最新完全平方公式变形讲解
- 格式:ppt
- 大小:492.50 KB
- 文档页数:16
完全平方公式变化形式完全平方公式,这可是咱们数学学习中的“常客”!它的变化形式就像是孙悟空的七十二变,花样繁多但又有迹可循。
咱们先来说说完全平方公式的基本形态:(a+b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²。
这两个公式大家应该都不陌生吧?但是,它的变化形式那才叫有趣呢!比如说,a² + b² = (a + b)² - 2ab ,这就像是把原本的公式“拆了重装”。
我记得之前有一次给学生们讲这个知识点的时候,有个学生就一脸懵地问我:“老师,这变来变去的,到底有啥用啊?”我笑着回答他:“这用处可大了去啦!就好比你要盖房子,这公式就是你的建筑蓝图,不同的变化形式能帮你解决不同的问题。
”咱们就拿一个简单的例子来说。
假设小明有一块长方形的土地,长为 a + b 米,宽为 a - b 米,让咱们求这块土地的面积。
这时候,咱们就可以用完全平方公式的变化形式来解决。
面积就是 (a + b)(a - b) ,展开之后就是 a² - b²。
再比如,在代数运算中,经常会遇到化简式子的情况。
像化简 a² +6a + 9 ,咱们一眼就能看出来,这其实就是 (a + 3)²嘛。
还有在求解方程的时候,完全平方公式的变化形式也能大显身手。
比如 x² + 4x - 5 = 0 ,咱们通过配方,可以把它变成 (x + 2)² - 9 = 0 ,这样是不是就好解多啦?总之,完全平方公式的变化形式在数学的世界里就像是一把万能钥匙,能打开各种难题的锁。
咱们在学习这些变化形式的时候,可不能死记硬背,得理解着来。
多做几道练习题,多琢磨琢磨其中的规律,慢慢地就能熟练掌握啦。
希望同学们都能跟完全平方公式的变化形式成为好朋友,让它帮助咱们在数学的海洋里畅游,攻克一个又一个难题!。
完全平方公式知识讲解二次方程的一般形式是 ax^2 + bx + c = 0,其中a,b和c是已知常数,而x是未知数。
完全平方公式的形式为 x = (-b ± √(b^2 -4ac)) / 2a。
让我们详细解释一下完全平方公式的推导过程。
首先,我们要将二次方程写成平方的形式。
我们可以通过配方来完成这一步骤。
将二次方程移项,我们得到 ax^2 + bx = -c。
接下来,我们需要创建一个完全平方。
我们可以通过将b的一半平方加入方程的两边来实现这一点。
这意味着我们需要将b/2平方并加入方程两边。
形式上写为(b/2)^2通过这样做,我们可以将方程转变为一个完全平方的形式。
现在方程变为 (ax^2 + bx + (b/2)^2) = (b/2)^2 - c。
简化方程,我们得到 (ax + b/2)^2 = (b^2/4) - c。
将方程再次移项,我们得到 (ax + b/2)^2 - (b^2/4) = -c。
注意到,左边的式子是两个平方的差。
这是一个重要的公式,称为平方差公式。
平方差公式是 (a-b)(a+b) = a^2 - b^2、应用这个公式,我们可以将方程进一步简化为 (ax + b/2)^2 - (b^2/4) = -c。
通过移项,我们得到 (ax + b/2)^2 = (b^2/4) - c。
然后,我们可以开始解方程。
首先,我们要对两边的式子开根号,可以得到ax + b/2 = ±√((b^2/4) - c)。
接下来,我们继续化简。
我们将b/2移项,得到 ax = -b/2 ±√((b^2/4) - c)。
最后,我们将x与a相除,得到 x = (-b ± √(b^2 - 4ac)) / 2a。
这就是完全平方公式的最终形式。
需要注意的是,完全平方公式只适用于二次方程。
对于高次方程,我们需要采用其他方法来求解。
总结起来,完全平方公式是一个用于求解二次方程的重要公式。
北师大版七年级下册数学《第一章整式的乘除--完全平方公式》知识点讲解!1.完全平方公式:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
2.派生公式:(a+b)2-2ab=a2+b2(a-b)2+2ab=a2+b2(a-b)2+(a+b)2=2(a2+b2) (a+b)2-(a-b)2=4ab考点解析完全平方公式是进行代数运算与变形的重要知识基础。
该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解)。
