初二数学模拟试题
- 格式:docx
- 大小:51.07 KB
- 文档页数:2
一、选择题1.如图,圆柱形容器中,高为1.2 m ,底面周长为1m ,在容器内壁离容器底部0.3 m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3 m 与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为( )m(容器厚度忽略不计).A .1.8B .1.5C .1.2D .1.32.如图,在直角坐标系中,直线l 是经过点()1,0-,且平行于y 轴的直线,点(),1P a -与点()3,Q b 关于直线l 对称,则+a b 的值为( ).A .2B .6C .-2D .-63.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( ) A .()2,2 B .(2,1)-C .()2,1-D .(2,1)-- 4.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限516 ) A .4B .4±C .2±D .-26.下列运算中正确的是( )A 623=B .233363+=C 826=D .221)3-=7.已知|a+b ﹣220a b +-=,则(a ﹣b )2017的值为( ) A .1B .﹣1C .2015D .﹣20158.实数a 、b 在数轴上的位置如图所示,那么()2a b a b -++的结果是( )A .2aB .2bC .2a -D .2b -9.如图,动点P 从点A 出发,沿着圆柱的侧面移动到BC 的中点S ,若8BC =,点P 移动的最短距离为5,则圆柱的底面周长为( )A .6B .4πC .8D .1010.如图,在正方形网格中,每个小正方形的边长均为1,△ABC 的三个顶点A ,B ,C 均在网格的格点上,则△ABC 的三条边中边长是无理数的有( )A .0条B .1条C .2条D .3条11.下列以a ,b ,c 为边的三角形,不是直角三角形的是( )A .1,1,2a b c ===B .1,3,2a b c ===C .3,4,5a b c ===D .2,2,3a b c ===12.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,下列条件不能判断△ABC 是直角三角形的是( ) A .∠B =∠C +∠AB .a 2=(b +c )(b ﹣c )C .∠A :∠B :∠C =3:4:5D .a :b :c =3:4:5二、填空题13.如图,已知在Rt ABC 中,90,4,3C AC BC ∠===,点P 、Q 分别是边,AC AB 上的动点,连结,BP PQ ,则BP PQ +的最小值是________.14.已知点A 在x 轴上方,y 轴左侧,到x 轴的距离是3,到y 轴的距离是4,那么点A 的坐标是______________.15.数轴上A 点表示的数是1-,点B ,C 分别位于点A 的两侧,且到A 的距离相等,若B 表示的数是3-,则点C 表示的数是 ____________. 16.若()2340x y -++=,则x y -=______.17.若二次根式26a +与33-是同类二次根式,则整数a 可以等于___________.(写出一个即可)18.如图,在ABC ∆中,90,4,3C AC BC ∠=︒==,点Р在射线CA 上,且12BPC BAC ∠=∠,则2BP =_______.19.如图是一株美丽的勾股树,其作法为:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作两个正方形,计为②.依此类推…若正方形①的面积为16,则正方形③的面积是_____.20.若直角三角形的两直角边长为a 、b 21025a a -+b ﹣12|=0,则该直角三角形的斜边长为_____.三、解答题21.如图,平面直角坐标系xOy 中,有五个点,,,,A B C D E .(1)哪两个点关于x 轴对称?__________(直接填写答案);(2)在y 轴上找一个点F ,使点F 到点,D E 的距离之和最短(画出示意图即可,不需要说明理由).22.如图,在平面直角坐标系中,直线l 过点M (1,0)且与y 轴平行,△ABC 的三个顶点的坐标分别为A (-2,5),B (-4,3),C (-1,1). (1)作出△ABC 关于x 轴对称111A B C △;(2)作出△ABC 关于直线l 对称222A B C △,并写出222A B C △三个顶点的坐标.(3)若点P 的坐标是(-m ,0),其中m >0,点P 关于直线l 的对称点P 1,求PP 1的长.23.计算:(1316132722581--; (2)()()()243332x x x x x x -⋅--÷-.24.计算:)129522--+.25.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn ,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD 的距离为2寸,点C 和点D 距离门槛AB 都为1尺(1尺=10寸),则AB 的长是多少?26.我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个关的正方形(如图1),这个矩形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a 、b 与斜边c 满足关系式222+=a b c .称为勾股定理.(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图2),也能验证这个结论,请你帮助小明完成验证的过程;(2)如图3所示,90ABC ACE ∠=∠=︒,请你添加适当的辅助线证明结论222+=a b c .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】将容器侧面展开,找出A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求. 【详解】 解:如图:∵高为1.2m ,底面周长为1m ,在容器内壁离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m 与蚊子相对的点A 处, ∴A′D =0.5m ,BD =1.2−0.3+0.3=1.2m , ∴将容器侧面展开,作A 关于EF 的对称点A′, 连接A′B ,则A′B 即为最短距离, A′B 22'A D BD +=220.5 1.2+ 1.3(m ).故选:D . 【点睛】本题考查了平面展开−−−最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.D解析:D 【分析】结合题意,根据坐标、轴对称的性质列方程并计算,即可得到答案. 【详解】∵点(),1P a -与点()3,Q b 关于直线l 对称 ∴()()131a --=--,1b =- ∴5a =-∴()516a b +=-+-=- 故选:D . 【点睛】本题考查了直角坐标系、坐标、轴对称、一元一次方程的知识;解题的关键是熟练掌握坐标、轴对称的性质,从而完成求解.3.C解析:C 【分析】根据点A ,点A'坐标可得点A ,点A'关于y 轴对称,即可求点B'坐标. 【详解】解:∵将线段AB 沿坐标轴翻折后,点A (1,3)的对应点A′的坐标为(-1,3),∴线段AB 沿y 轴翻折,∴点B 关于y 轴对称点B'坐标为(-2,1) 故选:C . 【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y 轴对称的两点纵坐标相等,横坐标互为相反数是关键.4.D解析:D 【解析】解:点P 的坐标为(3,﹣1),那么点P 在第四象限, 故选D .5.C解析:C 【分析】先计算16的算术平方根a ,再计算a 的平方根即可. 【详解】 ∵4=,∴4的平方根为±2. 故选C. 【点睛】本题考查了实数的算术平方根,平方根,准确掌握这两个基本概念是解题的关键.6.A解析:A 【分析】根据二次根式的除法法则对A 进行判断;根据二次根式的加减法对B 、C 进行判断;利用二次根式的乘法法则对D 进行判断. 【详解】A =B 、=C ==D 、221)11=-=,原计算错误,不符合题意; 故选:A . 【点睛】本题考查了二次根式的加减乘除运算,解题的关键是熟悉二次根式的四则运算方法.7.A解析:A 【详解】解:由题意得122a b a b +=⎧⎨+=⎩ 解得:10a b =⎧⎨=⎩()()20172017101a b ∴-=-=故选A .8.D解析:D 【分析】由数轴可得到0b a <<a b =+和绝对值的性质,即可得到答案.【详解】 解:根据题意,则0b a <<,∴0a b ->,0a b +<,∴a b -=a b a b -++ =a b a b --- =2b -; 故选:D . 【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是掌握所学的知识,正确得到0b a <<.9.A解析:A 【分析】根据圆柱的侧面展开图,利用勾股定理求出AB 即可求解. 【详解】解:圆柱的侧面展开图如图,点P 移动的最短距离为AS=5, 根据题意,BS=12BC=4,∠ABS=90°,∴,∴圆柱的底面周长为2AB=6, 故选:A .【点睛】本题考查圆柱的侧面展开图、最短路径问题、勾股定理,熟练掌握圆柱的侧面展开图,得出点P移动的最短距离是AS是解答的关键.10.C解析:C【分析】根据勾股定理求出三边的长度,再判断即可.【详解】解:由勾股定理得:22345AC=+=,是有理数,不是无理数;22BC=+=231322AB=+=1526即网格上的△ABC三边中,边长为无理数的边数有2条,故选:C.【点睛】本题考查了无理数和勾股定理,能正确根据勾股定理求出三边的长度是解此题的关键.11.D解析:D【分析】根据勾股定理的逆定理对四个选项分别进行判定,则可得出结论.【详解】解:A、因为12+122)2,所以此三角形是直角三角形,故此选项不符合题意;B、因为1232=22,所以此三角形是直角三角形,故此选项不符合题意;C、因为32+42=52,所以此三角形是直角三角形,故此选项不符合题意;D、因为22+22≠32,所以此三角形不是直角三角形,故此选项符合题意.故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.12.C解析:C【分析】由三角形的内角和定理求解B可判断,A由勾股定理的逆定理可判断,B由三角形的内角和定理求解 ,C ∠ 可判断,C 设()30,a k k =≠ 则4,5,b k c k == 利用勾股定理的逆定理可判断.D 【详解】 解:,180,B C A A B C ∠=∠+∠∠+∠+∠=︒2180B ∴∠=︒,90B ∴∠=︒,故A 不符合题意; ()()222,a b c b c b c =+-=-222,a c b ∴+=90B ∴∠=︒,故B 不符合题意; ::3:4:5,A B C ∠∠∠=51807512C ∴∠=⨯︒=︒, ABC ∴不是直角三角形,故C 符合题意, ::3:4:5,a b c =设()30,a k k =≠ 则4,5,b k c k ==()()()222222234255,a b k k k k c ∴+=+===90C ∴∠=︒,故D 不符合题意, 故选:.C 【点睛】本题考查的是三角形的内角和定理,勾股定理的逆定理的应用,掌握以上知识是解题的关键.二、填空题13.【分析】作点B 关于AC 的对称点过点作于点Q 交AC 于点P 点P 即为所求的点此时有最小值连接根据轴对称的性质有证明根据即可求出答案【详解】作点B 关于AC 的对称点过点作于点Q 交AC 于点P 点P 即为所求的点此时 解析:245【分析】作点B 关于AC 的对称点B ',过点B '作B Q AB '⊥于点Q ,交AC 于点P ,点P 即为所求的点,此时BP PQ +有最小值,连接AB ',根据轴对称的性质有BP B P =',证明ABC AB C '△≌△,根据2ABB ABCAB CABCSSSS''=+=,即可求出答案.【详解】作点B 关于AC 的对称点B ',过点B '作B Q AB '⊥于点Q ,交AC 于点P ,点P 即为所求的点,此时BP PQ +有最小值,连接AB ',根据轴对称的性质有BP B P =',在Rt ABC 中,90,4,3C AC BC ∠===,225AB AC BC ∴=+=.,,AC AC ACB ACB BC B C ''=∠=∠=,()ABC AB C SAS '∴△≌△,2ABB ABC AB C ABC S S S S ''∴=+=△△△△, 即11222AB B Q BC AC ⋅=⨯⋅', 524B Q '∴=, 245B Q '∴=, ∴BP PQ +的最小值是245, 故答案为:245. 