第2讲函数的单调性与最值复习讲义
- 格式:doc
- 大小:671.77 KB
- 文档页数:24
第2讲 函数的单调性与最值一、知识梳理 1.函数的单调性 (1)单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.[注意] 有多个单调区间应分开写,不能用符号“∪”联结,也不能用“或”联结,只能用“逗号”或“和”联结.2.函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足条件 (1)对于任意x ∈I ,都有f (x )≤M ; (2)存在x 0∈I ,使得f (x 0)=M(1)对于任意x ∈I ,都有f (x )≥M ; (2)存在x 0∈I ,使得f (x 0)=M结论 M 为最大值M 为最小值1.函数单调性的两个等价结论 设∀x 1,x 2∈D (x 1≠x 2),则(1)f (x 1)-f (x 2)x 1-x 2>0(或(x 1-x 2)[f (x 1)-f (x 2)]>0)⇔f (x )在D 上单调递增.(2)f (x 1)-f (x 2)x 1-x 2<0(或(x 1-x 2)[f (x 1)-f (x 2)]<0)⇔f (x )在D 上单调递减.2.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值. 二、教材衍化1.函数f (x )=x 2-2x 的单调递增区间是________. 答案:[1,+∞)(或(1,+∞))2.若函数y =(2k +1)x +b 在R 上是减函数,则k 的取值范围是________. 解析:因为函数y =(2k +1)x +b 在R 上是减函数,所以2k +1<0,即k <-12.答案:⎝⎛⎭⎫-∞,-12 3.已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为__________.解析:可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25. 答案:2 25一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数f (x )的单调递增区间是[1,+∞).( ) (3)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( )(4)所有的单调函数都有最值.( )(5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )(6)闭区间上的单调函数,其最值一定在区间端点处取到.( ) 答案:(1)× (2)× (3)× (4)× (5)× (6)√ 二、易错纠偏常见误区| (1)求单调区间忘记定义域导致出错;(2)混淆“单调区间”与“在区间上单调”两个概念出错. 1.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( ) A .(-∞,1] B .[3,+∞) C .(-∞,-1]D .[1,+∞)解析:选B .设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞).2.若函数f (x )=x 2-2mx +1在[2,+∞)上是增函数,则实数m 的取值范围是________. 解析:由题意知,[2,+∞)⊆[m ,+∞), 所以m ≤2. 答案:(-∞,2]考点一 确定函数的单调性(区间)(基础型) 复习指导| 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义.核心素养:数学抽象角度一 判断或证明函数的单调性(一题多解)试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 【解】 法一:设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),函数f (x )在(-1,1)上单调递减; 当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上单调递增. 法二:f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.利用定义法证明或判断函数单调性的步骤[注意] 判断函数的单调性还有图象法、导数法、性质法等. 角度二 利用函数图象求函数的单调区间求函数f (x )=-x 2+2|x |+1的单调区间.【解】 f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,可知单调递增区间为(-∞,-1]和(0,1],单调递减区间为(-1,0]和(1,+∞).【迁移探究】 (变条件)若本例函数变为f (x )=|-x 2+2x +1|,如何求解?解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调递增区间为(1-2,1]和(1+2,+∞);单调递减区间为(-∞,1-2]和(1,1+2].确定函数的单调区间的方法[注意] (1)函数在某个区间上是单调函数,但在整个定义域上不一定是单调函数,如函数y =1x在(-∞,0)和(0,+∞)上都是减函数,但在定义域上不具有单调性.(2)“函数的单调区间是M ”与“函数在区间N 上单调”是两个不同的概念,显然N ⊆M .1.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 可能是( ) A .(-∞,0) B .⎣⎡⎦⎤0,12 C .[0,+∞)D .⎝⎛⎭⎫12,+∞解析:选B .y =|x |(1-x )=⎩⎪⎨⎪⎧x (1-x ),x ≥0-x (1-x ),x <0=⎩⎪⎨⎪⎧-x 2+x ,x ≥0x 2-x ,x <0=⎩⎨⎧-⎝⎛⎭⎫x -122+14,x ≥0,⎝⎛⎭⎫x -122-14,x <0.画出函数的草图,如图.由图易知原函数在⎣⎡⎦⎤0,12上单调递增. 2.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x-xD .f (x )=ln(x +1)解析:选C .由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调,对于f (x )=1x -x ,因为y =1x 与y=-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.3.判断函数y =2x 2-3x的单调性.解:因为f (x )=2x 2-3x =2x -3x ,且函数的定义域为(-∞,0)∪(0,+∞),而函数y =2x和y =-3x 在区间(-∞,0)上均为增函数,根据单调函数的运算性质,可得f (x )=2x -3x 在区间(-∞,0)上为增函数.同理,可得f (x )=2x -3x在区间(0,+∞)上也是增函数.故函数f (x )=2x 2-3x 在区间(-∞,0)和(0,+∞)上均为增函数.考点二 函数的最值(值域)(基础型) 复习指导| 理解函数的最大(小)值,并能利用函数的单调性求最值.核心素养:逻辑推理(1)(一题多解)函数y =x +x -1的最小值为________.(2)(2020·福建漳州质检)已知函数f (x )=⎩⎪⎨⎪⎧2x+a ,x ≤0,x +4x ,x >0有最小值,则实数a 的取值范围是________.【解析】 (1)法一(换元法):令t =x -1,且t ≥0,则x =t 2+1, 所以原函数变为y =t 2+1+t ,t ≥0. 配方得y =⎝⎛⎭⎫t +122+34, 又因为t ≥0,所以y ≥14+34=1,故函数y =x +x -1的最小值为1.法二:因为函数y =x 和y =x -1在定义域内均为增函数,故函数y =x +x -1在[1,+∞)内为增函数,所以y min =1.(2)(基本不等式法)由题意知,当x >0时,函数f (x )=x +4x≥2x ·4x=4,当且仅当x =2时取等号;当x ≤0时,f (x )=2x +a ∈(a ,1+a ],因此要使f (x )有最小值,则必须有a ≥4.【答案】 (1)1 (2)[4,+∞)求函数最值的五种常用方法1.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数,所以⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎨⎧1a -1=1,1b -1=13,所以⎩⎪⎨⎪⎧a =2,b =4.所以a +b =6. 答案:62.(一题多解)对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析:法一:在同一直角坐标系中, 作出函数f (x ),g (x )的图象, 依题意,h (x )的图象如图所示. 易知点A (2,1)为图象的最高点, 因此h (x )的最大值为h (2)=1.法二:依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, 所以h (x )在x =2处取得最大值h (2)=1. 答案:1考点三 函数单调性的应用(综合型) 复习指导| 利用函数单调性求解,要明确函数的所给区间,不同区间有不同的单调性.角度一 比较两个函数值已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c【解析】 因为f (x )的图象关于直线x =1对称.由此可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时, [f (x 2)-f (x 1)](x 2-x 1)<0恒成立, 知f (x )在(1,+∞)上单调递减.因为1<2<52<e ,所以f (2)>f ⎝⎛⎭⎫52>f (e), 所以b >a >c . 【答案】 D比较函数值大小的思路:比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.