243正多边形和圆复习
- 格式:ppt
- 大小:3.16 MB
- 文档页数:28
核心知识点一:正多边形的概念
各边相等,各角也相等的多边形叫做正多边形.
核心知识点二:正多边形与圆
把圆分成()3n n ≥等份:
(1)依次连结各分点所得的多边形是这个圆的内接正n 边形;
(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形;
(3)任何正多边形都有一个外接圆与一个内切圆,这两个圆是同心圆.
核心知识点三:正多边形的中心、半径、边心距及中心角
(1)正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心;
(2)外接圆的半径叫做正多边形的半径;
(3)中心到正多边形一边的距离叫做正多边形的边心距(内切圆的半径);
(4)正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角.
核心知识点四:正多边形的有关计算公式
(1)每个内角=()
1802360=180n n n
︒-︒-,每个外角360n ︒=; (2)正n 边形边长a ,半径R ,边心距r 之间的关系可以结合垂径定理计算;
(3)正n 边形周长C n a =⋅;面积1122
S n r a C r =⋅⋅⋅=⋅.
正多边形和圆
一、基础知识梳理 O 中心角 半径R 边心距r。
初中数学知识点:正多边形和圆知识点新一轮的中考复习又开始了,本站编辑为此特为大家整理了正多边形和圆知识点,希望可以帮助大家复习,预祝大家取得优异的成绩~正多边形和圆知识点1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。
2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
典型例题粉笔是校园中最常见的必备品.图1是一盒刚打开的六角形粉笔,总支数为50支.图2是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD的周长约为_____mm.(,结果精确到1mm)答案:300解析:把图形中的边长的问题转化为正六边形的边长、边心距之间的计算即可.解:作B′M′∥C′D′,C′M′⊥B′M′于点M′.粉笔的半径是6mm.则边长是6mm.∵∠M′B′C′=60°∴B′M′=B′C′?cos60°=6×=3.边心距C′M′=6sin60°=3mm.则图(2)中,AB=CD=11×3=33mm.AD=BC=5×6+5×12+3=93mm.则周长是:2×33+2×93=66+186≈300mm.故答案是:300mm.同步练习题1判断题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )2填空题:①一个外角等于它的一个内角的正多边形是正____边形.[②正八边形的中心角的度数为 ____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm ,面积是____cm.④面积等于 cm2的正六边形的周长是____.⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.3选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:B.1:C.1:2D. :1④正六边形的两条平行边间距离是1,则边长是( )A . B. C. D.⑤周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是:( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S3⑥正三角形的边心距、半径和高的比是( )A.1:2:3B.1: :C. 1: :3D.1:2:四、计算1.已知正方形面积为8cm2,求此正方形边心距 .3.已知圆内接正三角形边心距为 2cm,求它的边长.距长.长.8.已知圆外切正方形边长为2cm ,求该圆外切正三角形半径.10.已知圆内接正方形边长为m,求该圆外切正三角形边长.长.12.已知正方形边长为1cm,求它的外接圆的外切正六边形外接圆的半径.13.已知一个正三角形与一个正六边形面积相等,求两者边长之比.15.已知圆内接正六边形与正方形面积之差为11cm2,求该圆内接正三角形的面积.16.已知圆O内接正n边形边长为an,⊙O半径为R,试用an,R表示此圆外切正n边形边长bn.。
中考数学复习指导《正多边形与圆》知识点归纳一、正多边形的定义正多边形是指所有边相等,所有角相等的多边形。
我们以正n边形来进行讨论,其中n表示边的个数。
二、正多边形的性质1.角的个数:正n边形有n个内角和n个外角。
2.外角和:正n边形的外角和为360°。
3.内角和:正n边形的内角和为(2n-4)×90°。
4.中心角和:正n边形的中心角和为360°。