【点睛】 本题主要考查了轴对称-最短路线问题,掌握轴对称的性质,勾股定理,全等三角形的判定及性质是解题的关键.14.(-43)【分析】到x 轴的距离表示点的纵坐标的绝对值;到y 轴的距离表示点的横坐标的绝对值【详解】解:根据题意可得点在第二象限第二象限中的点横坐标为负数纵坐标为正数所以点A 的坐标为(-43)故答案为:解析:(-4,3) .【分析】到x 轴的距离表示点的纵坐标的绝对值;到y 轴的距离表示点的横坐标的绝对值.【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数. 所以点A 的坐标为(-4,3)故答案为:(-4,3) .【点睛】本题考查点的坐标,利用数形结合思想解题是关键.15.【分析】根据数轴上两点的中点求法即两数和的一半直接求出即可【详解】解:设点C所表示的数为c则解得:故答案为:【点睛】此题主要考查了数轴上两点之间中点求法我们把数和点对应起来也就是把数和形结合起来二者解析:-2【分析】根据数轴上两点的中点求法,即两数和的一半,直接求出即可.【详解】解:设点C所表示的数为c,则1-=解得:2-+故答案为:2-【点睛】此题主要考查了数轴上两点之间中点求法,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.16.7【分析】根据偶次方的非负性及算术平方根的非负性求出x=3y=-4代入x-y中计算即可【详解】∵且∴x-3=0y+4=0∴x=3y=-4∴x-y=3-(-4)=7故答案为:7【点睛】此题考查已知字母解析:7【分析】根据偶次方的非负性及算术平方根的非负性求出x=3,y=-4,代入x-y中计算即可.【详解】∵()230x-=,且()230x-≥≥,∴x-3=0,y+4=0,∴x=3,y=-4,∴x-y=3-(-4)=7,故答案为:7.【点睛】此题考查已知字母的值求代数式的值,掌握偶次方的非负性及算术平方根的非负性求出x=3,y=-4是解题的关键.17.3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可【详解】解:∵二次根式与是同类二次根式∴可设则∴解得故答案为:3(答案不唯一)【点睛】本题考查的是同类二次根式的概念把几个二次根式化为最简二解析:3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可.【详解】解:∵二次根式26a +与33-是同类二次根式,∴可设2623a +=,则2612a +=,∴2612a +=,解得3a =,故答案为:3(答案不唯一).【点睛】 本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.18.90【分析】设则根据题意可得求得根据勾股定理计算即可;【详解】∵设则又∵∴∴∴∵∴∴∴∴;故答案是90【点睛】本题主要考查了勾股定理的应用准确计算是解题的关键解析:90【分析】设BPC x ∠=,则2BAC x ∠=,根据题意可得ABP x ∠=,求得AB AP =,根据勾股定理计算即可; 【详解】∵12BPC BAC ∠=∠,设BPC x ∠=,则2BAC x ∠=,又∵BAC BPC ABP ∠=∠+∠,2x x ABP =+∠, ∴ABP x ∠=,∴ABP BPC ∠=∠,∴AB AP =,∵90C ∠=︒,∴2222AB AC BC 345=++=,∴5AP =,∴9CD =,3BC =,∴281990BP =+=;故答案是90.【点睛】本题主要考查了勾股定理的应用,准确计算是解题的关键.19.【分析】根据勾股定理可得两条直角边的平方和等于斜边的平方即第①个正方形的面积=第②个正方形面积的两倍;同理第③个正方形面积是第②个正方形面积的一半依此类推即可解答【详解】解:第①个正方形的面积为16 解析:【分析】根据勾股定理可得两条直角边的平方和等于斜边的平方,即第①个正方形的面积=第②个正方形面积的两倍;同理,第③个正方形面积是第②个正方形面积的一半,依此类推即可解答.【详解】解:第①个正方形的面积为16,由分析可知:第②个正方形的面积为8,第③个正方形的面积为4,故答案为:4.【点睛】本题是图形类的变化规律题,考查了勾股定理与面积的关系及等腰直角三角形的性质,熟练掌握勾股定理是解答本题的关键.20.13【分析】根据非负数的性质得到ab的值然后结合勾股定理求得斜边的长度即可【详解】解:∵∴∴|a﹣5|+|b﹣12|=0∴a=5b=12∴该直角三角形的斜边长为:故答案是:13【点睛】本题考查了勾股解析:13【分析】根据非负数的性质得到a、b的值,然后结合勾股定理求得斜边的长度即可.【详解】解:∵|12|0b-=,∴|12|0b-=∴|a﹣5|+|b﹣12|=0,∴a=5,b=12,∴13=.故答案是:13.【点睛】本题考查了勾股定理,非负数的性质﹣绝对值、算术平方根.任意一个数的绝对值(二次根式)都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.三、解答题21.(1)点A、B;(2)见解析.【分析】(1)根据平面直角坐标系内各点的坐标特点进行判断,即可得出结论;(2)判断出B 、E 关于y 轴对称,并根据轴对称的性质可得FE+FD=FB+FD ,即可得出点F 的位置.【详解】解:(1)由图得:A ,B 两点的横坐标相同,纵坐标互为相反数,则点A 、B 关于x 轴对称.故答案为:点A 、B .(2)如图所示:点F 即为所求作的点,由图得:B 、E 关于y 轴对称,∴FE=FB .则FE+FD=FB+FD .当B 、F 、D 三点共线时,FB+FD 最短,∴连接BD 与y 轴的交点即为点F .【点睛】本题考查了轴对称与坐标变化以及利用轴对称求最值等知识,掌握轴对称与坐标之间的变化规律及轴对称的性质是解题的关键.22.(1)答案见解析;(2)答案见解析,点A 2(4,5),点B 2(6,3),点C 2(3,1);(3)PP 1=2+2m【分析】(1)分别作出点A 、B 、C 关于x 轴对称的点,然后顺次连接;(2)分别作出点A 、B 、C 关于直线l 对称的点,然后顺次连接,并写出△A 2B 2C 2三个顶点的坐标(3)根据对称的性质即可得出答案.【详解】解:(1)如图所示,111A B C 即为所求;(2)如图所示,△A 2B 2C 2即为所求,由图可知,点A 2的坐标是(4,5),点B 2的坐标是(6,3),点C 2的坐标是(3,1); (3)PP 1=2(1+m )=2+2m .【点睛】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.23.(1)43-2)2x【分析】(1)根据算术平方根和立方根的运算法则进行计算即可;(2)按照整式混合运算顺序和法则计算即可.【详解】解:(1)原式)()4313144=--- 431312=-+- 43=-(2)原式()23323332x x x x =---+ 23323332x x x x =-+-=2x【点睛】本题考查了算术平方根、立方根和整式的运算,解题关键是熟记相关法则,准确进行计算.24.-2【分析】根据零指数幂、负指数幂和绝对值的性质计算即可;【详解】 解:原式23212==-;【点睛】本题主要考查了二次根式的混合运算,准确计算是解题的关键.25.101寸【分析】取AB 的中点O ,过D 作DE ⊥AB 于E ,根据勾股定理解答即可得到结论.【详解】解:取AB 的中点O ,过D 作DE ⊥AB 于E ,如图2所示:由题意得:OA=OB=AD=BC ,设OA=OB=AD=BC=r 寸,则AB=2r (寸),DE=10寸,OE=12CD=1寸, ∴AE=(r -1)寸,在Rt △ADE 中,AE 2+DE 2=AD 2,即(r -1)2+102=r 2,解得:r=50.5,∴2r=101(寸),∴AB=101寸.【点睛】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.26.(1)见解析;(2)见解析【分析】(1)由图1可知:四个全等的直角三角形的面积+中间小正方形的面积=大正方形的面积,然后化简即可证明;(2)如图,过A 作AF AB ⊥交BC 线于D ,先证明ABC CED △≌△可得ED BC a ==,CD AB b ==,然后根据梯形EDBA 的面积列式化简即可证明.【详解】(1)证明:大正方形面积为:214()()2ab c a b a b ⨯⨯+=++ 整理得22222ab c a b ab +=++∴222+=a b c ;(2)过A 作AF AB ⊥交BC 线于D∵AC CE =,90B D ∠=∠=︒,90ECD ACB ∠+∠=︒,90ACB BAC ∠+∠=︒ ∴BAC ECD ∠=∠,∴ABC CED △≌△,∴ED BC a ==,CD AB b == ∴()2EDBA a b S a b +=⋅+梯形211222ab c =⨯+ ∴()22211222a b ab ab c ++=+ ∴222+=a b c .【点睛】本题主要考查了运用几何图形来证明勾股定理,矩形和正方形的面积,三角形的面积,锻炼了同学们的数形结合的思想方法.。
初二数学期末模拟题(总分100分 答卷时间120分钟)一、选择题:本大题共8小题,每小题2分,共16分.在每小题给出 的四个选项中,恰有一项....是符合题目要求的,请将正确选项的代号填入 题前括号内.【 】1.计算23()a 的结果是A .a 5B .a 6C .a 8D .3 a 2【 】2.若正比例函数的图像经过点(-1,2),则这个图像必经过点A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)【 】3.下列图形是轴对称图形的是A .B .C .D .【 】4.如图,△ACB ≌△A’CB’,∠BCB’=30°,则∠ACA’的度数为A .20°B .30°C .35°D .40°【 】5.一次函数y =2x -2的图象不经过...的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限 【 】6.从实数 2-,31-,0,π,4 中,挑选出的两个数都是无理数的为 A .31-,0 B .π,4 C .2-,4 D .2-,π 【 】7.若0a >且2x a =,3ya =,则x ya-的值为A .-1B .1C .D .【 】8.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(单位:千米)与时间t (单位:分)之间的函数关系题号 一 二三总分 结分人19~20 21~22 23~24 25~262728 得分CABB 'A '(第4题)(第8题)s /千米t /分3 2 1 O610如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为A .12分B .10分C .16分D .14分二、填空题:本大题共10小题,第9~14题,每小题2分,第15~18题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题中横线上. 9.计算:32128x x ⎛⎫⨯-⎪⎝⎭= .10.一次函数(24)5y k x =++中,y 随x 增大而减小,则k 的取值范是 . 11.分解因式:22mn m n -= .12.如图,在Rt △ABC 中,∠B =90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE =16°,则∠C 的度数 为------ .13.计算:(1-)2009-(π-3)0+4= .14.当12s t =+时,代数式222s s t t -+的值为 .15.若225(16)0x y -++=,则x +y = . 16.如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x = 过点A ,则不等式20x k x b <+<的解集为 . 17.如图,小量角器的零度线在大量角器的零度线上, 且小量角器的中心在大量角器的外缘边上.如果 它们外缘边上的公共点P 在小量角器上对应的度数为66°,那么在大量角器上对应的度数为__________ (只需写出0°~90°的角度).18.已知△ABC 中,AB =BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出 个.三、解答题:本大题共10小题,共60分.解答时应写出文字说明、证明过程或演算步骤.(19~20题,第19题6分,第20题5分,共11分)19.(1)化简:)8(21)2)(2(b a b b a b a ---+. (2)分解因式:322x x x ---.ADCEB(第12题)(第17题)(第16题)OxBAy20.