角度二 解函数不等式已知函数f (x )=-x |x |,x ∈(-1,1),则不等式f (1-m )<f (m 2-1)的解集为________.【解析】 由已知得f (x )=⎩⎪⎨⎪⎧x 2,-1<x ≤0,-x 2,0<x <1,则f (x )在(-1,1)上单调递减,所以⎩⎨⎧-1<1-m <1,-1<m 2-1<1,m 2-1<1-m ,解得0<m <1,所以所求解集为(0,1). 【答案】 (0,1)在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解,此时应特别注意函数的定义域.角度三 求参数的值或取值范围(1)(2020·南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.(2)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a的取值范围是________.【解析】 (1)设1<x 1<x 2,所以x 1x 2>1. 因为函数f (x )在(1,+∞)上是增函数,所以f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2=(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0. 因为x 1-x 2<0,所以1+ax 1x 2>0,即a >-x 1x 2.因为1<x 1<x 2,x 1x 2>1,所以-x 1x 2<-1,所以a ≥-1. 所以a 的取值范围是[-1,+∞).(2)作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.【答案】 (1)[-1,+∞) (2)(-∞,1]∪[4,+∞)利用单调性求参数的策略(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.1.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A .⎝⎛⎭⎫13,23 B .⎣⎡⎭⎫13,23 C .⎝⎛⎭⎫12,23D .⎣⎡⎭⎫12,23解析:选D .因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13.所以0≤2x -1<13,解得12≤x <23.故选D .2.函数y =f (x )在[0,2]上单调递增,且函数f (x )的图象关于直线x =2对称,则下列结论成立的是( )A .f (1)<f ⎝⎛⎭⎫52<f ⎝⎛⎭⎫72B .f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52C .f ⎝⎛⎭⎫72<f ⎝⎛⎭⎫52<f (1)D .f ⎝⎛⎭⎫52<f ⎝⎛⎭⎫72<f (1)解析:选B .因为f (x )的图象关于直线x =2对称,所以f (x )=f (4-x ),所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫32,f ⎝⎛⎭⎫72=f ⎝⎛⎭⎫12.又0<12<1<32<2,f (x )在[0,2]上单调递增,所以f ⎝⎛⎭⎫12<f (1)<f ⎝⎛⎭⎫32,即f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52. 3.若函数f (x )=|2x +a |的单调增区间是[3,+∞),则a 的值为________.解析:由图象(图略)易知函数f (x )=|2x +a |的单调增区间是⎣⎡⎭⎫-a 2,+∞,令-a2=3,得a =-6.答案:-6[基础题组练]1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C .当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.函数f (x )=-x +1x 在⎣⎡⎦⎤-2,-13上的最大值是( ) A .32B .-83C .-2D .2解析:选A .函数f (x )=-x +1x 的导数为f ′(x )=-1-1x 2,则f ′(x )<0,可得f (x )在⎣⎡⎦⎤-2,-13上单调递减,即f (-2)为最大值,且为2-12=32.3.已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ) A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选C .由f (x )为R 上的减函数且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1),得⎩⎪⎨⎪⎧⎪⎪⎪⎪1x >1,x ≠0,即⎩⎪⎨⎪⎧|x |<1,x ≠0.所以-1<x <0或0<x <1.故选C .4.(多选)(2021·预测)已知f (x )是定义在[0,+∞)上的函数,根据下列条件,可以断定f (x )是增函数的是( )A .对任意x ≥0,都有f (x +1)>f (x )B .对任意x 1,x 2∈[0,+∞),且x 1≥x 2,都有f (x 1)≥f (x 2)C .对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0D .对任意x 1,x 2∈[0,+∞),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0解析:选CD .根据题意,依次分析选项:对于选项A ,对任意x ≥0,都有f (x +1)>f (x ),不满足函数单调性的定义,不符合题意;对于选项B ,当f (x )为常数函数时,对任意x 1,x 2∈[0,+∞),都有f (x 1)=f (x 2),不是增函数,不符合题意;对于选项C ,对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0,符合题意;对于选项D ,对任意x 1,x 2∈[0,+∞),设x 1>x 2,若f (x 1)-f (x 2)x 1-x 2>0,必有f (x 1)-f (x 2)>0,则函数在[0,+∞)上为增函数,符合题意.5.(创新型)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C .由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,所以f (x )的最大值为6.6.函数f (x )=|x -2|x 的单调减区间是________.解析:由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].答案:[1,2]7.函数y =2+-x 2+4x 的最大值是________,单调递增区间是________.解析:函数y =2+-x 2+4x =2+-(x -2)2+4,可得当x =2时,函数y 取得最大值2+2=4;由4x -x 2≥0,可得0≤x ≤4,令t =-x 2+4x ,则t 在[0,2]上为增函数,y -2+t 在[0,+∞)上为增函数,可得函数y =2+-x 2+4x 的单调递增区间为[0,2].答案:4 [0,2]8.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集为________.解析:由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1,即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2.答案:(-1,2)9.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,因为x 1>x 2>0, 所以x 1-x 2>0,x 1x 2>0, 所以f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),所以f (x )在(0,+∞)上是增函数. (2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上为增函数, 所以f ⎝⎛⎭⎫12=1a -2=12, f (2)=1a -12=2,解得a =25.10.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)上单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)<f (x 2),所以f (x )在(-∞,-2)上单调递增. (2)设1<x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0, 所以要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立, 所以a ≤1.综上所述,a 的取值范围为(0,1].[综合题组练]1.已知函数f (x )=⎩⎪⎨⎪⎧3(a -3)x +2,x ≤1,-4a -ln x ,x >1对任意的x 1≠x 2都有(x 1-x 2)[f (x 2)-f (x 1)]>0成立,则实数a 的取值范围是( )A .(-∞,3]B .(-∞,3)C .(3,+∞)D .[1,3)解析:选D .由(x 1-x 2)[f (x 2)-f (x 1)]>0,得(x 1-x 2)·[f (x 1)-f (x 2)]<0, 所以函数f (x )在R 上单调递减,所以⎩⎪⎨⎪⎧a -3<0,3(a -3)+2≥-4a ,解得1≤a <3.故选D . 2.(多选)若函数f (x )满足条件:①对于定义域内任意不相等的实数a ,b 恒有f (a )-f (b )a -b >0;②对于定义域内任意x 1,x 2都有f ⎝⎛⎭⎫x 1+x 22≥f (x 1)+f (x 2)2成立.则称其为G 函数.