5. 半径和边长之间的关系:正n边形的边长为a,半径为R,则有R=a/(2×sin(π/n))。
三、正多边形的对称性正n边形有n条对称轴,每条对称轴都把正多边形分成两个对称的部分。
四、圆的性质1.圆心角:圆心角是圆的半径所对应的圆弧所夹的角。
圆心角的大小等于其对应的圆弧的度数。
2.弧长:圆心角对应的圆弧的长度称为弧长。
如果圆的半径为R,圆心角的大小为θ,那么圆弧的长度S=R×θ。
3.弦长:弦是圆上的两点之间的线段,弦长可以通过两角的正弦来计算。
4.弦割定理:圆上的一弦分割出的弧长等于该圆的半径与该弦分割出的小弧的两圆心角的和。
即S=S1+S2=R×θ1+R×θ25.弧度制:弧度制是一种角度的度量方式,将角度定义为弧长与半径的比值:角度=弧长/半径。
单位为弧度。
6.周长和面积:圆的周长等于2πR,面积等于πR²。
五、圆与正多边形的关系1.正多边形逼近圆:正多边形的边数越多,逼近的程度越高,其内接圆越接近于外接圆。
2.正多边形的周长与圆的周长:正n边形的周长与内接圆的周长之比约为n/2π。
3. 正多边形的面积与圆的面积:正n边形的面积与内接圆的面积之比约为(1/2•n•sin(2π/n))/π)。
以上就是《正多边形与圆》的一些重要知识点的归纳。
在复习时,可以通过理论学习、练习习题以及解决实际问题的应用题来巩固和提升自己的理解能力。
加油!。
中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)知识点总结1.正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。
2.正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心。
②正多边形的半径:外接圆的半径叫做正多边形的半径。
③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。
④边心距:中心到正多边形的一边的距离叫做正多边形的边心距。
练习题1、(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.2、(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.3、(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.【分析】先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.4、(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.5、(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大1OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA 于2=1,则BE⌒,AE,AB所围成的阴影部分面积为.【分析】连接OE、OB.由题意可知,∴△AOE为等边三角形,推出S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE ﹣S△AOB,即可求出答案.【解答】解:连接OE、OB,由题意可知,直线MN垂直平分线段OA,∴EA=EO,∵OA=OE,∴△AOE为等边三角形,∴∠AOE=60°,∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∴∠BOE=30°,∵S弓形AOE=S扇形AOE﹣S△AOE,∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB=S扇形BOE+S△AOE﹣S△AOB=+﹣=.故答案为:.6、(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH ⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF=AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M 作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF,∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.。