如图,一块三角形模具的阴影部分已破损.(1)如果不带残留的模具片到店铺加工一块与原来的模具△A B C 的形状和大小完全相同的模具△A B C ''',需要从残留的模具片中度量出哪些边、角?请简要说明理由.(2)作出模具ABC'''△的图形(要求:尺规作图,保留作图痕迹,不写作法和证明).(第21题5分,第22题5分,共10分)21.已知2514x x -=,求()()()212111x x x ---++的值.22.如图,直线:1y x =+与直线:y m x n =+相交于点), 1(b P . (1)求b 的值;(2)不解关于y x ,的方程组100x y mx y n -+=⎧⎨-+=⎩请你直接写出它的解.O 1xyP b l 1 l 2(第22题)B CA(第20题)(第23题5分,第24题6分,共11分)23.如图,在平面直角坐标系x o y 中,(15)A -,,(10)B -,,(43)C -,. (1)在图中画出ABC △关于y 轴的对称图形111A B C △; (2)写出点111A B C ,,的坐标.24.如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC ≌△ADC ; (2)BO =DO .(第25题6分,第26题6分,共12分)25.只利用一把有刻度...的直尺,用度量的方法,按下列要求画图: (1)在图1中用下面的方法画等腰三角形ABC 的对称轴.123 4AB CDO (第24题)xy AB CO 524 6 -5-2(第23题)① 量出底边BC 的长度,将线段BC 二等分,即画出BC 的中点D ; ② 画直线AD ,即画出等腰三角形ABC 的对称轴. (2)在图2中画∠AOB 的对称轴,并写出画图的方法.【画法】26.已知线段AC 与BD 相交于点O ,连结AB 、DC ,E 为OB 的中点,F 为OC 的中点,连结EF (如图所示).(1)添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC . (2)分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,若添加条件②、③,以①为结论构成另一个命题,则该命题是_________命题 (选择“真”或“假”填入空格,不必证明).(第27题8分)27. 如图,在平面直角坐标系x O y 中,已知直线A C 的解析式为122y x =-+,直线A C 交x 轴于点C ,交y 轴于点A .(1)若一个等腰直角三角形OBD 的顶点D 与点C 重合,直角顶点B 在第一象限内,请直接写出点B 的坐标;O D CA B EF (第26题)A BC图1AOB 图2(2)过点B 作x 轴的垂线l ,在l 上是否存在一点P ,使得△AOP 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)试在直线AC 上求出到两坐标轴距离相等的所有点的坐标.(第28题8分)28. 元旦期间,甲、乙两个家庭到300 km 外的风景区“自驾游”,乙家庭由于要携带一些旅游用品,比甲家庭迟出发0.5 h (从甲家庭出发时开始计时),甲家庭开始出发时以60 km/h 的速度行驶.途中的折线、线段分别表示甲、乙两个家庭所走的路程y 甲(km )、y 乙(km )与时间x (h )之间的函数关系对应图象,请根据图象所提供的信息解决下列问题:(第27题)xA yC(D)BO(1)由于汽车发生故障,甲家庭在途中停留了 h ; (2)甲家庭到达风景区共花了多少时间;(3)为了能互相照顾,甲、乙两个家庭在第一次相遇后约定两车的距离不超过15 km ,请通过计算说明,按图所表示的走法是否符合约定.八年级数学(参考答案)一、选择题(本题共8小题;每小题2分,共16分)1.B 2.D 3.A 4.B 5.B 6.D 7.C 8.D二、填空题(本大题共10小题,第9~14题,每小题2分,第15~18题,每小题3分,共24分.)5 y /km 16.5x /h2 A BCD E0.5 O (第28题)3009.514x -10.k <-2 11.m n (m -n ) 12.37° 13.0 14. 15.9 16.-2<x <-1 17.48° 18.7三、解答题(本大题共10小题,共60分.) 19.解:(1))8(21)2)(2(b a b b a b a ---+ 2224214bab b a +--= ab a 212-= (2)322x x x ---=2(1)x x x -++ =2(1)x x -+20.(1)只要度量残留的三角形模具片的∠B ,∠C 的度数和边BC 的长,因为两角及其夹边对应相等的两个三角形全等.(2)按尺规作图的要求,正确作出ABC '''∠的图形. 21.解:()()()212111x x x ---++=22221(21)1x x x x x --+-+++=22221211xxx x x --+---+=251x x -+当2514x x -=时, 原式=2(5)114115x x -+=+= 22.解:(1)∵),1(b 在直线1+=x y 上, ∴当1=x 时,211=+=b . (2)解是⎩⎨⎧==.2,1y x23.(1)画图正确;(2)111(4,3)A B C (1,5),(1,0),24.证明:(1)在△ABC 和△ADC 中1234A C A C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△ADC . (2)∵△ABC ≌△ADC ∴AB =A D又∵∠1=∠2 ∴BO =DO25.(1)画图正确(2) ①利用有刻度的直尺,在∠AOB 的边OA 、OB 上分别截取OC 、OD ,使OC =OD ; ②连接CD ,量出CD 的长,画出线段CD 的中点E ; ③画直线OE ,直线OE 即为∠AOB 的对称轴. (作图正确2分,作法正确2分) 26.(1)∵∠OEF =∠OFE∴OE =OF ……∵E 为OB 的中点,F 为OC 的中点, ∴OB =OC ……又∵∠A =∠D ,∠AOB =∠DOC , △AOB ≌△DOC ∴AB=DC … (2)假 27.(1)B (2,2);(2)∵等腰三角形OBD 是轴对称图形,对称轴是l ,∴点O 与点C 关于直线l 对称,∴直线AC 与直线l 的交点即为所求的点P .把x =2代入122y x =-+,得y =1,∴点P 的坐标为(2,1) (3)设满足条件的点Q 的坐标为(m ,122m -+),由题意,得 122m m -+= 或 122m m -+=- 解得43m = 或4m =-∴点Q 的坐标为(,)或(4-,4)(漏解一个扣2分)28.(1)1;(2)易得y乙=50x-25当x=5时,y=225,即得点C(5,225).由题意可知点B(2,60),设BD所在直线的解析式为y=kx+b,∴5225,260.k bk b+=⎧⎨+=⎩解得55,50.kb=⎧⎨=-⎩∴BD所在直线的解析式为y=55x-50.当y=300时,x=7011.答:甲家庭到达风景区共花了7011h.(3)符合约定.由图象可知:甲、乙两家庭第一次相遇后在B和D相距最远.在点B处有y乙-y= -5x+25=-5×2+25=15≤15;在点D有y—y乙=5x-25=7511≤15.。
初二数学模拟试卷考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,将长方形ABCD 沿直线EF 折叠,使顶点C 恰好落在顶点A 处,已知AB =4cm ,AD =8cm ,则折痕EF 的长为( )A .5cmB .cmC .cmD .cm2.在△ABC 中,∠A=20°,∠B=60°,则△ABC 的形状是A .等边三角形B .锐角三角形C .直角三角形D .钝角三角形 3.张师傅驾车从甲地到乙地匀速行驶,已知行驶中油箱剩余油量y(升)与行驶时间t (小时)之间的关系用如图的线段AB表示.根据图象求得y 与t 的关系式为,这里的常数“-7.5”,“25”表示的实际意义分别是( )A .“-7.5”表示每小时耗油7.5升,“25”表示到达乙地时油箱剩余油25升B .“-7.5”表示每小时耗油7.5升,“25”表示出发时油箱原有油25升C .“-7.5”表示每小时耗油7.5升,“25”表示每小时行驶25千米D .“-7.5”表示每小时行驶7.5千米,“25”表示甲乙两地的距离为25千米4.用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形中()A.有两个角是直角B.有两个角是钝角C.有两个角是锐角D.一个角是钝角,一个角是直角5.下列命题中,真命题是().A.有一组对边平行,另一组对边相等的梯形是等腰梯形B.有一组对角互补的梯形是等腰梯形C.有一组邻角相等的四边形是等腰梯形D.有两组邻角分别相等的四边形是等腰梯形6.若a≤1,则化简后为()A.B.C.D.7.(2014•海南)下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21D.a2+4a﹣21=(a+2)2﹣258.如图,在平面直角坐标系中,已知点B,C在x轴上,AB⊥x轴于点B,DA⊥AB.若AD=5,点A的坐标为(-2,7),则点D的坐标为( )A. (-2,2)B. (-2,12)C. (3,7)D. (-7,7)9.估算的值是()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间10.反比例函数y=(m-1),当x<0时,y随x的增大而增大,则m的值是()A.-1 B.3 C.-1或3 D.2二、判断题11.判断:一角为60°的平行四边形是菱形()12.在一次数学课上,周老师在屏幕上出示了一个例题,在中,,分别是,上的一点,与交于点,画出图形(如图),给出下列三个条件:①;②;③.要求同学从这三个等式中选出两个作为已知条件,可判定是等腰三角形.请你用序号在横线上写出其中一种情形,答:_________;并给出证明.13.如图,在△AFD和△BEC中,点A,E,F,C在同一条直线上,有下面四个论断:(1)AD=CB,(2)AE=CF,(3)∠B=∠D,(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,组成一个真命题,并给予证明.14.如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,给出证明;若不成立,说明理由.15.把一段长6米的木头平均锯成3段,每段2米,需锯3次.()三、填空题16.平行四边形的周长为24cm ,相邻两边长的比为3:1,那么这个平行四边形较短的边长为 cm.17.点A(-3,4)关于原点对称的点的坐标为。
初二数学上期末模拟试题(附答案)一、选择题1.如果a c b d =成立,那么下列各式一定成立的是( ) A .a d c b = B .ac c bd b= C .11a c b d ++= D .22a b c d b d ++= 2.下列因式分解正确的是( ) A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 3.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+ 4.如图, BD 是△ABC 的角平分线, AE ⊥ BD ,垂足为F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A .35°B .40°C .45°D .50°5.如图,已知△ABC 中,∠A=75°,则∠BDE+∠DEC =( )A .335°B .135°C .255°D .150°6.若实数m 、n 满足 402n m -+-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .67.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④ 8.如图,在Rt△ABC 中,∠ACB=90°,∠B=30°,CD 是斜边AB 上的高,AD =3 cm ,则AB 的长度是( )A .3cmB .6cmC .9cmD .12cm9.如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,交BC 于点D ,连接AD ,若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A .7B .14C .17D .20 10.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130°11.如图,在△ABC 中,∠ABC =90°,∠C =20°,DE 是边AC 的垂直平分线,连结AE ,则∠BAE 等于( )A .20°B .40°C .50°D .70° 12.