下列函数为G 函数的是( ) A .f (x )=3x +1 B .f (x )=-2x -1 C .f (x )=x 2-2x +3D .f (x )=-x 2+4x -3,x ∈(-∞,1)解析:选AD .①对于定义域内任意不相等的实数a ,b 恒有f (a )-f (b )a -b >0,则函数f (x )在定义域为增函数;②对于定义域内任意x 1,x 2都有f ⎝⎛⎭⎫x 1+x 22≥f (x 1)+f (x 2)2成立,则函数f (x )为“凸函数”.其中A .f (x )=3x +1在R 上为增函数,且f ⎝⎛⎭⎫x 1+x 22=f (x 1)+f (x 2)2,故满足条件①②;B .f (x )=-2x -1在R 上为减函数,不满足条件①;C .f (x )=x 2-2x +3在(-∞,1)上为减函数,在(1,+∞)为增函数,不满足条件①;D .f (x )=-x 2+4x -3的对称轴为x =2,故函数f (x )=-x 2+4x -3在(-∞,1)上为增函数,且为“凸函数”,故满足条件①②.综上,为G 函数的是AD .3.设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为________.解析:因为当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,所以a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2,所以a 的取值范围是0≤a ≤2. 答案:[0,2]4.(创新型)如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为________. 解析:因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x (x ≥1),则g ′(x )=12-32x 2=x 2-32x 2, 由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x 在区间[1,3 ]上单调递减,故“缓增区间”I 为[1, 3 ].答案:[1, 3 ]5.已知函数f (x )=x 2+a |x -2|-4.(1)当a =2时,求f (x )在[0,3]上的最大值和最小值;(2)若f (x )在区间[-1,+∞)上单调递增,求实数a 的取值范围. 解:(1)当a =2时,f (x )=x 2+2|x -2|-4=⎩⎪⎨⎪⎧x 2+2x -8,x ≥2x 2-2x ,x <2=⎩⎪⎨⎪⎧(x +1)2-9,x ≥2(x -1)2-1,x <2, 当x ∈[0,2)时,-1≤f (x )<0,当x ∈[2,3]时,0≤f (x )≤7, 所以f (x )在[0,3]上的最大值为7,最小值为-1.(2)因为f (x )=⎩⎪⎨⎪⎧x 2+ax -2a -4,x >2x 2-ax +2a -4,x ≤2,又f (x )在区间[-1,+∞)上单调递增,所以当x >2时,f (x )单调递增,则-a2≤2,即a ≥-4.当-1<x ≤2时,f (x )单调递增,则a2≤-1.即a ≤-2,且4+2a -2a -4≥4-2a +2a -4恒成立, 故a 的取值范围为[-4,-2].6.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈()0,+∞,且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间()0,+∞上是单调递减函数.(3)因为f (x )在(0,+∞)上是单调递减函数,所以f (x )在[2,9]上的最小值为f (9),由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2.所以f (x ) 在[2,9]上的最小值为-2.。
第2讲 函数的单调性与最值一、选择题1.下列函数中,既是偶函数又在(0,+∞)内单调递减的函数是( ).A .y =x 2B .y =|x|+1C .y =-lg|x|D .y =2|x|解析 对于C 中函数,当x>0时,y =-lg x ,故为(0,+∞)上的减函数,且y =-lg |x|为偶函数. 答案 C2.已知函数f(x)为R 上的减函数,则满足f(|x|)<f(1)的实数x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析 ∵f(x)在R 上为减函数且f(|x|)<f(1), ∴|x|>1,解得x >1或x <-1. 答案 D3.若函数y =ax 与y =-b x在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是( )A .增函数B .减函数C .先增后减D .先减后增解析 ∵y =ax 与y =-bx 在(0,+∞)上都是减函数,∴a<0,b<0,∴y =ax 2+bx 的对称轴方程x =-b 2a <0,∴y =ax 2+bx 在(0,+∞)上为减函数. 答案 B4.设函数f(x)=⎩⎪⎨⎪⎧1,x>0,0,x =0,-1,x<0,g(x)=x 2f(x -1),则函数g(x)的递减区间是( ).A .(-∞,0]B .[0,1)C .[1,+∞)D .[-1,0]解析 g(x)=⎩⎪⎨⎪⎧x 2,x>1,0,x =1,-x 2,x<1.如图所示,其递减区间是[0,1).故选B.答案 B5.函数y =-x 2+2x -3(x <0)的单调增区间是( )A .(0,+∞)B .(-∞,1]C .(-∞,0)D .(-∞,-1]解析 二次函数的对称轴为x =1,又因为二次项系数为负数,拋物线开口向下,对称轴在定义域的右侧,所以其单调增区间为(-∞,0). 答案 C6.设函数y =f(x)在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x)=⎩⎪⎨⎪⎧,,K ,,取函数f(x)=2-|x|,当K =12时,函数f K (x)的单调递增区间为( ).A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)解析 f 12(x)=⎩⎪⎨⎪⎧2-|x|,2-|x|≤12,12,2-|x|>12⇔f 12(x)=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12|x|,x≤-1或x≥1,12,-1<x<1.f 12(x)的图象如右图所示,因此f 12(x)的单调递增区间为(-∞,-1). 答案 C 二、填空题7.设函数y =x 2-2x ,x ∈[-2,a],若函数的最小值为g(a),则g(a)=________. 解析 ∵函数y =x 2-2x =(x -1)2-1,∴对称轴为直线x =1.当-2≤a<1时,函数在[-2,a]上单调递减,则当x =a 时,y min =a 2-2a ;当a≥1时,函数在[-2,1]上单调递减,在[1,a]上单调递增,则当x =1时,y min =-1.综上,g(a)=⎩⎪⎨⎪⎧a 2-2a ,-2≤a<1,-1,a≥1.答案 ⎩⎪⎨⎪⎧a 2-2a ,-2≤a<1-1,a≥18.函数y =-(x -3)|x|的递增区间是_______. 解析 y =-(x -3)|x|=⎩⎪⎨⎪⎧-x 2+3x ,x 2-3x作出该函数的图像,观察图像知递增区间为⎣⎢⎡⎦⎥⎤0,32.答案 ⎣⎢⎡⎦⎥⎤0,32 9.已知函数f(x)=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是________.解析 ①当a =0时,f(x)=-12x +5在(-∞,3)上为减函数;②当a >0时,要使f(x)=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则对称轴x =3-a a 必在x =3的右边,即3-a a ≥3,故0<a≤34;③当a <0时,不可能在区间(-∞,3)上恒为减函数.综合知:a 的取值范围是⎣⎢⎡⎦⎥⎤0,34.答案 ⎣⎢⎡⎦⎥⎤0,3410.已知函数f(x)=⎩⎪⎨⎪⎧e -x-2,x≤0,2ax -1,x>0(a 是常数且a>0).对于下列①函数f(x)的最小值是-1; ②函数f(x)在R 上是单调函数;③若f(x)>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,则a 的取值范围是a>1; ④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<1+22.其中正确解析 根据题意可画出草图,由图象可知,①显然正确;函数f(x)在R 上不是单调函数,故②错误;若f(x)>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,则2a×12-1>0,a>1,故③正确;由恒有f ⎝⎛⎭⎪⎫x 1+x 22图象可知在(-∞,0)上对任意的x 1<0,x 2<0且x 1≠x 2,<1+22成立,故④正确.答案 ①③④ 三、解答题11.求函数y =a1-x 2(a>0且a≠1)的单调区间.解 当a>1时,函数y =a1-x 2在区间[0,+∞)上是减函数,在区间(-∞,0]上是增函数; 当0<a<1时,函数y =a1-x 2在区间[0,+∞)上是增函数,在区间(-∞,0]上是减函数. 12.已知函数f(x)=x 2+a x (x≠0,a ∈R).(1)判断函数f(x)的奇偶性;(2)若f(x)在区间[2,+∞)上是增函数,求实数a 的取值范围. 解 (1)当a =0时,f(x)=x 2(x≠0)为偶函数; 当a≠0时,f(-x)≠f(x),f(-x)≠-f(x), ∴f(x)既不是奇函数也不是偶函数.(2)设x 2>x 1≥2,则f(x 1)-f(x 2)=x 21+a x 1-x 22-a x 2=x 1-x 2x 1x 2[x 1x 2(x 1+x 2)-a],由x 2>x 1≥2,得x 1x 2(x 1+x 2)>16,x 1-x 2<0, x 1x 2>0.