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。
为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
理解公式左右边特征(一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(三)这两个公式的结构特征是:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一:因为所以两个公式实际上可以看成一个公式:两数和的完全平方公式。
这样可以既可以防止公式的混淆又杜绝了运算符号的出错。
完全平方公式变形$$ax^2+bx+c=0$$其中,a、b、c分别为一元二次方程的系数,x为未知数。
该公式的解可以通过以下的完全平方公式变形来求解。
首先,我们将一元二次方程的左边进行配方,即将$a(x^2+\frac{b}{a}x)+c=0$进行变形。
观察到,$x^2+\frac{b}{a}x$这一项具备完全平方的形式,我们可以将其改写为平方后的形式,即:$$x^2+\frac{b}{a}x+\left(\frac{b}{2a}\right)^2=\left(x+\frac{b }{2a}\right)^2$$这样,我们就将一元二次方程的左边配方成了完全平方的形式。
将该结果代入原始方程,可以得到:$$\left(x+\frac{b}{2a}\right)^2+c-\left(\frac{b}{2a}\right)^2=0$$继续化简,得到:$$\left(x+\frac{b}{2a}\right)^2=\left(\frac{b}{2a}\right)^2-c $$再对方程两边取平方根,得到:$$x+\frac{b}{2a}=\pm\sqrt{\left(\frac{b}{2a}\right)^2-c}$$接下来,我们将求解x的过程分成两种情况讨论:情况一:当$\left(\frac{b}{2a}\right)^2-c\geq0$时,即方程有实数解。
在这种情况下,我们可以继续化简上述结果,得到:$$x=\pm\sqrt{\left(\frac{b}{2a}\right)^2-c}-\frac{b}{2a}$$这样,我们就得到了一元二次方程的两个实数解。
情况二:当$\left(\frac{b}{2a}\right)^2-c<0$时,即方程没有实数解,但有复数解。
在这种情况下,我们不能继续对方程进行化简,因为负数无法开平方根得到实数结果。
但是,我们可以通过引入虚数单位i来求解方程。
令$y=\pm\sqrt{c-\left(\frac{b}{2a}\right)^2}$,则方程可以写成:$$x=-\frac{b}{2a}\pm yi$$这样,我们就得到了一元二次方程的两个复数解。
完全平方公式讲解完全平方公式是一种求解二次方程的方法,通常用于解决含有未知数的平方项和一次项的方程。
这个公式的公式表达形式为:$$(a+b)^2=a^2+2ab+b^2$$完全平方公式在数学中具有广泛的应用,可以用来解决一元二次方程、分解因式、证明等问题。
首先,我们可以考虑一个特殊的二次多项式:$$(x+a)^2$$这里,a 是一个常数。
根据分配律,我们可以展开该二次多项式:$$(x+a)(x+a)=x^2+ax+ax+a^2$$合并相同项得到:$$x^2+2ax+a^2$$我们可以观察到,这个二次多项式中的平方项($x^2$)和常数项($a^2$)是完全平方的结构。
而一次项的系数项($2ax$)是两个a的乘积的两倍。
这就是所谓的完全平方。
根据以上的推导,我们得出了完全平方的一般形式。
接下来,我们将利用完全平方公式来解决一元二次方程的问题。
对于一元二次方程$$ax^2+bx+c=0$$其中a、b、c是已知实数常数。
我们将该方程两边移项,并利用一种变形技巧,将方程转化为完全平方的形式。
具体步骤如下:1. 将方程两边移项,使等式右边等于0,得到$$ax^2+bx=-c$$2.对于方程的左边,我们将其利用完全平方公式进行变形。
如果我们能找到一个常数k,使得左边可以变为$(x+k)^2$的形式,那么我们就可以利用完全平方公式直接求解。
3. 考虑到$(x+k)^2=x^2+2kx+k^2$,我们可以发现,当$b=2k$时,方程的左边可以写成完全平方形式。