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形 二、填空题13.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____.14.数学家们在研究15,12,10这三个数的倒数时发现:-=-.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x>5),则x =________.15.分解因式:2x 2-8x+8=__________. 16.如图,直线a ∥b ,∠l =60°,∠2=40°,则∠3=______.17.如图,在△ABC 中,AB=AC=24厘米,BC=16厘米,点D 为AB 的中点,点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.当点Q 的运动速度为_______厘米/秒时,能够在某一时刻使△BPD 与△CQP 全等.18.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.19.计算:()201820190.1258-⨯=________. 20.如图,△ABC 中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=6,则CD=_______.三、解答题21.解分式方程:33122x x x-+=--. 22.如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.23.如果230x x +-=,求代数式321121x x x x x x -⎛⎫-÷ ⎪--+⎝⎭的值. 24.先化简,再求值:211()22a a a a -+÷++,其中21a = 25.已知a=2014m +2012,b=2014m +2013,c=2014m +2014,求a 2+b 2+c 2-ab-bc-ca 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】 已知a c b d=成立,根据比例的性质可得选项A 、B 、C 都不成立;选项D ,由2a b b +=2c d d +可得22a c b d +=+,即可得a c b d=,选项D 正确,故选D. 点睛:本题主要考查了比例的性质,熟练运用比例的性质是解决问题的关键.2.C解析:C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解;选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确.故选C .【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.解析:A【解析】【分析】根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积. 4.C解析:C【解析】【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,推出AB=BE ,根据等腰三角形的性质得到AF=EF ,求得AD=ED ,得到∠DAF=∠DEF ,根据三角形的外角的性质即可得到结论.【详解】∵BD 是△ABC 的角平分线,AE ⊥BD ,∴∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°, ∴∠BAF=∠BEF=90°-17.5°,∴AB=BE ,∴AF=EF ,∴AD=ED ,∴∠DAF=∠DEF ,∵∠BAC=180°-∠ABC-∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°-50°=45°,故选C .【点睛】 本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.5.C解析:C【分析】先由三角形内角和定理得出∠B+∠C=180°-∠A=105°,再根据四边形内角和定理即可求出∠BDE+∠DEC =360°-105°=255°.【详解】:∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°-∠A=105°,∵∠BDE+∠DEC+∠B+∠C=360°,∴∠BDE+∠DEC=360°-105°=255°;故答案为:C.【点睛】本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n-2)•180°(n≥3且n为整数)是解题的关键.6.B解析:B【解析】【分析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m、n的值是解题的关键.7.B解析:B【解析】【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x xx x x x x++-=-=+++++1111xx x-=++.又∵x为正整数,∴121xx≤+<1,故表示22(2)1441xx x x+-+++的值的点落在②.【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.8.D解析:D【解析】【分析】先求出∠ACD=30°,然后根据30°所对的直角边等于斜边的一半解答.【详解】在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD+∠DCB=90°,∠B+∠DCB=90°,∴∠ACD=∠B=30°.∵AD=3cm.在Rt△ACD中,AC=2AD=6cm,在Rt△ABC中,AB=2AC=12cm,∴AB的长度是12cm.故选D.【点睛】本题主要考查直角三角形30°角所对的直角边等于斜边的一半的性质.9.C解析:C【解析】【分析】本题主要涉及到了线段垂直平分线性质,代入题目相关数据,即可解题.【详解】解:在△ABC中,以点A和点B为圆心,大于二分之一AB的长为半径画弧,两弧相交与点M,N,则直线MN为AB的垂直平分线,则DA=DB,△ADC的周长由线段AC,AD,DC组成,△ABC的周长由线段AB,BC,CA组成而DA=DB,因此△ABC的周长为10+7=17.故选C.【点睛】本题考察线段垂直平分线的根本性质,解题时要注意数形结合,从题目本身引发思考,以此为解题思路.10.C解析:C【解析】根据等边对等角可得∠B=∠ACB=50°,再根据三角形内角和计算出∠A的度数,然后根据三角形内角与外角的关系可得∠BPC>∠A , 再因为∠B=50°,所以∠BPC<180°-50°=130°进而可得答案.【详解】∵AB=AC,∠B=50°,∴∠B=∠ACB=50°,∴∠A=180°-50°×2=80°,∵∠BPC=∠A+∠ACP,∴∠BPC>∠A,∴∠BPC>80°.∵∠B=50°,∴∠BPC<180°-50°=130°,则∠BPC的值可能是100°.故选C.【点睛】此题主要考查了等腰三角形的性质,关键是掌握等腰三角形两底角相等.11.C解析:C【解析】【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质求出CE=AE,求出∠EAC=∠C=20°,即可得出答案.【详解】∵在△ABC中,∠ABC=90°,∠C=20°,∴∠BAC=180°−∠B−∠C=70°,∵DE是边AC的垂直平分线,∠C=20°,∴CE=AE,∴∠EAC=∠C=20°,∴∠BAE=∠BAC−∠EAC=70°−20°=50°,故选:C.【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握其性质.12.B解析:B【解析】【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】根据n边形的内角和公式,得(n ﹣2)•180=1080,解得n=8,∴这个多边形的边数是8,故选B .【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.二、填空题13.且【解析】【分析】直接解分式方程进而利用分式方程的解是正数得出的取值范围进而结合分式方程有意义的条件分析得出答案【详解】去分母得:解得:解得:当时不合题意故且故答案为:且【点睛】此题主要考查了分式方 解析:5a <且3a ≠【解析】【分析】直接解分式方程,进而利用分式方程的解是正数得出a 的取值范围,进而结合分式方程有意义的条件分析得出答案.【详解】去分母得:122a x -+=-,解得:5x a =-,50a ->,解得:5a <,当52x a =-=时,3a =不合题意,故5a <且3a ≠.故答案为:5a <且3a ≠.【点睛】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.14.15【解析】∵x>5∴x 相当于已知调和数15代入得13-15=15-1x 解得x=15 解析:15【解析】∵x >5∴x 相当于已知调和数15,代入得,解得,x=15.15.2(x-2)2【解析】【分析】先运用提公因式法再运用完全平方公式【详解】:2x2-8x+8=故答案为2(x-2)2【点睛】本题考核知识点:因式分解解题关键点:熟练掌握分解因式的基本方法解析:2(x-2)2【解析】【分析】先运用提公因式法,再运用完全平方公式.【详解】:2x 2-8x+8=()()2224422x x x -+=-. 故答案为2(x-2)2.【点睛】本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.16.80°【解析】【分析】根据平行线的性质求出∠4再根据三角形内角和定理计算即可【详解】∵a ∥b ∴∠4=∠l=60°∴∠3=180°-∠4-∠2=80°故答案为80°【点睛】本题考查了平行线的性质三角形解析:80°.【解析】【分析】根据平行线的性质求出∠4,再根据三角形内角和定理计算即可.【详解】∵a ∥b ,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为80°.【点睛】本题考查了平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.17.4或6【解析】【分析】求出BD 根据全等得出要使△BPD 与△CQP 全等必须BD=CP 或BP=CP 得出方程12=16-4x 或4x=16-4x 求出方程的解即可【详解】设经过x 秒后使△BPD 与△CQP 全等∵解析:4或6【解析】【分析】求出BD ,根据全等得出要使△BPD 与△CQP 全等,必须BD=CP 或BP=CP ,得出方程12=16-4x 或4x=16-4x ,求出方程的解即可.【详解】设经过x 秒后,使△BPD 与△CQP 全等,∵AB=AC=24厘米,点D 为AB 的中点,∴BD=12厘米,∵∠ABC=∠ACB ,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即12=16-4x或4x=16-4x,x=1,x=2,x=1时,BP=CQ=4,4÷1=4;x=2时,BD=CQ=12,12÷2=6;即点Q的运动速度是4或6,故答案为:4或6【点睛】本题考查了全等三角形的判定的应用,关键是能根据题意得出方程.18.28【解析】设这种电子产品的标价为x元由题意得:09x−21=21×20解得:x=28所以这种电子产品的标价为28元故答案为28解析:28【解析】设这种电子产品的标价为x元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.19.8【解析】【分析】根据同底数幂的乘法底数不变指数相加可化成指数相同的幂的乘法根据积的乘方可得答案【详解】原式=(−0125)2018×820188=(−0125×8 )20188=8故答案为:8【点睛解析:8【解析】【分析】根据同底数幂的乘法底数不变指数相加,可化成指数相同的幂的乘法,根据积的乘方,可得答案.【详解】原式= (−0.125)2018×82018⨯8= (−0.125×8)2018⨯8=8,故答案为:8.【点睛】本题考查的知识点是幂的乘方与积的乘方及同底数幂的乘方,解题的关键是熟练的掌握幂的乘方与积的乘方及同底数幂的乘方.20.3【解析】【分析】由于∠C=90°∠ABC=60°可以得到∠A=30°又由BD平分∠ABC可以推出∠CBD=∠ABD=∠A=30°BD=AD=6再由30°角所对的直角边等于斜边的一半即可求出结果【详解析:3【解析】【分析】由于∠C=90°,∠ABC=60°,可以得到∠A=30°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=30°,BD=AD=6,再由30°角所对的直角边等于斜边的一半即可求出结果.