要使f(x)在区间[2,+∞)上是增函数, 只需f(x 1)-f(x 2)<0,即x 1x 2(x 1+x 2)-a>0恒成立,则a≤16.13.已知函数f(x)=a·2x+b·3x,其中常数a ,b 满足ab≠0. (1)若ab>0,判断函数f(x)的单调性;(2)若ab<0,求f(x +1)>f(x)时的x 的取值范围.解 (1)当a>0,b>0时,因为a·2x,b·3x都单调递增,所以函数f(x)单调递增;当a<0,b<0时,因为a·2x,b·3x都单调递减,所以函数f(x)单调递减. (2)f(x +1)-f(x)=a·2x+2b·3x>0. (i)当a<0,b>0时,⎝ ⎛⎭⎪⎫32x>-a 2b ,解得x>log 32⎝ ⎛⎭⎪⎫-a 2b ;(ii)当a>0,b<0时,⎝ ⎛⎭⎪⎫32x<-a 2b ,解得x<log 32⎝ ⎛⎭⎪⎫-a 2b .14.函数f(x)对任意的a 、b ∈R ,都有f(a +b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.(1)求证:f(x)是R 上的增函数;(2)若f(4)=5,解不等式f(3m 2-m -2)<3. 解 (1)证明 设x 1,x 2∈R ,且x 1<x 2, 则x 2-x 1>0,∴f(x 2-x 1)>1.f(x 2)-f(x 1)=f[(x 2-x 1)+x 1]-f(x 1)=f(x 2-x 1)+f(x 1)-1-f(x 1)=f(x 2-x 1)-1>0. ∴f(x 2)>f(x 1).即f(x)是R 上的增函数. (2) ∵f(4)=f(2+2)=f(2)+f(2)-1=5, ∴f(2)=3,∴原不等式可化为f(3m 2-m -2)<f(2), ∵f(x)是R 上的增函数,∴3m 2-m -2<2, 解得-1<m<43,故解集为⎝ ⎛⎭⎪⎫-1,43.。
函数的单调性与最值【知识要点】 1.函数的单调性(1)单调函数的定义(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.(3)判断函数单调性的方法①根据定义;②根据图象;③利用已知函数的增减性;④利用导数;⑤复合函数单调性判定方法。
2.函数的最值求函数最值的方法:①若函数是二次函数或可化为二次函数型的函数,常用配方法;②利用函数的单调性求最值:先判断函数在给定区间上的单调性,然后利用单调性求最值; ③基本不等式法:当函数是分式形式且分子、分母不同次时常用此法。
【复习回顾】一次函数(0)y kx b k =+≠具有下列性质: (1)当0k >时,函数y 随x 的增大而增大 (2)当0k <时,函数y 随x 的增大而减小 二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而减小;当x >2ba-时,y 随着x 的增大而增大; (2)当a <0时,函数y =ax 2+bx +c 图象开口向下,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而增大;当x >2ba-时,y 随着x 的增大而减小; 提出问题:①如图所示为一次函数y=x ,二次函数y=x 2和y=-x 2的图象,它们的图象有什么变化规律?这反映了相应的函数值的哪些变化规律?①这些函数走势是什么?在什么范围上升,在什么区间下降?②如何理解图象是上升的?如何用自变量的大小关系与函数值的大小关系表示函数的增减性?③定义:一般地,设函数f(x)的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说函数f(x)在区间D 上是增函数.简称为:步调一致增函数.几何意义:增函数的从左向右看,图象是的。
函数的单调性与最值教学讲义1.单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有__f(x1)<f(x2)__,那么就说函数f(x)在区间D上是增函数当x1<x2时,都有__f(x1)>f(x2)__,那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是__上升的__自左向右看图象是__下降的__2.单调区间的定义如果函数y=f(x)在区间D上是__增函数或减函数__,那么就说函数y=f(x)在这一区间具有(严格的)单调性,__区间D__叫做函数y=f(x)的单调区间.3.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(1)对于任意x∈I,都有__f(x)≥M__;(2)存在x0∈I,使得__f(x0)=M__结论M为最大值M为最小值1.复合函数的单调性函数y=f(u),u=φ(x),在函数y=f[φ(x)]的定义域上,如果y=f(u),u=φ(x)的单调性相同,则y=f[φ(x)]单调递增;如果y=f(u),u=φ(x)的单调性相反,则y=f[φ(x)]单调递减.2.单调性定义的等价形式 设任意x 1,x 2∈[a ,b ],x 1≠x 2.(1)若有(x 1-x 2)[f (x 1)-f (x 2)]>0或f (x 1)-f (x 2)x 1-x 2>0,则f (x )在闭区间[a ,b ]上是增函数.(2)若有(x 1-x 2)[f (x 1)-f (x 2)]<0或f (x 1)-f (x 2)x 1-x 2<0,则f (x )在闭区间[a ,b ]上是减函数.3.函数单调性的常用结论(1)若f (x ),g (x )均为区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数. (2)若k >0,则kf (x )与f (x )单调性相同,若k <0,则kf (x )与f (x )单调性相反. (3)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反. (4)函数y =f (x )(f (x )≥0)在公共定义域内与y =f (x )的单调性相同.1.(教材改编)函数y =(2m -1)x +b 在R 上是减函数,则( B ) A .m >12B .m <12C .m >-12D .m <-12[解析] 使y =(2m -1)x +b 在R 上是减函数,则2m -1<0,即m <12.2.(教材改编)已知f (x )=-2x 2+x ,x ∈[-1,3],则其单调递减区间为 [14,3] ;f (x )min =__-15__.3.设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )在增区间为__[-1,1]和[5,7]__.4.(2018·衡水中学调研卷)若函数f (x )=x 2-2x +m 在[3,+∞)上的最小值为1,则实数m 的值为( B ) A .-3 B .-2 C .-1D .1[解析] ∵f (x )=(x -1)2+m -1在[3,+∞)上为单调增函数,又f (x )在[3,+∞)上的最小值为1,∴f (3)=1,即3+m =1,∴,m =-2.故选B .5.(2018·河南中原名校质考)函数y =log 12(-x 2+x +6)的单调增区间为( A )A .(12,3)B .(-2,12)C .(-2,3)D .(12,+∞)[解析] 由-x 2+x +6>0得-2<x <3.函数由y =log 12u ,u =-x 2+x +6(-2<x <3)复合而成,且y =log 12u 是减函数由u =-x 2+x +6(-2<x <3)开口向下且对称轴为x =12知其减区间为(12,3),故所求函数的增区间为(12,3),故选A .6.已知函数f (x )=⎩⎪⎨⎪⎧(a -3)x ,x ≥2,2-x -1,x <2是R 上的减函数,则实数a 的取值范围是 (-∞,218] .[解析] 由题意得:⎩⎪⎨⎪⎧a -3<0(a -3)×2≤2-2-1,∴a ≤218.7.函数y =f (x )是定义在[-1,3]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是 [-12,1) . [解析] 由题意得:⎩⎪⎨⎪⎧a +1>2a 2a ≥-1a +1≤3,解得-12≤a <1.考点1 函数单调性的判断与证明——自主练透例1 (1)判断函数f (x )=2x +2-x 在区间(0,+∞)上的单调性.(2)已知a >0,函数f (x )=x +ax (x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.[解析] (1)解法一:设0<x 1<x 2,则f (x 1)-f (x 2)=2x 1+2-x 1-2 x 2-2-x 2=(2 x 2-2 x 1)(12 x 1+x 2-1).∵0<x 1<x 2,∴2x 2-2 x 1>0.又2>1,x 1+x 2>0, ∴2x 1+x 2>1,故12 x 1+x 2-1<0.∴f (x 1)-f (x 2)<0.由单调函数的定义知函数f (x )在区间(0,+∞)上为增函数.解法二:对f (x )=2x +2-x 求导,得 f ′(x )=2x ln2-2-x ln2=2-x ln2(22x -1),当x ∈(0,+∞)时,有2-x >0,22x -1>0,此时f ′(x )>0. ∴函数f (x )=2x +2-x 在区间(0,+∞)上为增函数.(2)证明:设x 1,x 2是任意两个正数,且x 1<x 2,则f (x 1)-f (x 2)=(x 1+a x 1)-(x 2+a x 2)=x 1-x 2x 1x 2(x 1x2-a ).当0<x 1<x 2≤a 时,0<x 1x 2<a ,又x 1-x 2<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,又x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). 所以函数f (x )在[a ,+∞)上是增函数. [答案] (1)增函数,证明略 (2)略考点2 求函数的单调区间——师生共研例2 求下列函数的单调区间. (1)f (x )=-x 2+2|x |+3; (2)f (x )=log 12(-x 2+4x +5);(3)f (x )=x -ln x .