24.3 《正多边形和圆》教学设计教学时间2016 年12 月29 日讲课教师海沧中学蓝文英知识与技能:复习正多边形的有关概念(正多边形的中心、半径、中心角、边心距);能运用正多边形的知识解决圆的有关计算问题;掌握用等分圆周画圆的内接正多边形的方法.教学目标数学思考:把正多边形和圆的问题转化为解直角三角形问题.问题解决:通过正多边形和圆的复习教学,培养学生观察、猜想、推理、迁移、归纳能力.情感态度:通过等分圆周、构造正多边形等实践活动,使学生在数学学习活动中获得成功的体验,建立自信心.教学重点充分了解圆与正多边形的关系的基础上进行有关计算,并能通过等分圆周画圆的内接正多边形教学难点正多边形与圆相关计算的灵活应用教学方法任务驱动启发式教学,讲练结合教学过程教学活动设计意图1.定义:一个正多边形的外接圆的圆心叫做这个正多边形的,外接圆的半径叫做这个正多边形的,正多边形每一条边所对的圆心角叫做正多边形的,到正多边形一边的距离叫做正多边形的.趁热打铁:第一组:学前准备课前完成(1)如果正多边形的一个外角等于60°,那么它的边数为___ .(2)正多边形的一边所对的中心角与该正多边形的一个内角的关系是__ .B第二组:(1)在Rt△ABC中,∠C =90°. ca①已知b=6,∠A=30°,求a,c.ACb=61②已知c=4,∠A=45°,求a,b.Ac=4b③已知c=2 x,∠A=45°,求a,b.C Ba第三组:(1)画两个圆,再用圆规和直尺作出正方形和正六边形.追问:圆的内接正六边形的边长与半径有什么关系?1. 复习回顾“正多边形和圆的关系”1.引出课题①正多边形的定义(生举例,师展示图片)’②圆的内接正多边形,怎么得到?播放短视频(分钟1-2)2.观察短视频,③完成简单辨析:激情引趣。
师:各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形呢?如果是,说明为什么;如果不是,举反例练:把一个圆n 等分,连接各分点所得到的多边形创设情境是,它的中心角等于__ 360n __.导入新课④进而得到圆内接正多边形的画法:等分圆周利用量角器等分圆心角的方法等分圆周尺规作正方形、正六边形等⑤正多边形的对称性(当边数为n)正n 边形都是轴对称图形,一个正n 边形共有条对称轴,每条对称轴都通过n 边形的中心。
§ 2.6 正多边形与圆一、概念知识点1 正多边形及其有关概念★正多边形:________相等、________也相等的多边形叫做正多边形.注:边数3n 的多边形必须同时满足“各边相等”和“各角相等”这两个条件,才能判定它是正多边形.例1 下列说法正确的是()A.正三角形不是正多边形B.平行四边形是正多边形C.正方形是正多边形D.各角相等的多边形是正多边形知识点2 正多边形的对称性(重点)1.正多边形都是________图形.一个正n边形共有_______条对称轴,每一条对称轴都经过正n边形的_________.2.一个正多边形,如果有偶数条边,那么它是________________图形,也是_________________图形;如果有奇数条边,那么是_______________图形.注:(1)如果一个正多边形是中心对称图形,那么它的中心就是对称中心;(2)正n边形的内角和等于________________,每一个内角都等于___________________,每一个外角都等于_________________.知识点3 正多边形的判定例2 如图,在正∆ABC中,E,F,G,H,L,K分别是各边的三等分点,试说明六边形EFGHLK是正六边形.二、经典题型题型1 根据正多边形的性质求角例1 如图,正方形ABCD是O的内接正方形,点P是弧CD上不同于点C的任意一点,则∠BPC等于___________.题型2 利用正多边形的性质求图形的面积例 2 如图,正六边形内接于O,O的半径为10,则图中阴影面积_________.典例精讲:1. 下列边长为a 的正多边形与边长为a 的正方形组合起来,不能镶嵌成平面( ) 、(1)正三角形 (2)正五边形 (3)正六边形 (4)正八边形A .(1)(2)B .(2)(4)C .(1)(3)D .(1)(4)2. 若同一个圆的内角正三角形、正方形、正六边形的边心距分别为r 3,r 4,r 6,则r 3:r 4:r 6等于( )A .1:2:3B .3:2:1C .1:2:3D . 3:2:13. 已知正六边形ABCDEF 内接于⊙O ,图中阴影部分的面积为312,则⊙O的半径为______________________.(第4题) (第5题)4.如图,正方形ABCD 内接于⊙O ,点E 在AD 上,则∠BEC= .5.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图2),需在每一个顶点处剪去一个四边形,例如图中的四边形AGA /H ,那么∠GA /H 的大小是 度.OB CDA EF E D C A O6.从一个半径为10㎝的圆形纸片上裁出一个最大的正方形,则此正方形的边长为 .7.如图,若正方形A 1B 1C 1D 1内接于正方形ABCD 的内接圆,则AB B A 11的值为( )A .21 B .22 C .41D .42。
24.3 正多边形和圆【重点难点点拨】重点:(1)理解正多边形和圆的关系;(2)能利用所学的知识进行正多边形的有关计算。