【详解】∵∠C=90°,∠ABC=60°,∴∠A=30°.∵BD平分∠ABC,∴∠CBD=∠ABD=∠A=30°,∴BD=AD=6,∴CD=12BD=6×12=3.故答案为3.【点睛】本题考查了直角三角形的性质、含30°角的直角三角形、等腰三角形的判定以及角的平分线的性质.解题的关键是熟练掌握有关性质和定理.三、解答题21.x=1.【解析】【分析】方程两边同时乘以x-2,化为整式方程,解整式方程后进行检验即可.【详解】方程两边同时乘以x-2,得x-3+x-2=-3,解得:x=1,检验:当x=1时,x-2≠0,所以原分式方程的解为x=1.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法以及注意事项是解题的关键. 22.(1)证明见解析;(2)112.5°.【解析】【分析】()1根据同角的余角相等可得到24∠=∠,结合条件BAC D∠=∠,再加上BC CE=,可证得结论;()2根据90ACD AC CD∠=︒=,,得到145D∠=∠=︒,根据等腰三角形的性质得到3567.5∠=∠=︒,由平角的定义得到1805112.5DEC∠=︒-∠=︒.【详解】()1证明:90BCE ACD ∠=∠=︒Q ,2334,∴∠+∠=∠+∠ 24∴∠=∠,在△ABC 和△DEC 中,24BAC D BC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABC DEC ∴V V ≌,AC CD ∴=;(2)∵∠ACD =90°,AC =CD ,∴∠1=∠D =45°,∵AE =AC ,∴∠3=∠5=67.5°,∴∠DEC =180°-∠5=112.5°.23.13【解析】【分析】 先根据分式的混合运算得到21x x+,再把230x x +-=变形为2=3x x +,再代入到化简结果中计算即可.【详解】321121x x x x x x -⎛⎫-÷ ⎪--+⎝⎭, =21(1)(1)1(1)x x x x x x x -++-⎛⎫÷ ⎪--⎝⎭=1(1)1(1)x x x x -⎛⎫⋅ ⎪-+⎝⎭ =1(1)x x + =21x x+ 当230x x +-=,即23+=x x 时,原式=13. 【点睛】 本题考查了分式的化简求值,在分式的化简过程中要注意运算顺序,化简后的最后结果要化成最简分式或整式.24.11a a +- 1+ 【解析】【分析】 先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.【详解】211()22a a a a -+÷++ =2221221a a a a a ++++-g =11a a +-当1a =时原式1 【点睛】本题考查了分式的化简求值,熟练掌握分式的混合运算是解题的关键.25.3【解析】【分析】由已知可得a-b=-1,b-c=-1,c-a=2,所求式子提取12,利用完全平方公式变形后,代入计算即可求出值.【详解】 解:∵a=2014m +2012,b=2014m +2013,c=2014m +2014, ∴a-b=-1,b-c=-1,c-a=2,∴a 2+b 2+c 2-ab-bc-ca =12(2a 2+2b 2+2c 2-2ab-2bc-2ca ) =12[(a-b )2+(b-c )2+(c-a )2] =12×(1+1+4)=3.【点睛】本题考查因式分解的应用.。
一、选择题1.在平面直角坐标系中,下列说法正确的是( )A .点P (3,2)到x 轴的距离是3B .若ab =0,则点P (a ,b )表示原点C .若A (2,﹣2)、B (2,2),则直线AB ∥x 轴D .第三象限内点的坐标,横纵坐标同号2.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .1250 3.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点'(1,1)P y x -++叫做点P 伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A,点3A 的伴随点为4A ,…,这样依次得到点1234,,,,,,n A A A A A ,若点1A 的坐标为(3,1),则点2020A 的坐标为( ) A .(0,4) B .(3,1)-C .(0,2)-D .(3,1) 4.如图,在48⨯的长方形网格OABC 中,动点(0,3)P 从出发,沿箭头所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P 第2020次碰到矩形的边时,点P 的坐标为( )A .(1,4)B .(5,0)C .(6,4)D .(8,3) 5.实数316,027,40.10.3133133314π-⋯,,,,(每两个1之间依次增加一个3),其中无理数共有( ) A .2个 B .3个C .4个D .5个 6.下列运算中错误的是( )A .235+=B .236⨯=C .822÷=D .2 (3)3-= 7.化简58得( ) A .5 B .104 C .5 D .5228.下列说法错误的是( )A .3a 中的a 可以是正数、负数、零B .a 中的a 不可能是负数C .数a 的平方根一定有两个,它们互为相反数D .数a 的立方根只有一个9.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别是2,5,1,2.则最大的正方形E 的面积是( )A .10B .8C .6D .15 10.下列各组数据,不能作为直角三角形的三边长的是( ) A .5、6、7 B .6、8、10 C .1.5、2、2.5 D 32711.七巧板是大家熟悉的一种益智类玩具.用七巧板能拼出许多有趣的图案.小明将一个直角边长为20cm 的等腰直角三角形纸板,切割七块.正好制成一副七巧板,则图中阴影部分的面积为( )A .210cmB .225cm 2C .2252cm 2D .225cm 12.如图,在Rt △ABC 中,∠C =90°,AC =2,BC =1,在BA 上截取BD =BC ,再在AC 上截取AE =AD ,则AE AC的值为( )A .352 B .512- C .5﹣1 D .512+ 二、填空题13.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.14.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)……根据这个规律探究可得,第115个点的坐标为________.15.已知|a +1|+2b -=0,则ab =_____.16.计算:()235328-+---=__________.17.请你写出一个比3大且比4小的无理数,该无理数可以是:____.18.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为 .19.在平面直角坐标系中,若点M (2,4)与点N (x ,4)之间的距离是3,则x 的值是_____.20.如图,一架长2.5m 的梯子斜靠在垂直的墙AO 上,这时AO 为2m .如果梯子的顶端A 沿墙下滑0.5m ,那么梯子的底端B 向外移动_________m .三、解答题21.在平面直角坐标系中,O 为坐标原点,点(445)A a --,位于第二象限,点(4,1)B a ---位于第三象限,且a 为整数.(1)求点A 和点B 的坐标.(2)若点(,0)C m 为x 轴上一点,且ABC 是以BC 为底的等腰三角形,求m 的值. 22.如图,在平面直角坐标系中,每个小正方形的边长为1cm ,ABC 各顶点都在格点上,点A ,C 的坐标分别为()1,2-、()0,1-,结合所给的平面直角坐标系解答下列问题:(1)画出ABC 关于y 轴对称的111A B C △;(2)画出ABC 关于x 轴对称的222A B C △;(3)若点P 为y 轴上一动点,则PA PB +的最小值为______.23.计算:(1)8﹣12+26÷2; (2)5105+﹣13×12. 24.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n a a a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________;A .任何非零数的圈2次方都等于1;B .对于任何大于等于2的整数c ,;C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?除方21111 2222222222⎛⎫→=÷÷÷=⨯⨯⨯=→⎪⎝⎭④乘方幂的形式(1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫=⎪⎝⎭⑨___________;(2)将一个非零有理数a的圈n次方写成幂的形式为____________;(3)将(m为大于等于2的整数)写成幂的形式为_________.25.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,将△DCE沿DE翻折,使点C落在点A处.(1)设BD=x.在Rt△ABD中,根据勾股定理,可得关于x的方程;(2)分别求DC、DE的长.26.我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个关的正方形(如图1),这个矩形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式222+=a b c.称为勾股定理.(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图2),也能验证这个结论,请你帮助小明完成验证的过程;(2)如图3所示,90ABC ACE∠=∠=︒,请你添加适当的辅助线证明结论222+=a b c.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据点的坐标的几何意义逐一进行判断即可得答案.【详解】A.点P (3,2)到x 轴的距离是2,故本选项不符合题意.B.若ab =0,则点P (a ,b )表示原点或坐标轴上的点,故本选项不符合题意.C.若A (2,﹣2)、B (2,2),则直线AB ∥y 轴,故本选项不符合题意.D.第三象限内点的坐标,横纵坐标都是负号,故本选项符合题意.故选:D .【点睛】本题考查点的坐标的几何意义,由坐标平面内的一点P 分别向x 轴,y 轴作垂线,垂足M,N 在x 轴,y 轴上的坐标分别为x 和y ,我们则说P 点的横坐标为x,纵坐标是y ,记作P(x ,y);熟练掌握相关定义是解题关键.2.A解析:A【分析】 根据图形计算发现:第一个三角形的面积是11212⨯⨯=,第二个三角形的面积是12332⨯⨯=,第三个图形的面积是13462⨯⨯=,即第n 个图形的面积是1(1)2n n +,即可求得,△n 的面积. 【详解】由题意可得规律:第n 个图形的面积是1(1)2n n +, 所以当n 为50时, n 的面积()150********=⨯⨯+=.故选:A .【点睛】此题主要考查了点的坐标变化规律,通过计算前面几个具体图形的面积发现规律是解题关键. 3.C解析:C【分析】根据“伴随点”的定义依次求出各点,每4个点为一个循环组依次循环,用2020除以4,根据商和余数的情况确定点A 2020的坐标即可.【详解】解:A 1的坐标为(3,1),则A 2(−1+1,3+1)=(0,4),A 3(−4+1,0+1)=(−3,1),A 4(0,−2),A 5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2020÷4=505,∴点A 2020的坐标与A 4的坐标相同为(0,−2),故选:C .【点睛】此题考查点的坐标规律,理解“伴随点”的定义并求出每4个点为一个循环组,依次循环是解题的关键.4.B解析:B【分析】根据入射角与反射角的定义作出图形,可知每6次反弹为一个循环组,依次循环,用2020除以6,根据商和余数的情况确定所对应的点的坐标即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),∵202063364÷=,∴当点P 第2020次碰到矩形的边时的坐标与点P 第4次反弹碰到矩形的边时的坐标相同,∴点P 的坐标为(5,0),故选:B.【点睛】此题考查了直角坐标系中点的坐标的表示方法,动点的运动规律,正确理解题中点的运动变化规律得到点的坐标的规律是解题的关键.5.A解析:A【分析】无限不循环小数是无理数,根据定义解答.【详解】 符合无理数定义的有:0.3133133314π-⋯, ,【点睛】此题考查无理数定义,熟记定义是解题的关键.6.A解析:A【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断.