4. 所以,我们可以得到方程$$ax^2+2kx+k^2=-c$$5.然而,我们不能直接将方程的右边变为k的平方形式,因为我们无法确切地知道k的值。
所以,我们需要做一个额外的变形。
6. 我们可以再次考虑方程的两边,得到$$ax^2+2kx+k^2+c=0$$7.现在,我们成功地将方程转化为一个完全平方的形式。
进一步观察,我们可以发现,左边的二次项是$x^2$的系数与$a$的乘积,一次项是$x$的系数与$2k$的乘积,常数项则是$k^2+c$。
数学篇学思导引完全平方公式,即(a ±b )2=a 2+b 2±2ab .它是恒等变形中的常用公式之一,也是破解数学问题的重要利器.完全平方公式经过变形或重组可以衍生出新的公式.灵活运用这些公式,可以让我们在解题时更快捷.运用完全平方公式及其变形式解题时需注意以下几点:1.a 和b 可以是数,可以是式子;2.要有整体观念,即把某个数或式子看成a 或b ,再运用公式解题;3.注意运用变形公式,可以分别将a +b ,a -b ,a 2+b 2,ab 看成四个整体,若已知其中两个整体,则可以灵活运用公式及公式变形式求得另外两个整体.变形式1:a 2+b 2=(a +b )2-2ab =(a -b )2+2ab 由(a +b )2=a 2+b 2+2ab ,(a -b )2=a 2+b 2-2ab ,可以得到:a 2+b 2=(a +b )2-2ab =(a -b )2+2ab .例1设x >y >0,且x 2+y 2-7xy =0,则x +yy -x的值为________.分析:要想求出x +yy -x的值,需要先求出x +y ,y -x 的值.而结合已知条件可知,它们的值借助完全平方变形公式x 2+y 2=(x -y )2+2xy =(x +y )2-2xy 即可求出.解:因为x 222又x 2+y 2-7xy =0,所以(x +y )2-2xy -7xy =0,即(x +y )2=9xy .因为x >y >0,所以x +y >0,所以x +y =3xy .因为x 2+y 2=(x -y )2+2xy ,又x 2+y 2-7xy =0,所以(x -y )2+2xy -7xy =0,即(x +y )2=5xy .因为x >y >0,所以y -x <0,所以y -x =-5xy .所以x +y y -x =.评注:本题利用完全平方公式的变形式a 2+b 2=(a +b )2-2ab =(a -b )2+2ab ,分别求出x +y ,y -x 的值,再将其代入所求目标式中.在这一过程中,要特别注意x +y >0,y -x <0这一隐含条件.变形式2:(a +b )2=(a -b )2+4ab 因为(a -b )2=a 2+b 2-2ab ,所以有(a -b )2+4ab =a 2+b 2-2ab +4ab =a 2+b 2+2ab =(a +b )2.例2已知x -y =2,xy =3,则(x +y )4的值为_______.分析:要想求出(x +y )4的值,需要先对江苏省盐城市新洋初级中学洪婷婷27数学篇学思导引(x+y)4进行变形,(x+y)4实际上可以看作是(x+y)2的平方,而(x+y)2=(x-y)2+4xy,这样问题也就迎刃而解了.解:(x+y)4=[(x+y)2]2=[(x-y)2+4xy2]2=(22+4×3)2=256.评注:本题先通过变形,把目标式转化为平方式,再利用完全平方公式的变形式(a+b)2=(a-b)2+4ab求出其值.变形式3:(a-b)2=(a+b)2-4ab因为(a+b)2=a2+b2+2ab,(a+b)2-4ab=a2+b2+2ab-4ab=a2+b2-2ab=a-b2,所以有a-b2=(a+b)2-4ab.例3若a,b,c满足a-b=6,ab=-9-c2,则a+b+c的值为_____.分析:本题涉及a-b,ab,a+b,若能联想完全平方公式的变形式(a-b)2=(a+b)2-4ab,则可以化难为易.解:因为(a-b)2=(a+b)2-4ab,又a-b=4,ab=-8-c2,所以62=(a+b)2-4(-9-c2),即(a+b)2+4c2=0,根据非负数的性质可知a+b=0,c=0,所以a+b+c=0.评注:本题利用(a-b)2=(a+b)2-4ab,得出(a+b)2+4c2=0,再结合非负数的性质求出a+b+c的值,从而使问题获解.变形式4:(a+b)2-(a-b)2=4ab,由(a+b)2=(a-b)2+4ab,(a-b)2=(a+b)2-4ab,这两个变形公式,可以得到(a+b)2-(a-b)2=4ab,即ab=14[(a+b)2-(a-b)2].