难点与关键:利用所学的有关知识进行正多边形的有关计算.【规律方法指津】1、正多边形和圆的关系非常密切,把圆分成(是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆就是这个正多边形的外接圆;2、正多边都是轴对称图形,若n是奇数,正n边形是轴对称图形,n是偶数,正n边形既是轴对称图形又是中心图形.3、正多边形的性质:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.4、正多边形的有关计算,一般是围绕正边形的半径R,边长,边心距,周长及面积来进行,但关健是之间的计算,因为正边形的边心距把正边形的一边与该边所对应的两条半径所围成的等腰三角形分成两个全等的直角三角形,所以在Rt△AOH中,斜边是R,直角边分别是和,锐角,利用直角三角形的有关知识(勾股定理,锐角三角函数等来解直角三角形即可.图24.3-1【知识详细解读】1、正多边形的有关概念正多边形的外接圆(或内切圆的圆心叫正多边形的中心.外接圆半径叫正多边形的半径.内切圆的半径叫正多边形的边心距.正多边形的每一边所对的圆心角叫中心角,中心角的度数是.注意:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形(这些直角三角形的斜边是正n边形的半径R,一条直角边是正n边形的边心距,另一条直角边是正n边形边长的一半,一个锐角是正n边形中心角的一半,即.2、正多边形的画法要作半径为R的正n边形,只要把半径为R的圆n等分,然后顺次连接各等分点即可。
【典型例题感悟】例1、正八边形有_____条对称轴,它不仅是______对称图形,还是_____对称图形.分析:正n边形有n条对称轴.正2n边形既是轴对称图形,又是中心对称图形.解:8,轴,中心.金钥匙:对于正n边形,它们都是轴对称图形,当n为偶数时,它还是中心对称图形.例2、边长为2 a的正六边形的面积为______.分析:把正六边形的中心与六个顶点连结起来,所得六个等边三角形全等.每个等边三角形的面积为·(2 a)2=a2,所以正六边形的面积为6a2.解:6a2例3、一个正方形和一个正六边形的外接圆半径相等,则此正方形与正六边形的面积之比为_______.分析:设两正多边形的外接圆半径为R,则正方形面积为4×·R2=2 R2,正六边形的面积为6×R2=R2,所以它们的比为2 R2:R2=4︰9.解:4︰9.金钥匙:本题考查正方形、正六边形的面积与外接圆的半径之间的关系.注意:正多边形的面积通常化为n个三角形的面积和.。
九年级数学上册(第二十四章24.3~-24.4)知识梳理与复习知识要点一:正多边形和圆1.下列说法中,不正确的是( )A.正多边形一定有个外接圆B.各边相等且各角相等的多边形一定是正多边形C.正多边形的内切圆和外接圆是同心圆D.正多边形既是轴对称图形,又是中心对称图形2.若同一个圆的内接正三角形、正方形、正六边形的边心距分別为r1,r2,r3,则r1,r2,r3等于( )A.1:2:3B.3:2:1C.1:2:3D.3:2:13.有一个边长为2cm的正六边形,若要剪一张圆形纸片完全盖住这个正六边形、这个纸片的最小半径是_______cm.4.已知圆的半径为6,则它的内接正三角形的边长是______, 内接正方形的边长是________.5.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于________.6.中心角是45°的正多边形的边数是__________.7.分别求半径为R的圆内接正三角形、正方形的边长、边心距和面积.8.如图,正六边形 ABCDEF内接于半径为R的⊙O,四边形EFGH是正方形.(1)求正六边形与正方形的面积比;(2)连接OF,OG,求∠OGF的度数;知识要点二:正多边形的画法及性质9.如图所示,正六边形内接于⊙O,⊙O的半径为10,则1 / 7图中阴影部分的面积为________10.按要求作图.(1)作⊙O,把⊙O分成四等份,分点为A,B,C,D;(2)过各分点A,B,C,D分别作⊙O的切线,相邻切线的交点分别为E,F,G,H;(3)观察四边形EFGB,并说明它的形状11.用等分圆的方法写出如图所示图案的画法知识要点三:弧长和扇形面积12.如图,△ABC中,∠A=30°,∠C=90°,作△ABC的外接圆,若弧AB的长为12cm,那么弧AC的长是( )A. 10cmB. 9 cmC 8 cmD. 6cm13.如果扇形的圆心角为150°,面积为240πc㎡,那么扇形的弧长为( )A. 5π cmB. 10πcmC. 20π cmD. 40π cm14如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形,则半径为2的“等边扇形”的面积为_______.2 / 73 / 715.已知期形的半径为2cm ,面积是3π4cm ,则扇形的弧长是_______cm;扇形的圆心角为________.16.如图,在R △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm,分别以A,C 为圆心,以2AC的长 为半径作圆,将Rt △ABC 截去两个扇 形,则剩余(阴影)部分的面积为______ c ㎡(结果保留π)17.