为100mm。
现在对该弹簧进行计算。
首先计算弹性系数K:K=(80*10^9Pa*(10/1000)^4)/(8*(50/1000)^3*10)≈8.025N/m然后计算刚度系数C:C=1/K≈0.1249m/N最后计算变形量ΔL:假设外力F为100NΔL = (100N * 100mm) / (10 * (80 * 10^9 Pa * (10 / 1000)^4) / (8 * (50 / 1000)^3))综上所述,圆柱螺旋压缩弹簧的计算涉及弹性系数、刚度系数和变形量的计算。
根据弹簧的几何尺寸、材料性质和外力大小,可以通过相应的计算公式得到这些参数,从而进行弹簧的设计和选择。
圆柱螺旋压缩弹簧计算公式
弹簧常量(Spring Constant)是指单位压缩或拉伸长度下所储存的能量。
它是衡量弹簧刚性和柔性的重要指标。
圆柱螺旋压缩弹簧的弹簧常量可以通过以下公式计算:
k=(Gd^4)/(8D^3n)
其中,k为弹簧常量,G为弹簧材料的剪切模量,d为弹簧线圈的直径,D为弹簧线圈的平均直径,n为弹簧线圈的总数。
F = kx
其中,F为受到的力,k为弹簧常量,x为弹簧的位移。
Fmax = kxmax
其中,Fmax为最大力,k为弹簧常量,xmax为允许的最大位移。
Lmax = Ln - (D/2 + d/2 + c)
其中,Lmax为最大压缩长度,Ln为弹簧线圈的总长度,D为弹簧线圈的平均直径,d为弹簧线圈的直径,c为线圈间的缝隙。
x_max = (Ln - L0) / n
其中,x_max为最大位移,Ln为弹簧线圈的总长度,L0为弹簧的初始长度,n为弹簧线圈的总数。
S=F/x
其中,S为刚度,F为受到的力,x为位移。
E = (1/2)kx^2
其中,E为弹性能量,k为弹簧常量,x为位移。
以上就是关于圆柱螺旋压缩弹簧的计算公式。
通过这些公式,我们可以准确地计算弹簧的性能参数,为机械设计提供依据,并确保弹簧在实际使用中能够正常工作。
当然,在实际设计中,还需要考虑许多其他因素,如疲劳寿命、可靠性和安全系数等,并结合实际应用需求进行综合设计。