例4已知(a+b)2=32,(a-b)2=20,则ab的值为_______.分析:本题出现了(a+b)2和(a-b)2,若能联想完全平方公式的变形式(a+b)2-(a-b)2=4ab,即可快速求出ab的值.解:因为(a+b)2-(a-b)2=4ab,所以ab=14[(a+b)2-(a-b)2]=14×(32-20)=3.评注:本题若按照常规思路先求出a、b的值,再求ab,则较为繁琐,而利用完全平方变形公式则可以化繁为简.变形式5:(a+b)2+(a-b)2=2(a2+b2)因为(a+b)2=a2+b2+2ab,(a-b)2=a2+b2-2ab,所以(a+b)2+(a-b)2=2(a-b)2=2(a2+b2),即a2+b2=12[(a+b)2+(a-b)2].例5已知a+b=8,则a2+b2的最小值为_________.分析:由a+b,a2+b2可以联想完全平方公式的变形式(a+b)2+(a-b)2=2(a2+b2).解:因为(a+b)2+(a-b)2=2(a2+b2),又a+b=8,所以a2+b2=12[(a+b)2+(a-b)2]=12[82+(a-b)2]=32+12(a-b)2.因为(a-b)2≥0,所以a2+b2≥32.即当a+b=8时,a2+b2的最小值为32.评注:本题利用(a+b)2+(a-b)2=2(a2+b2)这一完全平方公式的变形式解题,使解题过程变得简捷明了.总之,在平时的学习中,同学们不仅要熟悉完全平方公式的结构特征,而且还要掌握它的变形和推广形式,并注意结合题目的结构特征,灵活运用完全平方变形公式.这将会给我们的解题带来意想不到的效果.28。
完全平方公式讲解(a + b)^2 = a^2 + 2ab + b^2这里,a和b可以是任意数,a^2和b^2分别被称为二次项,2ab被称为二次项的第一次乘积。
我们从(a+b)^2入手进行推导。
(a+b)^2=(a+b)(a+b)(根据平方定义)=a(a+b)+b(a+b)(分配律)= a^2 + ab + ab + b^2 (使用分配律)= a^2 + 2ab + b^2通过这个推导过程,我们可以得到完全平方公式。
通过完全平方公式,我们可以将二次多项式转化成完全平方的形式,进而进行一些简化操作。
这对于解方程、求解二次函数的最值等问题非常有用。
1.解二次方程:当我们需要解二次方程时,可以使用完全平方公式将其转化为完全平方形式,从而更方便地求解。
例如,对于方程x^2+6x+9=0,我们可以将其写成完全平方的形式(x+3)^2=0,然后解得x=-32.求解二次函数的最值:对于二次函数 f(x) = ax^2 + bx + c,其中a不等于0,完全平方公式可以帮助我们求解该二次函数的最值。
例如,对于函数 f(x) = x^2+ 6x + 8,我们可以将其转化成完全平方形式 f(x) = (x + 3)^2 + 1,从而可以很容易地看出该函数的最小值为1,并且该最小值在x = -3时取得。
3.分解因式:在分解二次多项式的过程中,我们可以使用完全平方公式将其转化为完全平方形式,从而更容易地进行因式分解。
例如,对于多项式x^2+4x+4,我们可以将其写成完全平方的形式(x+2)^2,并且可以进一步分解为(x+2)(x+2)。
通过以上几个例子,我们可以看到完全平方公式在解方程、求解二次函数的最值以及分解因式时的重要性。
在这些应用中,一个关键的步骤就是将二次多项式转化为完全平方的形式,通过完全平方公式,我们可以很容易地完成这一步骤。
总结:完全平方公式是一种将二次多项式转化为完全平方的方法。
它可以帮助我们解方程、求解二次函数的最值,以及分解因式。
初中完全平方公式12种变形在初中数学课中,完全平方公式一直是学习的重要内容。
它可以用来解决复杂的问题,它可以准确地表达一个问题,而且它有很多变形,其中有12种。
首先,完全平方公式的基本原理是,当一个多项式的项中存在平方项时,可以将其化简为完全平方公式的形式。
它的基本形式是x^2+2xy+y^2=a^2,其中a为一个实数。