如图所示,AB 是⊙O 的直径,C ,D 是弧AB 的三等分点,如果⊙O 的半径为1,P 是线段AB 上的任意一点,则图中阴彫部分的面积为__________.18.已知南形的弧长是2π,圆心角为30°,则这个扇形的面积为多少?19. 如图,圆心角都是90°的扇形OAB 与扇形OCD 叠放在一起,连接AC ,BD.(1)求证:AC =BD;(2)若图中阴部分的面积是43πc ㎡,OA =2m 求0C 的长.20.如图,在⊙O 中,直径AB =2,CA 切⊙O 于点A ,BC 交⊙O 于点D ,若∠C =45°,则 (1)BD 的长是________; (2)求阴影部分的面积.4 / 7知识要点四:圆锥的侧面积和表面积21.如图(1),在正方形铁皮上剪下一个圆形和扇形、使之恰好围成图(2)所示的一个圆锥模型,设圆的半径为r ,扇形半径为R ,则圆的半径与扇形半径之间的关系为 ( )A R=2r B.R=49r C. R=3r D.R=4r22如图、如果从半径为9cm 的圆形纸片上剪去31圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面圆半径为 ( ) A. 6cm B. 33 cm C 52 cm D 8cm 23.如图,圆锥形烟卤帽的底面直径为80cm ,母线长为50cm ,则这样的烟囱帕的侧面积是 ( ) A. 4000π c ㎡ B. 3 600πc ㎡C. 2 000π c ㎡D. 1 000π c ㎡ 24.如图,从一个直径为43dm 的圆形铁 皮中剪出一个圆心角为60°的扇形ABC , 并将剪下来的扇形围成一个圆锥,则圆锥 的底面半径为_______dm.25.将一块含30°角的三角尺绕较长的直角边旋转一周得一圆锥,设较短直角边的边长为1,则这个圆锥的侧面积为___________.26.如图,一个圆锥的高为33cm ,侧面展开图是半圆. 求:(1)圆锥的母线长与底面半径之比; (2)∠BAC 的度数;(3)圆锥的侧面积(结果保留π)27.某厂要选一块矩形铁皮加工一个底面半径为20cm、高为402cm的圆锥形漏斗,要求只能有一条接缝(接缝忽略不计),要想用料最省,矩形的长和宽分别是多少?5 / 7参考答案6 / 77 / 7。
24.3 正多边形和圆(共2课时)第一课时:正多边形和圆教学目标1、了解正多边形与圆的关系,了解正多边形的中心、半径、边心距、中心角等概念.重点:探索正多边形与圆的关系,了解正多边形的有关概念,并能进行计算.难点:探索正多边形与圆的关系.教学过程一、问题与情境,引入新课观看下列美丽的图案.问题1这些美丽的图案,都是在日常生活中我们经常能看到的、利用正多边形得到的物体.你能从这些图案中找出正多边形来吗?问题2你知道正多边形和圆有什么关系吗?你能借助圆做出一个正多边形吗?引入新课。
二、探究新知探究一:将一个圆五等分,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是请你证明这个结论.关注(1)学生能否看出:将圆分成五等份,可以得到5段相等的弧,这些弧所对的弦也是相等的,这些弦就是五边形的各边,进而证明五边形的各边相等;(2)学生能否观察发现圆内接五边形的各内角都是圆周角;(3)学生能否发现每一个圆周角所对弧都是三等份的弧;(4)学生能否利用这些圆周角所对的弧都相等,证明五边形的各内角相等,从而证明圆内接五边形是正五边形.探究二如果将圆n等分,依次连接各分点得到一个n边形,这n边形一定是正n边形吗?将圆n等分,依次连接各分点得到一个n边形,这n边形一定是正n边形.探究三各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形呢?如果是,说明为什么?如果不是,举出反例.[活动3]学生观看课件,理解概念.例题1 有一个亭子(如图)它的地基是半径为4 m的正六边形,求地基的周长和面积(精确到0.1 m2).解:如图所示,由于ABCDEF是正六边形,所以它的中心角等于3606=60°,•△OBC 是等边三角形,从而正六边形的边长等于它的半径. 因此,所求的正六边形的周长为6a 在Rt △OAM 中,OA=a ,AM=12AB=12a 利用勾股定理,可得边心距∴所求正六边形的面积=6×12×AB ×OM=6×12×a ×a=32三、 课堂练习完成教材第105练习页习题24.3第1题. 四、课堂小结1.正多边和圆的有关概念:正多边形的中心,正多边形的半径,•正多边形的中心角,正多边的边心距.2.正多边形的半径、正多边形的中心角、边长、•正多边的边心距之间的等量关系. 五、布置作业1.教科书第107页习题24.3第3、5、6题.2.思考题1、正n 边形的一个内角的度数是多少?中心角呢?正多边形的中心角与外角的大小有什么关系?2、正n 边形的半径,边心距,边长又有什么关系?