[分析] (1)可用图象法或化为分段函数或用化为复合函数求解; (2)复合函数求解; (3)导数法.[解析] (1)解法一:(图象法)∵f (x )=⎩⎪⎨⎪⎧-x 2+2x +3(x ≥0),-x 2-2x +3(x <0),其图象如图所示,所以函数y =f (x )的单调递增区间为(-∞,-1]和[0,1];单调递减区间为[-1,0]和[1,+∞).解法二:(化为分段函数求解)f (x )=⎩⎪⎨⎪⎧-x 2+2x +3(x ≥0)-x 2-2x +3(x <0)=⎩⎪⎨⎪⎧-(x -1)2+4(x ≥0)-(x +1)2+4(x <0)y =-(x -1)2+4(x ≥0)图象开口向下,对称轴为x =1,∴增区间为(0,1),减区间为(1,+∞); y =-(x +1)2+4(x <0)图象开口向下,对称轴为x =-1,∴增区间为(-∞,-1),减区间为(-1,0);∴f (x )的增区间为(0,1)、(-∞,-1),减区间为(1,+∞)、(-1,0).解法三:(复合函数法)函数由y =-u 2+2u +3(u ≥0)和u =|x |复合而成,y =-u 2+2u +3(u ≥0)的对称轴为u =1,由|x |=1得x =±1.∴f (x )在增区间为(-∞,-1),(0,1),减区间为(-1,0),(1,+∞).(2)由-x 2+4x +5>0得-1<x <5.令u =-x 2+4x +5,x ∈(-1,5),则f (x )=log 12u .∵x ∈(-1,2],u 为增函数;x ∈(2,5)时,u 为减函数.又y =log 12u 在(0,+∞)上为减函数,据复合函数“同增异减”的性质知f (x )的单调递增区间为(2,5);单调递减区间为(-1,2]. (3)由题意,得x >0.y ′=1-1x =x -1x.y′-0+y↘极小值↗由上表可知,函数的单调递增区间为(1,+∞),单调递减区间为(0,1).[引申1](1)本例(1)f(x)=|-x2+2x+3|的增区间为__(-1,1)和(3,+∞)__.(2)本例(1)f(x)=|-x2+2|x|+3|的减区间为__(-∞,-3)和(-1,0)和(1,3)__.[解析](1)作出f(x)=|-x2+2x+3|的图象,由图可知所示增区间为(-1,1)和(3,+∞).作出f(x)=|-x2+2|x|+3|的图象,由图可知所求减区间为(-∞,-3)和(-1,0)和(1,3).[引申2]本例(2)f(x)=log a(-x2+4x+5)(a>1)的增区间为__(-1,2]__.名师点拨☞求函数的单调区间(确定函数单调性)的方法(1)利用已知函数的单调性,即转化为已知单调性的函数的和、差或复合函数,再求单调区间.(2)定义法:先求定义域,再利用单调性定义求解.(3)图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,可由图象的直接写出它的单调区间.(4)导数法:利用导数取值的正负确定函数的单调区间.(5)求复合函数的单调区间的一般步骤是:①求函数的定义域;②求简单函数的单调区间;③求复合函数的单调区间,依据是“同增异减”.注意:(1)求函数单调区间,定义域优先.(2)单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”连接,也不能用“或”连接. 〔变式训练2〕(1)已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( B ) A .(-∞,1] B .[3,+∞) C .(-∞,-1]D .[1,+∞)(2)函数f (x )=|x -2|x 的单调减区间是( A ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)(3)函数f (x )=(a -1)x +2在R 上单调递增,则函数g (x )=a |x -2|的单调递减区间是__(-∞,2]__.[解析] (1)设t (x )=x 2-2x -3,由t (x )≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3,所以函数f (x )的定义域为(-∞,-1]∪[3,+∞).因为函数t (x )=x 2-2x -3的图象的对称轴为x =1,所以函数t (x )在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f (x )的单调递增区间为[3,+∞).故选B .(2)f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,x (2-x ),x <2,由f (x )的图象可知,f (x )的单调减区间为[1,2].选A .(3)由已知得a -1>0,∴a >1,∴g (x )=a |x -2|减区间为g =|x -2|减区间,(-∞,2],故填(-∞,2].考点3 函数单调性的应用——多维探究角度1 利用函数的单调性求最值例3 (2019·厦门质检)函数f (x )=(13)x -log 2(x +2)在区间[-1,1]上有最大值为__3__.[解析] ∵y =(13)x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴y =(13)x -log 2(x +2)是在区间[-1,1]上的减函数,∴最大值为f (-1)=3. 角度2 利用函数的单调性比较大小例4 (文)e 442,e 552,e 662(其中e 为自然常数)的大小关系是( A )A .e 442<e 552<e 662B .e 662<e 552<e 442C .e 552<e 442<e 662D .e 662<e 442<e 552(理)e 416,e 525,e 636(其中e 为自然常数)的大小关系是( A )A .e 416<e 525<e 636B .e 636<e 525<e 416C .e 525<e 416<e 636D .e 636<e 416<e 525[思考] 如何利用函数的单调性比较大小? [解析] (文)构造函数f (x )=e xx 2.因为e 416=e 442,e 525=e 552,e 636=e 662,所以f (4)=e 416,f (5)=e 525,f (6)=e 636.而f ′(x )=(e xx 2)′=e x ·x 2-e x ·2x x =e x (x 2-2x )x 4,令f ′(x )>0,得x <0或x >2, 即函数f (x )在(2,+∞)内单调递增, 因此有f (4)<f (5)<f (6),即e 442<e 552<e 662.(理)构造函数f (x )=e xx2.因为e 416=e 442,e 525=e 552,e 636=e 662,所以f (4)=e 416,f (5)=e 525,f (6)=e 636.而f ′(x )=(e xx 2)′=e x ·x 2-e x ·2x x 4=e x (x 2-2x )x 4,令f ′(x )>0,得x <0或x >2, 即函数f (x )在(2,+∞)内单调递增, 因此有f (4)<f (5)<f (6),即e 416<e 525<e 636.角度3 利用单调性求参数的取值范围例5 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( D )A .(-14,+∞)B .[-14,+∞)C .[-14,0)D .[-14,0](2)已知函数f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是[32,2).[解析] (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综合上述得-14≤a ≤0.故选D .(2)由已知条件得f (x )为增函数, 所以⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,所以a 的取值范围是[32,2).角度4 利用单调性解不等式例6 (文)(2017·全国卷Ⅰ)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( D ) A .[-2,2] B .[-1,1] C .[0,4]D .[1,3](理)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的范围是( D )A .(0,2-1)B .(-1,2+1)C .(0,2+1)D .(-1,2-1)[解析] (文)因为f (1)=-1,且f (x )为奇函数,所以f (-1)=-f (1)=1,因为-1≤f (x -2)≤1,所以f (1)≤f (x -2)≤f (-1),又f (x )在(-∞,+∞)上单调递减,所以-1≤x -2≤1,解得1≤x ≤3,故选D .(理)f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象如图所示,不等式f (1-x 2)>f (2x ),等价于⎩⎨⎧1-x 2>0,2x ≤0或⎩⎨⎧1-x 2>0,1-x 2>2x ,2x >0.解得-1<x<2-1.名师点拨 ☞函数单调性应用问题的常见类型及解题策略(1)比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)利用单调性求解最值问题,应先确定函数的单调性,然后再由单调性求解.(3)利用单调性求参数时,通常要把参数视为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较,利用区间端点间关系求参数.求解时注意函数定义域的限制,遇分段函数注意分点处左、右端点函数值的大小关系.(4)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. 〔变式训练3〕(1)(角度1)(2018·青岛一模)已知函数f (x )=⎩⎪⎨⎪⎧log 13x ,x >1,-x 2+2x ,x ≤1,则函数f (x )的最大值是__1__.