【详解】==2÷,故此项正确,不符合要求;D. 2 (3=,故此项正确,不符合要求;故选A .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.7.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】=== 故选:B .【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.8.C解析:C【分析】按照平方根和立方根的性质判断即可.【详解】a 可以是正数、负数、零,正确,不符合题意;a 不可能是负数,正确,不符合题意;C. 0的平方根只有0,故原说法错误,符合题意;D. 数a 的立方根只有一个,正确,不符合题意;【点睛】本题考查了平方根和立方根的性质,解题关键是掌握平方根和立方根的性质.9.A解析:A【分析】设正方形A 的边长为a ,正方形B 的边长为b ,正方形F 的边长为c ,如图,则由勾股定理可得222+=a b c 及正方形面积公式可得正方形F 的面积为7,同理可求解问题.【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,正方形F 的边长为c ,如图,由勾股定理可得222+=a b c ,∴由正方形的面积计算公式可得正方形F 的面积为2+5=7,同理可得正方形H 的面积为1+2=3,正方形E 的面积为7+3=10;故选A .【点睛】本题主要考查勾股定理的应用,熟练掌握勾股定理是解题的关键.10.A解析:A【分析】利用勾股定理的逆定理计算判断即可.【详解】∵2256253661+=+=≠2749=,∴5、6、7不能作为直角三角形的三边长,∴选项A 错误;∵22866436100+=+==210100=,∴6、8、10能作为直角三角形的三边长,∴选项B 正确;∵221.52 2.254 6.25+=+==22.5 6.25=,∴1.5、2、2.5能作为直角三角形的三边长,∴选项C 正确; ∵22(3)2347+=+==2(7)7=, ∴327∴选项D 正确;故选A .【点睛】本题考查了勾股定理的逆定理,熟练掌握逆定理并进行准确计算是解题的关键. 11.B解析:B【分析】根据七巧板意义,计算出阴影等腰直角三角形的直角边的长即可.【详解】如图,根据题意,得BC=20,CD=BD=102=EM ,∴EG=GM=52,∴EF=FG=5,∴212522EFG S EF ==, 故选B.【点睛】本题考查了等腰直角三角形的性质,等腰直角三角形的面积,熟练掌握七巧板制作规律和制作特点是解题的关键.12.B解析:B【分析】先由勾股定理求出5BD=BC=1,得51,即可得出结论.【详解】解:∵∠C=90°,AC=2,BC=1,∴2222215AC BC +=+=∵BD=BC=1,∴51,∴512AE AC =,【点睛】本题考查了黄金分割以及勾股定理,熟练掌握黄金分割和勾股定理是解题的关键.二、填空题13.(-31)【分析】根据右安门的点的坐标可以确定直角坐标系中原点在正阳门建立直角坐标系即可求解【详解】根据右安门的点的坐标为(−2−3)可以确定直角坐标系中原点在正阳门∴西便门的坐标为(−31)故答案解析:(-3,1)【分析】根据右安门的点的坐标可以确定直角坐标系中原点在正阳门,建立直角坐标系即可求解.【详解】根据右安门的点的坐标为(−2,−3),可以确定直角坐标系中原点在正阳门,∴西便门的坐标为(−3,1),故答案为(−3,1);【点睛】此题考查坐标确定位置,解题关键在于建立直角坐标系.14.(155)【分析】观察图形可知:第115个点为第15列的由上往下第10个可求出第115个点的坐标(此处纵坐标为6-1)【详解】解:观察图形可知:1+2+3+…+14==105105+10=115∴第解析:(15,5)【分析】观察图形,可知:第115个点为第15列的由上往下第10个,可求出第115个点的坐标(此处纵坐标为6-1).【详解】解:观察图形,可知:1+2+3+…+14=14(14+1)2=105,105+10=115,∴第115个点为第15列从上往下的第10个.∴第115个点的坐标为(15,5).故答案为:(15,5).本题考查了规律型:点的坐标,找出第115个点为第15列的倒数第10个是解题的关键.15.-2【分析】根据非负数的性质列式求出ab的值然后代入代数式进行计算即可得解【详解】解:由题意得a+1=0b﹣2=0解得a=﹣1b=2所以ab=﹣1×2=﹣2故答案为:﹣2【解答】本题考查了非负数的性解析:-2【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,a+1=0,b﹣2=0,解得a=﹣1,b=2,所以,ab=﹣1×2=﹣2.故答案为:﹣2.【解答】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.7-【分析】首先利用绝对值的性质和二次根式算术平方根立方根的性质化简然后再计算加减即可【详解】解:【点睛】此题主要考查了实数运算关键是掌握绝对值的性质和二次根式的性质解析:【分析】首先利用绝对值的性质和二次根式、算术平方根、立方根的性质化简,然后再计算加减即可.【详解】3()--=322=32+2=7【点睛】此题主要考查了实数运算,关键是掌握绝对值的性质和二次根式的性质.17.答案不唯一如:【分析】无限不循环小数是无理数根据无理数的三种形式解答即可【详解】设该无理数是x由题意得∴x=10或11或12或13或14或15该无理数可以是:答案不唯一如:故答案为:答案不唯一如:【解析:【分析】无限不循环小数是无理数,根据无理数的三种形式解答即可.【详解】设该无理数是x x<<∴x=10或11或12或13或14或15,【点睛】此题考查无理数的定义,熟记定义并掌握无理数的三种形式是解题的关键.18.7【解析】∵在△ABC中∠B=90°AB=3AC=5∴BC=∵△ADE是△CDE翻折而成∴AE=CE∴AE+BE=BC=4∴△ABE的周长=AB+BC=3+4=7故答案是:7解析:7【解析】∵在△ABC中,∠B=90°,AB=3,AC=5,∴4==.∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周长=AB+BC=3+4=7.故答案是:7.19.﹣1或5【分析】根据点M(24)与点N(x4)之间的距离是3可以得到|2-x|=3从而可以求得x的值【详解】解:∵点M(24)与点N(x4)之间的距离是3∴|2﹣x|=3解得x=﹣1或x=5故答案为解析:﹣1或5【分析】根据点M(2,4)与点N(x,4)之间的距离是3,可以得到|2-x|=3,从而可以求得x的值.【详解】解:∵点M(2,4)与点N(x,4)之间的距离是3,∴|2﹣x|=3,解得,x=﹣1或x=5,故答案为﹣1或5.【点睛】本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.20.5【分析】由题意先根据勾股定理求出OB的长再根据梯子的长度不变求出OD的长根据BD=OD-OB即可得出结论【详解】解:∵Rt△OAB中AB=25mAO=2m∴;同理Rt△OCD中∵CD=25mOC=解析:5【分析】由题意先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB 即可得出结论.【详解】解:∵Rt △OAB 中,AB=2.5m ,AO=2m ,∴ 1.5OB m ;同理,Rt △OCD 中,∵CD=2.5m ,OC=2-0.5=1.5m , ∴2OD m ,∴BD=OD-OB=2-1.5=0.5(m ).答:梯子底端B 向外移了0.5米.故答案为:0.5.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,解题的关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.三、解答题21.(1)(4,4),(4,1)A B ---;(2)7m =-或1-【分析】(1)根据点A 位于第二象限,点B 位于第三象限, 可得到45010a a ->⎧⎨--<⎩,再根据a 为整数,求解即可;(2)根据题干可知AB x ⊥,设垂足为D ,利用勾股定理可求得CD ,进而可求出m 的值.【详解】解:(1)由题意得45010a a ->⎧⎨--<⎩, 解得415a -<<, ∵a 为整数,∴0a =,∴()()4,4,4,1A B ---;(2)由题意知,AB x ⊥轴,假设点C(m ,0)位置如图,AB x ⊥交x 轴于点D ,∴D(-4,0),∵△ABC 是以BC 为底的等腰三角形,∴54AC AB AD ===,, ∴223CD AC AD =-=, ∴34CD m ==+,∴7m =-或1-.【点睛】本题考查坐标与图形的性质、勾股定理、等腰三角形的性质及绝对值的性质,解题的关键是综合运用相关知识解题.22.(1)见解析;(2)见解析;(317【分析】(1)根据网格结构找出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据网格结构找出点A 1、B 1、C 1关于x 轴的对称点A 2、B 2、C 2的位置,然后顺次连接即可;(3)连接A 1B 交y 轴于点P ,此时1PA PB A B +=取得最小值,利用勾股定理即可求解.【详解】(1)△A 1B 1C 1如图所示;(2)△A 2B 2C 2如图所示;(3)连接A 1B 交y 轴于点P ,此时1PA PB A B +=取得最小值,2211417PA PB A B +==+= 17【点睛】本题考查了坐标与图形变化-轴对称,勾股定理的应用,熟知轴对称的性质并熟练掌握网格结构特点准确找出对应点的位置是解答此题的关键.23.(1)32232+221. 【分析】(1)先把二次根式化成最简二次根式,后根据混合运算的法则有序计算即可; (2)利用运算律,因式分解,二次根式乘法公式,有序计算即可.【详解】(181262=262222=32232+; (25105+1312=5(12)5+1123⨯=21-2 =21.【点睛】本题考查了二次根式的化简计算,熟练掌握化简的技巧,运算的技巧,运算的顺序是解题的关键.24.【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫ ⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案;(2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案;(2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可.【详解】解:【初步探究】(1)177777=÷÷=③; 111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤; 故答案为:17;64-; (2)由题意:A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确; C 、7188888888888=÷÷÷÷÷÷÷÷=⑨, 619999999999=÷÷÷÷÷÷÷=⑧, ∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确;故选:C .【深入思考】(1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥; 71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72; (2)由(1)可知,根据乘方的运算法则,则将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭; 故答案为:21n a -⎛⎫ ⎪⎝⎭;(3)=224m n m n a a a --+-•=; 故答案为:4m n a +-.【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题.25.(1)2226(8)x x +=-;(2)DC =254,DE =154. 【分析】(1)由折叠的性质得出AD=CD ,AE=EC ,设BD=x ,则DC=AD=8-x ,由勾股定理可求出答案;(2)由勾股定理可求出答案.【详解】解:(1)∵将△DCE 沿DE 翻折,使点C 落在点A 处.∴AD=CD ,AE=EC ,设BD=x ,则DC=AD=8-x ,∵AB 2+BD 2=AD 2,∴62+x 2=(8-x )2,故答案为:62+x 2=(8-x )2;(2)由(1)得62+x 2=(8-x )2,解得x=74, ∴BD=74, ∴DC=BC -BD=8-74=254. ∵AB=6,BC=8,∴22226810AB BC +=+=, ∴CE=12AC=5, ∴22222515()544DC CE -=-=. 【点睛】 本题考查了折叠的性质,勾股定理,熟练掌握折叠的性质是解题的关键.26.(1)见解析;(2)见解析【分析】(1)由图1可知:四个全等的直角三角形的面积+中间小正方形的面积=大正方形的面积,然后化简即可证明;(2)如图,过A 作AF AB ⊥交BC 线于D ,先证明ABC CED △≌△可得ED BC a ==,CD AB b ==,然后根据梯形EDBA 的面积列式化简即可证明.【详解】(1)证明:大正方形面积为:214()()2ab c a b a b ⨯⨯+=++ 整理得22222ab c a b ab +=++∴222+=a b c ;(2)过A 作AF AB ⊥交BC 线于D∵AC CE =,90B D ∠=∠=︒,90ECD ACB ∠+∠=︒,90ACB BAC ∠+∠=︒ ∴BAC ECD ∠=∠,∴ABC CED △≌△,∴ED BC a ==,CD AB b ==∴()2EDBA a b S a b +=⋅+梯形211222ab c =⨯+ ∴()22211222a b ab ab c ++=+ ∴222+=a b c .【点睛】本题主要考查了运用几何图形来证明勾股定理,矩形和正方形的面积,三角形的面积,锻炼了同学们的数形结合的思想方法.。