其次,一元二次方程的12种变形分别是:(1)x^2+2xy+y^2=a^2;(2)x^2-2xy+y^2=a^2;(3)x^2+2xy-y^2=a^2;(4)x^2-2xy-y^2=a^2;(5)ax^2+2xy+y^2=b^2;(6)ax^2-2xy+y^2=b^2;(7)ax^2+2xy-y^2=b^2;(8)ax^2-2xy-y^2=b^2;(9)x^2+2axy+y^2=c^2;(10)x^2-2axy+y^2=c^2;(11)x^2+2axy-y^2=c^2;(12)x^2-2axy-y^2=c^2;然后,我们需要分析上述12种变形的特征和特点,以便于更好地理解其含义。
首先,这些变形有一个共性,即都是完全平方公式的形式,因此它们可以看作一类。
其次,它们的参数不同,例如,前四种的参数a、b、c都是实数,而后八种的参数a、b、c则是变量。
最后,这12种变形可以分为四类,即有系数a的变形,有常数b的变形,有变量c的变形,以及包含x和y的变形。
最后,要正确使用完全平方公式的12种变形,需要掌握其特征和使用方法。
首先,要明确它们的参数,例如有些是实数,而有些则是变量。
其次,要了解它们的共性和特点,例如上面提到的变形分为四类。
最后,要熟练掌握它们的解题方法,例如展开式的方法、变量的替换方法以及因式分解的方法。
这样,才能够更好地解决完全平方公式的12种变形,让自己更加深入地掌握这门学科知识。
总之,完全平方公式可以分为12种变形,它们有着自己的特征和特点,要正确使用它们,需要掌握其参数、共性和解题方法,这样才能更好地解决复杂的问题,为自己赢得一份好成绩。
完全平方公式变形公式及常见题型
完全平方公式变形及常见题型是数学学习中最基本的内容,在考试中也是经常出现的题型。
完全平方公式的变形和常见的题型可以大大提高学生在数学考试中的表现,也可以帮助学生更好地理解这些概念。
本文将对完全平方公式变形公式及常见题型进行讨论,包括它们的定义、变形公式以及常见题型。
完全平方公式是一类特殊的二次公式,其标准形式为:
ax2+bx+c=0
其中a、b和c分别为系数,可以为整数、分数或者其他数学表
示形式。
在完全平方公式中,b=0,a和c为正数或者负数,此时x2
的系数为a,而常数项的系数为c。
完全平方公式的一般形式为:
ax2+c=0
要将完全平方公式一般形式变形为标准形式,可以使用变形公式,其中b系数的变形公式为:
b=±√(ac)
通过使用变形公式,可以在给定的条件下变形完全平方公式,使其达到标准形式。
完全平方公式变形后常常会出现一些常见的题型,这些题型包括: 1.全平方公式求解题:此类题型一般要求学生使用完全平方公式求解某类问题,例如求解一元二次方程;
2.全平方公式变形题:此类题型要求学生运用变形公式将完全平方公式从一般形式变换到标准形式;
3.全平方公式的图像分析题:此类题型要求学生分析完全平方公式的图像特征,如顶点、极值、开口方向等;
4.全平方公式在实际问题中的应用题:此类题型要求学生将完全平方公式运用到实际问题中,如几何问题或投资问题,求解问题的最佳解。
以上就是完全平方公式变形公式及常见题型的基本内容,下面我们将对它们进行更深入的介绍。
完全平方公式是初中数学中的一个重要概念,它描述了一个二项式的平方的展开形式。
在七年级下册的数学学习中,我们通常会接触到完全平方公式的变形和应用。
下面,我将就完全平方公式的变形进行详细的阐述。
首先,我们来回顾一下完全平方公式的基本形式。
对于一个二项式a+b或a-b的平方,其展开形式分别为(a+b)²=a²+2ab+b²和(a-b)²=a²-2ab+b²。
这两个公式揭示了二项式平方后各项系数之间的关系。
接着,我们来探讨完全平方公式的变形。
变形通常涉及到对公式中的各项进行重新组合或调整,以适应不同的解题需求。
例如,我们可以将公式中的2ab项拆分为两个相等的部分,得到(a+b)²=a²+b²+2ab。
这样的变形有助于我们更直观地理解公式中各项之间的关系,并方便我们在解题时进行运用。
除了对公式本身的变形外,我们还需要关注完全平方公式在实际问题中的应用。
在实际问题中,我们往往需要根据题目的要求,对公式进行适当的变形和调整。
例如,在求解某个代数式的值时,我们可能需要将给定的代数式转化为完全平方的形式,然后利用完全平方公式进行计算。
在变形和应用完全平方公式的过程中,我们需要注意以下几点:首先,要熟练掌握公式的基本形式;其次,要理解公式中各项的意义和作用;最后,要根据题目的要求灵活运用公式进行变形和计算。
总之,完全平方公式的变形是七年级下册数学学习的重要内容之一。
通过掌握公式的基本形式和变形方法,我们可以更好地理解和应用完全平方公式,提高解题能力。
同时,我们也需要不断练习和巩固所学知识,以便在实际问题中能够灵活运用完全平方公式进行解题。