(2)(角度2)已知f (x )=x 2-cos x ,则f (0.6),f (0),f (-0.5)的大小关系是( B ) A .f (0.6)<f (0)<f (-0.5) B .f (0)<f (-0.5)<f (0.6) C .f (0.6)<f (-0.5)<f (0) D .f (-0.5)<f (0)<f (0.6)(3)(角度3)(2019·安徽省定远重点中学高三上学期第一次月考)已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x,x ≤1log a x +13,x >1,当x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2<0,则a 的取值范围是( A ) A .(0,13]B .[13,12]C .(0,12)D .[14,13](4)(角度4)已知函数f (x )=-x |x |,x ∈(-1,1),则不等式f (1-m )<f (m 2-1)的解集为__(0,1)__.[解析] (1)当x >1时,y =log 13x 为减函数,所以y <0;当x ≤1时,y =-x 2+2x 为增函数,x =1时,y max =1,故填1.(2)因为f (-x )=(-x )2-cos(-x )=x 2-cos x =f (x ),所以f (x )是偶函数. 所以f (-0.5)=f (0.5).又因为f ′(x )=2x +sin x ,当x ∈(0,1)时,f ′(x )>0.所以f (x )在(0,1)上是增函数,所以f (0)<f (0.5)<f (0.6),即f (0)<f (-0.5)<f (0.6).(3)∵当x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2<0, ∴函数f (x )在定义域R 上为减函数,∴⎩⎪⎨⎪⎧0<1-2a <1,0<a <1,1-2a ≥13,解得0<a ≤13, ∴实数a 的取值范围是(0,13].故选A . (4)f (x )=⎩⎪⎨⎪⎧x 2,-1<x ≤0,-x 2,0<x <1,∴f (x )在(-1,1)上单调递减,∴⎩⎪⎨⎪⎧-1<1-m <1,-1<m 2-1<1,m 2-1<1-m ,解得0<m <1,∴解集为(0,1).。
第二讲函数的单调性1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M (3)对于任意的x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值【套路秘籍】---千里之行始于足下考向一 单调区间求解【例1】(1)下列函数中,定义域是R 且为增函数的是( )A.y =2-xB.y =xC.y =log 2xD.y =-1x(2)函数f (x )=ln (x 2-2x -8) 的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞) (3)求函数f (x )=|x 2-4x +3|的单调区间 . (4)求函数f (x )=x -ln x 的单调区间 .(5)函数33y x x =-的单调增区间为__________. 【答案】见解析【解析】(1)只有y =2-x与y =x 的定义域为R ,且y =2-x是减函数,y =x 是增函数.选B (2)由x 2-2x -8>0,得x >4或x <-2.设t =x 2-2x -8,则y =ln t 为增函数. 要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8的单调递增区间.∵函数t =x 2-2x -8的单调递增区间为(4,+∞),∴函数f (x )的单调递增区间为(4,+∞).故选D. (3)先作出函数y =x 2-4x +3的图象,由于绝对值的作用,把x 轴下方的部分翻折到上方,可得函数y =|x 2-4x +3|的图象.如图所示.由图可知f (x )在(-∞,1]和[2,3]上为减函数,在[1,2]和[3,+∞)上为增函数,故f (x )的增区间为[1,2],[3,+∞),减区间为(-∞,1],[2,3].(4)由题意,得x >0.y ′=1-1x =x -1x.由y ′=0解得x =1.【修炼套路】---为君聊赋《今日诗》,努力请从今日始列表如下:由上表可知,函数的单调递增区间为(1,+∞),单调递减区间为(0,1).(5)21119033y x x '=->∴-<< ,即单调增区间为11,33⎛⎫- ⎪⎝⎭【举一反三】1.下列函数中,在(0,+∞)上单调递减的是( )A . f(x)=lnxB . f(x)=(x −1)2C . f(x)=2−xD . f(x)=x 3 【答案】C【解析】根据题意,依次分析选项:对于A ,函数f(x)=lnx 为对数函数,在(0,+∞)上为增函数,不符合题意.【套路总结】一.函数单调性的判断方法有 ①定义法; ②图象法;③利用已知函数的单调性; ④导数法.二.复合函数y =f (g (x ))的单调性应根据外层函数y =f (t )和内层函数t =g (x )的单调性判断,遵循“同增异减”的原则.对于B ,函数f(x)=(x −1)2为二次函数,在(−∞,1)上为减函数,在(1,+∞)上为增函数,不符合题意. 对于C ,函数f(x)=2−x =(12)x 为指数函数,在(0,+∞)上单调递减,符合题意.对于D ,函数y =x 3为幂函数,在(0,+∞)上为增函数,不符合题意.故选C . 2.函数f (x )=log 2(4+3x −x 2)的单调递减区间是( ) A . (−∞,32] B . [32,+∞) C . (−1,32] D . [32,4) 【答案】D【解析】函数f (x )=log 2(4+3x-x 2),令t=4+3x-x 2>0,求得-1<x <4,即函数的定义域为(-1,4),且f (x )=log 2t ,即求函数t 在定义域内的减区间.再利用二次函数的性质可得t=4+3x-x 2在定义域内的减区间为[32,4).故选D . 3.函数()| g x x =的单调递增区间是 ( )A . [)0+∞,B . (]0-∞,C . (]2-∞-,D . [)2+-∞, 【答案】A【解析】任取120,x x >> 则120,x x -> ()()()()121212120,g x g x x x x x g x g x ->-=->> ,所以函数()| g x x =的单调递增区间是[)0+∞,,故选A.考向二 单调性的运用一---比较大小【例2】定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f (x 1)-f (x 2)x 1-x 2<0.则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25) B .f (log 25)<f (20.3)<f (0.32) C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3) 【答案】A【解析】 ∵对任意x 1,x 2∈(-∞,0),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0,∴f (x )在(-∞,0)上是减函数,又∵f (x )是R 上的偶函数,∴f (x )在(0,+∞)上是增函数,∵0<0.32<20.3<log 25,∴f (0.32)<f (20.3)<f (log 25).故选A.【举一反三】1.已知f (x )=2x-2-x,117459279,,log 97a b c -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则f (a ),f (b ),f (c )的大小顺序为( ) A.f (b )<f (a )<f (c ) B.f (c )<f (b )<f (a ) C.f (c )<f (a )<f (b ) D.f (b )<f (c )<f (a )【答案】B【解析】易知f (x )=2x -2-x在(-∞,+∞)上是增函数,又a =⎝ ⎛⎭⎪⎫79-14=⎝ ⎛⎭⎪⎫9714>⎝ ⎛⎭⎪⎫9715=b >0,c =log 279<0,∴f (a )>f (b )>f (c ).2.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c【套路总结】(1)比较大小:县判断出函数的单调性,再根据自变量的大小判断出函数值的大小关系。