初二数学模拟试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离s (km )和骑行时间t (h )之间的函数关系如图所示,给出下列说法:(1)他们都骑行了20km ; (2)乙在途中停留了0.5h; (3)甲、乙两人同时到达目的地; (4)相遇后,甲的速度小于乙的速度. 根据图象信息,以上说法正确的有( )A .1个B .2个C .3个D .4个 2.的平方根是( ) A .B .2C .±2D .3.下列运算正确的是 ( ) A .x 2+x 2=2x 4 B .a 2·a 3= a 5 C .(-2x 2)4=16x 6 D .a 7÷a 4÷a 3=a4.正比例函数与反比例函数(是非零常数)的图象交于两点.若点的坐标为(1,2),则点的坐标是( ).A. B. C. D.5.下列各式运算结果是的是()A.B.C.D.6.下列说法中,其中正确的是(▲)A.对于给定的一组数据,它的众数可以不只一个B.有两边相等且一角为的两个等腰三角形全等C.为了防止甲型流感的传染,学校对学生测量体温,应采用抽样调查法D.直棱柱的面数、棱数和顶点数之间的关系是面数+顶点数=棱数-27.如图:矩形花园ABCD中,,,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK.若,则花园中可绿化部分的面积为()A.B.C.D..8.如图,已知在△ABC中,∠C = 90°,AD = AC,DE⊥AB交BC于点E,若∠B = 28°,则∠AEC =()A.28° B.59° C.60° D.62°9.下列各组线段中,能构成直角三角形的是()A.2,3,4 B.3,4,6 C.5,12,13 D.4,6,710.下列函数中,当x>0时,y随x的增大而减小的是( ).A.y=x B. C. D.y=2x二、判断题11.上周六上午点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离(千米)与他们路途所用的时间(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线所对应的函数关系式;(2)已知小颖一家出服务区后,行驶分钟时,距姥姥家还有千米,问小颖一家当天几点到达姥姥家?12.在四边形ABCD中,已知AB=AD=8,∠A=60°,∠D=150°,四边形的周长为32,(1)连接BD,试判断△ABD的形状;(2)求BC的长.13.在一次数学课上,周老师在屏幕上出示了一个例题,在中,,分别是,上的一点,与交于点,画出图形(如图),给出下列三个条件:①;②;③.要求同学从这三个等式中选出两个作为已知条件,可判定是等腰三角形.请你用序号在横线上写出其中一种情形,答:_________;并给出证明.14.计算(1)(2)(3)(4)15.判断下列命题的真假,写出它们的逆命题,并判断逆命题的真假.(1)长方形是轴对称图形;(2)任何一条直线都是由无数个点组成的;(3)等腰三角形的两个底角相等;(4)如果两个数互为倒数,那么它们的积为1;(5)如果a+b>0,那么a>0,b>0.三、填空题16.已知(a﹣2016)2+(2018﹣a)2=20,则(a﹣2017)2的值是 .17.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为 cm.(容器的厚度忽略不计)18.在一次篮球训练中,小明练习投篮,共投篮40次,其中投中25次,那么小明投中的频率是________.19.若,,则的值为 .20.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球_________个.四、计算题21.计算:(每小题4分,共16分)(1)(2)(3)(4)22.数a、b在数轴上的位置如图所示,化简:五、解答题23.如图,CD⊥AB于D点,BE⊥AC于E点,BE,CD交于O点,且AO 平分∠BAC.求证:OB=OC.24.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.参考答案1 .B【解析】试题分析:解答此类问题学生需具备从图象中读取信息的数形结合能力,要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.首先注意横纵坐标的表示意义,再观察图象可得乙出发0.5小时后停留了0.5小时,然后又用1.6小时到达离出发地20千米的目的地;甲比乙早到0.6小时出发,用1.5小时到达离出发地20千米的目的地,然后根据此信息分别对4种说法进行判断.(1)根据图形的纵坐标可得:他们都骑行了20km,故原说法正确;(2)乙在出发0.5小时后,路程不增加,而时间在增加,故乙在途中停留了1-0.5=0.5h,故原说法正确;(3)从图形的横坐标看,甲比乙早到了0.6小时,故原说法错误;(4)相遇后,甲直线上升得快,故甲的速度大于乙的速度,故原说法错误;故选B.考点:实际问题的函数图象.2 .C【解析】试题分析:首先根据算术平方根的定义化简,然后根据平方根的定义即可得出结果.解:∵=4,又∵22=4,(﹣2)2=4,∴的平方根为±2;故选C.3 .B【解析】A、原式=2x2,故本选项错误,B、原式=a3+2=a5,故本选项正确,C、原式=(-2)4(x2)4=16x8,故本选项错误,D、原式=a7-4-3=a0=1,故本选项错误,故选择B.4 .C【解析】∵正比例函数y=mx与反比例函数的两交点A、B关于原点对称,∴点A(1,2)关于原点对称点的坐标为(-1,-2).故选C.5 .B【解析】试题分析:根据题意由平方差公式可进行因式分解,或.故选B考点:用平方差公式进行因式分解6 .A【解析】略7 .C【解析】试题分析:本题可以利用平移法将所有的绿化部分转化成一个矩形,然后进行计算面积.根据题意可得:S=(a-c)(b-c)=ab-ac-bc+.考点:代数式的表示8 .B【解析】根据∠C=90°AD=AC,求证△CAE≌△DAE,∠CAE=∠DAE=∠CAB,再由∠C=90°,∠B=28°,求出∠CAB的度数,然后即可求出∠AEC的度数.解:∵在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,∴△CAE≌△DAE,∴∠CAE=∠DAE=∠CAB,∵∠B+∠CAB=90°,∠B=28°,∴∠CAB=90°-28°=62°,∵∠AEC=90°-∠CAB=90°-31°=59°.故选B.此题主要考查学生对直角三角形全等的判定和三角形内角和定理的理解和掌握,解答此题的关键是求证△CAE≌△DAE,此题稍微有点难度,属于中档题9 .C.【解析】试题分析:选项A,22+32=13≠42;选项B,32+42=25≠62;选项C,52+122=169=132;选项D,42+62=52≠72.由勾股定理的逆定理可得,只有选项C能够成直角三角形,故答案选C.考点:勾股定理的逆定理.10 .B【解析】试题分析:A.y=x ,因为k=1>0,所以y随x的增大而增大,所以A错误;B.,因为k=1>0,当x>0时,y随x的增大而减小,所以正确;C.,因为k=-1<0,所以当x>0时,y随x的增大而增大,所以C错误;D.y="2x," 因为k=2>0,所以y随x的增大而增大,所以D错误,故选:B.考点:函数的图像的增减性.11 .详见解析【解析】试题分析:由图象知AB过(0,320)和((2,120)两点,故可设AB所在直线解析式为y=kx+b,代入即可求出a,b的值,从而确定函数关系式;(2)先求出CD所在直线解析式,令y=0,则可求出x的值,从而可知小颖一家当天几点到达姥姥家.试题解析:(1)由图象知:A(0,320),B(2,120)设AB所在直线解析式为y=kx+b,把A、B坐标代入得:解得:故AB所在直线解析式为y=-100x+320;(2)由图象知:CD过点(2.5,120)和(3,80)设CD所在直线解析式为y=mx+n,则有解得:故CD所在直线解析式为y=-80x+320令y=0时,-80x+320=0,解得x=4所以:8+4=12故小颖一家当天12点到达姥姥家.12 .(1)等边三角形(2)10【解析】试题分析:连接BD,把四边形分解成一个等边三角形和一个直角三角形,利用勾股定理即可求出BC和CD的长.试题解析:(1)连接BD∵AB=AD,∠A=60°∴△ABD是等边三角形(2)∴BD=AB=8,∠ADB=60°∵∠ADC=150°∴∠CDB=90°∵四边形周长为32,∴CD+BC=32-8-8=16设CD=x,则BC=16-x在Rt△CDB中,CD2+BD2=BC2即x2+82=(16-x)2,解得x=6BC=16-6=1013 .答案见解析【解析】试题分析:选①②,可利用△DOB与△EOC全等,得出OC=OB,再得出∠OCB与∠OBC相等,就能证明∠ABC与∠ACB相等.试题解析:选①②;理由:在和中又即【点睛】此题主要考查利用等角对等边来判定等腰三角形;题目对学生的要求比较高,利用等量加等量和相等是正确解答本题的关键.14 .(1)(2)(3)(4)【解析】试题解析:(1)利用二次根式乘法公式进行计算即可;(2)先把二次根式化简,然后再进行除法计算即可;(3)把各二次根式化简,再合并同类二次根式即可;(4)先利用多项式乘以多项式,再合并同类二次根式.试题解析:(1) =;(2);(3)==(4)==15 .(1)原命题是真命题;逆命题:轴对称图形是长方形;是假命题.(2)原命题是真命题;逆命题:由无数个点组成的图形是一条直线;是假命题.(3)原命题是真命题;逆命题:有两个角相等的三角形是等腰三角形;是真命题.(4)原命题是真命题;逆命题:如果两个数的积为1,那么这两个数互为倒数;是真命题.(5)原命题是假命题;逆命题:如果a>0,b>0,那么a+b>0;是真命题.【解析】先根据我们以往的知识判断原命题的真假,再根据逆命题的定义,将原命题的题设和结论部分互换,变成新的命题.16 .9【解析】(a﹣2016)2+(2018﹣a)2=20,(a﹣2016)2+(a-2018)2=20,令t=a-2017,∴(t+1)2+(t-1)2=20,2t2=18,t2=9,∴(a﹣2017)2=9.故答案为9.点睛:掌握用换元法解方程的方法.17 .20.【解析】试题分析:如图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B=(cm).故答案为:20.考点:轴对称的应用;圆柱的侧面展开图.18 .0.625.【解析】试题分析:小明投中的频率是=0.625.故答案是0.625.考点:频数与频率.19 .【解析】试题分析:考点:整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握,同底数幂相除,指数相减。