第二课时: 正多边形和圆教学内容1、在经历探索正多边形与圆的关系过程中,学会运用圆的有关知识解决问题,并能运用正多边形的知识解决圆的有关计算问题.2.在正多边形和圆中,圆的半径、边长、边心距中心角之间的等量关系. 3.正多边形的画法.重点:并能运用正多边形的知识解决圆的有关计算问题.难点:通过例题使学生理解四者:正多边形半径、中心角、•弦心距、边长之间的关系. 教学过程一、 复习回顾:1、 一个正多边形的外接圆的圆心叫做这个多边形的中心.2、外接圆的半径叫做正多边形的半径.3、正多边形每一边所对的圆心角叫做正多边形的中心角.4、中心到正多边形的一边的距离叫做正多边形的边心距.二、探究新知:现在我们利用正多边形的概念和性质来画正多边形. 例2.利用你手中的工具画一个边长为3cm 的正五边形.分析:要画正五边形,首先要画一个圆,然后对圆五等分,因此,•应该先求边长为3的正五边形的半径.解:正五边形的中心角∠AOB=3605︒=72°, 如图,∠AOC=30°,OA=12AB ÷sin36°=1.5÷sin36°≈2.55(cm )画法(1)以O 为圆心,OA=2.55cm 为半径画圆;(2)在⊙O 上顺次截取边长为3cm 的AB 、BC 、CD 、DE 、EA . (3)分别连结AB 、BC 、CD 、DE 、EA .则正五边形ABCDE 就是所要画的正五边形,如图所示. 三、巩固练习教材P107 练习 四、应用拓展例3.在直径为AB 的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB ,顶点C 在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC•的矩形水池DEFN ,其中D 、E 在AB 上,如图24-94的设计方案是使AC=8,BC=6.(1)求△ABC 的边AB 上的高h .(2)设DN=x ,且h DN NFh AB-=,当x 取何值时,水池DEFN 的面积最大? (3)实际施工时,发现在AB 上距B 点1.85的M 处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.hF DEC AN分析:要求矩形的面积最大,先要列出面积表达式,再考虑最值的求法,初中阶段,尤其现学的知识,应用配方法求最值.(3)的设计要有新意,•应用圆的对称性就能圆满解决此题. 解:(1)由AB 〃CG=AC 〃BC 得h=8610AC BC AB ⨯= =4.8 (2)∵h=h DN NF h AB -=且DN=x ∴NF=10(4.8)4.8x - 则S 四边形DEFN =x 〃104.8(4.8-x )=-2512x 2+10x =-2512(x 2-12025x )=-2512 [(x-6025)2-3600625]=-25x (x-2.4)2+12∵-25x (x-2.4)2≤0 ∴-25x(x-2.4)2+12≤12 且当x=2.4时,取等号 ∴当x=2.4时,S DEFN 最大.(3)当S DEFN 最大时,x=2.4,此时,F 为BC 中点,在Rt △FEB 中,EF=2.4,BF=3.= ∵BM=1.85,∴BM>EB ,即大树必位于欲修建的水池边上,应重新设计方案.∵当x=2.4时,DE=5∴AD=3.2,由圆的对称性知满足条件的另一设计方案,如图所示:.cFD C B AG此时,•AC=6,BC=8,AD=1.8,BE=3.2,这样设计既满足条件,又避开大树.五、归纳小结(学生小结,老师点评) 1.画正多边形的方法.2.运用以上的知识解决实际问题.六、布置作业一、选择题1.如图1所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是().A.60° B.45° C.30° D.22.5°(1) (2) (3) 2.圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是().A.36° B.60° C.72° D.108°3.若半径为5cm的一段弧长等于半径为2cm的圆的周长,•则这段弧所对的圆心角为()A.18° B.36° C.72° D.144°二、填空题1.已知正六边形边长为a,则它的内切圆面积为_______.2.在△ABC中,∠ACB=90°,∠B=15°,以C为圆心,CA长为半径的圆交AB于D,如图2所示,若AC=6,则AD的长为________.3.四边形ABCD为⊙O的内接梯形,如图3所示,AB∥CD,且CD为直径,•如果⊙O的半径等于r,∠C=60°,那图中△OAB的边长AB是______;△ODA的周长是_______;∠BOC的度数是________.三、综合提高题1.等边△ABC的边长为a,求其内切圆的内接正方形DEFG的面积.2.如图所示,•已知⊙O•的周长等于6 cm,•求以它的半径为边长的正六边形ABCDEF的面积.3.如图所示,正五边形ABCDE的对角线AC、BE相交于M.(1)求证:四边形CDEM是菱形;(2)设MF2=BE〃BM,若AB=4,求BE的长.。