第2讲函数的单调性与最值一、知识梳理1.函数的单调性(1)单调函数的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.2.函数的最值1.函数单调性的两种等价形式 设任意x 1,x 2∈[a ,b ]且x 1≠x 2,(1)f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.(2)(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数.2.五条常用结论(1)对勾函数y =x +ax (a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ].(2)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数. (3)函数f (g (x ))的单调性与函数y =f (u ),u =g (x )的单调性的关系是“同增异减”. (4)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.(5)开区间上的“单峰”函数一定存在最大(小)值. 二、习题改编1.(必修1P39B 组T1改编)函数f (x )=x 2-2x 的单调递增区间是________. 答案:[1,+∞)(或(1,+∞))2.(必修1P32T4改编)若函数y =(2k +1)x +b 在R 上是减函数,则k 的取值范围是________.解析:因为函数y =(2k +1)x +b 在R 上是减函数,所以2k +1<0,即k <-12.答案:⎝⎛⎭⎫-∞,-12 3.(必修1P31例4改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为__________.解析:可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25. 答案:2 25一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数f (x )的单调递增区间是[1,+∞).( ) (3)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( )(4)所有的单调函数都有最值.( )(5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )(6)闭区间上的单调函数,其最值一定在区间端点处取到. ( ) 答案:(1)× (2)× (3)× (4)× (5)× (6)√ 二、易错纠偏常见误区|K(1)求单调区间忘记定义域导致出错; (2)对于分段函数,一般不能整体单调,只能分段单调; (3)利用单调性解不等式忘记在单调区间内求解; (4)混淆“单调区间”与“在区间上单调”两个概念. 1.函数y =log 12(x 2-4)的单调递减区间为________.答案:(2,+∞)2.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝⎛⎭⎫12x -1,x <2是定义在R 上的减函数,则实数a 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧a -2<0,2(a -2)≤⎝⎛⎭⎫122-1, 解得⎩⎪⎨⎪⎧a <2,a ≤138,即a ≤138.答案:⎝⎛⎦⎤-∞,138 3.函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧-2≤a +1≤2,-2≤2a ≤2,a +1>2a ,即⎩⎪⎨⎪⎧-3≤a ≤1,-1≤a ≤1,a <1. 所以-1≤a <1. 答案:[-1,1)4.(1)若函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,则实数a 的取值范围是________;(2)若函数f (x )=x 2+2(a -1)x +2的单调递减区间为(-∞,4],则a 的值为________.答案:(1)a≤-3(2)-3[学生用书P14]确定函数的单调性(区间)(多维探究)角度一给出具体解析式的函数的单调性(1)函数f (x )=|x 2-3x +2|的单调递增区间是( )A.⎣⎡⎭⎫32,+∞ B .⎣⎡⎦⎤1,32和[2,+∞) C .(-∞,1]和⎣⎡⎦⎤32,2D .⎝⎛⎦⎤-∞,32和[2,+∞) (2)函数y =x 2+x -6的单调递增区间为________,单调递减区间为________.【解析】 (1)y =|x 2-3x +2|=⎩⎪⎨⎪⎧x 2-3x +2,x ≤1或x ≥2,-(x 2-3x +2),1<x <2. 如图所示,函数的单调递增区间是⎣⎡⎦⎤1,32和[2,+∞);单调递减区间是(-∞,1)和⎝⎛⎭⎫32,2.故选B.(2)令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数,所以y =x 2+x -6的单调递减区间为(-∞,-3],单调递增区间为[2,+∞). 【答案】 (1)B (2)[2,+∞) (-∞,-3] 角度二 含参函数的单调性(一题多解)判断并证明函数f (x )=ax x -1(a ≠0)在(-1,1)上的单调性.【解】 法一:设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:f ′(x )=a (x -1)-ax (x -1)2=-a(x -1)2,所以当a>0时,f′(x)<0,当a<0时,f′(x)>0,即当a>0时,f(x)在(-1,1)上为单调递减函数,当a<0时,f(x)在(-1,1)上为单调递增函数.确定函数单调性的4种方法(1)定义法.利用定义判断.(2)导数法.适用于初等函数、复合函数等可以求导的函数.(3)图象法.由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.(4)性质法.利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.[提醒]求函数的单调区间,应先求定义域,在定义域内求单调区间.1.函数y=-x2+2|x|+3的单调递减区间是________.解析:由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图象如图,由图象可知,函数y =-x 2+2|x |+3的单调递减区间为[-1,0],[1,+∞).答案:[-1,0],[1,+∞)2.判断并证明函数f (x )=ax 2+1x (其中1<a <3)在x ∈[1,2]上的单调性.解:设1≤x 1<x 2≤2,则 f (x 2)-f (x 1)=ax 22+1x 2-⎝⎛⎭⎫ax 21+1x 1 =(x 2-x 1)⎣⎡⎦⎤a (x 1+x 2)-1x 1x 2, 由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4, 1<x 1x 2<4,-1<-1x 1x 2<-14.又1<a <3,所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上单调递增.求函数的最值(师生共研)(1)函数f (x )=⎝⎛⎭⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,x +6x -6,x >1,则f (x )的最小值是________.【解析】 (1)由于y =⎝⎛⎭⎫13x在R 上单调递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.(2)当x ≤1时,f (x )min =0,当x >1时,f (x )min =26-6,当且仅当x =6时取到最小值,又26-6<0,所以f (x )min =26-6.【答案】 (1)3 (2)26-6求函数最值的5种常用方法及其思路1.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数, 所以⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎨⎧1a -1=1,1b -1=13,所以⎩⎪⎨⎪⎧a =2,b =4. 所以a +b =6. 答案:62.(一题多解)对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析:法一:在同一直角坐标系中, 作出函数f (x ),g (x )的图象, 依题意,h (x )的图象如图所示. 易知点A (2,1)为图象的最高点, 因此h (x )的最大值为h (2)=1.法二:依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, 所以h (x )在x =2处取得最大值h (2)=1. 答案:1函数单调性的应用(多维探究) 角度一 比较大小已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c【解析】 因为f (x )的图象关于直线x =1对称. 所以f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时, [f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.因为1<2<52<e ,所以f (2)>f ⎝⎛⎭⎫52>f (e),所以b >a >c . 【答案】 D角度二 解函数不等式已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)【解析】 因为当x =0时,两个表达式对应的函数值都为零,所以函数f (x )的图象是一条连续的曲线.因为当x ≤0时,函数f (x )=x 3为增函数, 当x >0时,f (x )=ln(x +1)也是增函数, 所以函数f (x )是定义在R 上的增函数. 因此,不等式f (2-x 2)>f (x )等价于2-x 2>x , 即x 2+x -2<0,解得-2<x <1. 【答案】 D角度三 根据函数的单调性求参数(1)(2020·南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________. (2)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a的取值范围是________.【解析】 (1)法一:设1<x 1<x 2,所以x 1x 2>1. 因为函数f (x )在(1,+∞)上是增函数, 所以f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2 =(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0.因为x 1-x 2<0,所以1+ax 1x 2>0,即a >-x 1x 2.因为1<x 1<x 2,x 1x 2>1,所以-x 1x 2<-1,所以a ≥-1. 所以a 的取值范围是[-1,+∞). 法二:由f (x )=x -a x +a 2得f ′(x )=1+ax 2,由题意得1+ax2≥0(x >1),可得a ≥-x 2,当x ∈(1,+∞)时,-x 2<-1. 所以a 的取值范围是[-1,+∞).(2)作出函数f(x)的图象如图所示,由图象可知f(x)在(a,a+1)上单调递增,需满足a≥4或a+1≤2,即a≤1或a≥4.【答案】(1)[-1,+∞)(2)(-∞,1]∪[4,+∞)函数单调性应用问题的3种常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒]①若函数在区间[a,b]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.1.(2020·武汉模拟)若函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]解析:选B.因为函数f (x )=2|x -a |+3=⎩⎪⎨⎪⎧2x -2a +3,x ≥a -2x +2a +3,x <a , 因为函数f (x )=2|x -a |+3在区间[1,+∞)上不单调, 所以a >1.所以a 的取值范围是(1,+∞).故选B.2.定义在[-2,2]上的函数f (x )满足(x 1-x 2)·[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为( )A .[-1,2)B .[0,2)C .[0,1)D .[-1,1)解析:选C.因为函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2, 所以函数f (x )在[-2,2]上单调递增,所以-2≤2a -2<a 2-a ≤2,解得0≤a <1,故选C.[学生用书P263(单独成册)][基础题组练]1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C.当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( ) A .(-∞,0) B .⎣⎡⎦⎤0,12 C .[0,+∞)D .⎝⎛⎭⎫12,+∞ 解析:选B.y =|x |(1-x )=⎩⎪⎨⎪⎧x (1-x ),x ≥0,-x (1-x ),x <0=⎩⎪⎨⎪⎧-x 2+x ,x ≥0,x 2-x ,x <0函数y 的草图如图所示.由图易知原函数在⎣⎡⎦⎤0,12上单调递增.故选B. 3.若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均为增函数,则实数a 的取值范围是( )A.⎣⎡⎦⎤-113,-3 B .[-6,-4] C .[-3,-22]D .[-4,-3]解析:选B.由于f (x )为R 上的偶函数,因此只需考虑函数f (x )在(0,+∞)上的单调性即可.由题意知函数f (x )在[3,+∞)上为增函数,在[1,2]上为减函数,故-a2∈[2,3],即a ∈[-6,-4].4.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B .⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D .⎣⎡⎭⎫12,23解析:选D.因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13. 所以0≤2x -1<13,解得12≤x <23.5.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C.由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,所以f (x )的最大值为6.6.函数f (x )=4-x -x +2的值域为________.解析:因为⎩⎪⎨⎪⎧4-x ≥0,x +2≥0,所以-2≤x ≤4,所以函数f (x )的定义域为[-2,4].又y 1=4-x ,y 2=-x +2在区间[-2,4]上均为减函数, 所以f (x )=4-x -x +2在[-2,4]上为减函数, 所以f (4)≤f (x )≤f (-2). 即-6≤f (x )≤ 6. 答案:[-6,6]7.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).答案:[0,1)8.若f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,-ax ,x ≥1是定义在R 上的减函数,则a 的取值范围是________.解析:由题意知,⎩⎪⎨⎪⎧3a -1<0,(3a -1)×1+4a ≥-a ,a >0,解得⎩⎪⎨⎪⎧a <13,a ≥18,a >0,所以a ∈⎣⎡⎭⎫18,13. 答案:⎣⎡⎭⎫18,139.已知函数f (x )=1a -1x(a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2, 因为x 1>x 2>0,所以x 1-x 2>0,x 1x 2>0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),所以f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上为增函数,所以f ⎝⎛⎭⎫12=1a -2=12, f (2)=1a -12=2, 解得a =25. 10.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.解:(1)证明:设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以f (x )在(-∞,-2)上单调递增.(2)设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,所以a ≤1.综上所述,0<a ≤1.[综合题组练]1.若f (x )=-x 2+4mx 与g (x )=2m x +1在区间[2,4]上都是减函数,则m 的取值范围是( ) A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]解析:选D.函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2m x 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( ) A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B.因为函数f (x )=log 2x +11-x在(1,+∞)上为增函数,且f (2)=0,所以当x 1∈(1,2)时,f (x 1)<f (2)=0;当x 2∈(2,+∞)时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0.故选B.3.设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x+a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为________. 解析:因为当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,所以a ≥0.当x >0时,f (x )=x +1x+a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2,所以a 的取值范围是0≤a ≤2.答案:[0,2]4.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x+32是区间I 上的“缓增函数”,则“缓增区间”I 为________. 解析:因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x (x ≥1),则g ′(x )=12-32x 2=x 2-32x 2, 由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x在区间[1,3 ]上单调递减,故“缓增区间”I 为[1, 3 ].答案:[1, 3 ]5.已知函数f (x )=x 2+a |x -2|-4.(1)当a =2时,求f (x )在[0,3]上的最大值和最小值;(2)若f (x )在区间[-1,+∞)上单调递增,求实数a 的取值范围.解:(1)当a =2时,f (x )=x 2+2|x -2|-4=⎩⎪⎨⎪⎧x 2+2x -8,x ≥2x 2-2x ,x <2=⎩⎪⎨⎪⎧(x +1)2-9,x ≥2(x -1)2-1,x <2, 当x ∈[0,2)时,-1≤f (x )<0,当x ∈[2,3]时,0≤f (x )≤7,所以f (x )在[0,3]上的最大值为7,最小值为-1.(2)因为f (x )=⎩⎪⎨⎪⎧x 2+ax -2a -4,x >2x 2-ax +2a -4,x ≤2, 又f (x )在区间[-1,+∞)上单调递增,所以当x >2时,f (x )单调递增,则-a 2≤2,即a ≥-4. 当-1<x ≤2时,f (x )单调递增,则a 2≤-1. 即a ≤-2,且4+2a -2a -4≥4-2a +2a -4恒成立,故a 的取值范围为[-4,-2].6.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )>-1.(1)求f (0)的值,并证明f (x )在R 上是单调递增函数;(2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4.解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1.又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2),所以函数f (x )在R 上是单调递增函数.(2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3),又函数f (x )在R 上是增函数,故x 2+x +1>3,解得x<-2或x>1,故原不等式的解集为{x|x<-2或x>1}.。