一、选择题1.下列计算正确的是( )A =B .2=C .(26=D ==2.若2a <3=( ) A .5a -B .5a -C .1a -D .1a --3.( )A .1B .﹣1C .D -4. )A B C D 5.下列各式中,正确的是( )A B .C =D = - 46.化简 )AB C D 7.关于代数式12a a ++,有以下几种说法, ①当3a =-时,则12a a ++的值为-4.②若12a a ++值为2,则a = ③若2a >-,则12a a ++存在最小值且最小值为0. 在上述说法中正确的是( ) A .① B .①② C .①③ D .①②③8.实数a ,b ,c ,满足|a |+a =0,|ab |=ab ,|c |-c =0,a +b |+|a -c |-( )A .2c -bB .2c -2aC .-bD .b9.下列计算正确的是( )A =B =C 4=D 3=- 10.下列运算一定正确的是( )A a =B =C .222()a b a b ⋅=⋅D ()0n a m=≥ 二、填空题11.使函数212y x x=+有意义的自变量x 的取值范围为_____________12.将(0)a a -<化简的结果是___________________. 13.能力拓展:1A =2A =;3:A =;4A =________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A()3-14.=___________.15.已知a ,b 是正整数,若有序数对(a ,b )使得的值也是整数,则称(a ,b )是的一个“理想数对”,如(1,4)使得=3,所以(1,4)是的一个“理想数对”.请写出其他所有的“理想数对”: __________.16_____.17.已知x ,y ,则x 2+xy +y 2的值为______.18.若1+x有意义,则x的取值范围是____.19.下列各式:①25②21+n③2b④0.1y是最简二次根式的是:_____(填序号)20.代数式4x-有意义,则x的取值范围是_____.三、解答题21.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==---.以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-.(1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1.【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案.【详解】(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.22.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.23.计算②)21-【答案】① 【分析】 ①根据二次根式的加减法则计算;②利用平方差、完全平方公式进行计算.【详解】解:①原式=②原式=(5-2-=【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.24.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】(1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==(2)2=22-=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.25.计算:(1)0 1 2⎛⎫ ⎪⎝⎭(2)(4【答案】(1)-5;(2)9【分析】(1)第一项利用算术平方根的定义计算,后一项利用零指数幂法则计算,即可得到结果;(2)利用平方差公式计算即可.【详解】(1)0 1 2⎛⎫ ⎪⎝⎭41=--,5=-;(2)(4167=-9=.【点睛】本题考查了二次根式的混合运算以及零指数幂,熟练掌握平方差公式是解题的关键.26.计算:(1)11(233÷【答案】(12+;(2)【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】解:)1131-=23==【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.27.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2).【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;(2)利用完全平方公式和平方差公式展开,然后再进行合并即可.【详解】(1)原式=1;(2)原式+2).【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.28.化简求值:212(1)211x x x x -÷-+++,其中1x =.【答案】3【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++ ()211,11x x x x -+=⋅-+ 1.1x =+当1x =时,113x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】5==,=,(24312=⨯=,选项D 正确.2.D解析:D【分析】||a =,然后再根据a 的范围去掉绝对值后即可求解.【详解】|2|=-a ,且2a <,∴|2|2=-=-+a a ,原式|2|3231=--=-+-=--a a a ,故选:D . 【点睛】||a =这个公式是解决本题的关键.解析:C【解析】解:原式=故选C.4.A解析:A【分析】根据二次根式的性质把每一项都化为最简二次根式,再根据同类二次根式的定义判断即可.【详解】解:A=B3C不是同类二次根式,不合题意;D3故选:A.【点睛】本题考查了同类二次根式的定义和二次根式的性质,属于基本题型,熟练掌握基本知识是解题关键.5.C解析:C【分析】根据算术平方根与平方根的定义、二次根式的加法与乘除法逐项判断即可.【详解】A4=,此项错误B、4=±,此项错误C==,此项正确D==故选:C.【点睛】本题考查了算术平方根与平方根的定义、二次根式的加法与乘除法,掌握二次根式的运算法则是解题关键.6.C解析:C根据二次根式有意义的条件可知﹣1x>0,求得x <0,然后根据二次根式的化简,可得x. 故选C .7.C解析:C【分析】①将3a =-代入12a a ++计算验证即可;②根据题意12a a ++=2,解得a 的值即可作出判断;③若a >-2,则a+2>0,则对12a a ++配方,利用偶次方的非负性可得答案. 【详解】解:①当3a =-时,1134232a a +=-+=-+-+. 故①正确; ②若12a a ++值为2, 则122a a +=+, ∴a 2+2a+1=2a+4,∴a 2=3,∴a =.故②错误;③若a >-2,则a+2>0, ∴12a a ++=1222a a ++-+=222+-=2≥0. ∴若a >-2,则12a a ++存在最小值且最小值为0. 故③正确.综上,正确的有①③.故选:C .【点睛】本题考查了分式的加减法、分式的值的计算及最值问题等知识点,熟练运用相关公式及运算法则是解题的关键.8.D解析:D【解析】解:∵|a|+a=0,∴|a|=﹣a,∴﹣a≥0,∴a≤0,∵|ab|=ab,∴ab≥0,∴b≤0,∵|c|﹣c=0,∴| c|=c,∴c≥0,∴原式=﹣b+(a+b)﹣(a﹣c)﹣(c﹣b)=b.故选D.9.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.10.C解析:C【分析】直接利用二次根式的性质与化简以及积的乘方运算法则分别计算即可得出答案.【详解】A|a|,故此选项错误;B.,则a,b均为非负数,故此选项错误;C.a2•b2=(a•b)2,正确;D m n a(a≥0),故此选项错误.故选C.【点睛】本题主要考查了二次根式的性质与化简以及积的乘方运算,正确掌握相关运算法则是解题的关键.二、填空题11.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x 的取值范围为【点睛】 解析:11,022x x -≤≤≠ 【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤ ①当0x <时,120x +≥ 解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键.12..【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴(a -=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.13.(1)、;(2);(3)【解析】【分析】(1)观察A1,A2,A3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等解析:(1)=;(2),,><<;(3) ,,<<< 【解析】【分析】(1)观察A 1,A 2,A 3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等式仍成立,求得>1)的结论解答;(3)利用(2)的结论进行填空.【详解】解:(1)观察A 1,A 2,A 3的规律可知,将等式右边的分式分母有理化,即得等式左边的代数式,所以=,(2>1>>,<<(3)由(1)、(2<,故答案为:=;(2),,><<;(3),,<<< 【点睛】 主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.14.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】 本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解.15.(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a=1,=1,要使为整数,=1或时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,解析:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a =1,要使或12时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,当a =412,要使+或12时,分别为3和2,得出(4,1)和(4,4)是的“理想数对”,当a =913,要使16时,=1,得出(9,36)是的“理想数对”,当a =1614,要使14时,=1,得出(16,16)是的“理想数对”,当a =3616,要使13时,=1,得出(36,9)是的“理想数对”, 即其他所有的“理想数对”:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).故答案为:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).16.6【分析】利用二次根式乘除法法则进行计算即可.【详解】===6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.解析:6【分析】==进行计算即可. 【详解】=6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键. 17.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y +-xy=251515151)222=5-1=4. 18.x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】∵有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.解析:x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.19.②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】②③是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,解析:②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.20.x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根解析:x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
初二数学模拟试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下。
已知小群每分钟比小林多跳20下,设小林每分钟跳x 下,则可列关于x 的方程为( ) A . B .C .D .2.等腰三角形底边上的高为腰的一半,则它的顶角为( ). A .120° B .90° C .100° D .60°3.已知△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x ﹣2,2x ﹣1,若这两个三角形全等,则x 为( ) A . B .4 C .3 D .不能确定4.2013年6月成都市某天最高气温是29℃,最低气温21℃,则当天成都市的气温t ℃的变化范围是( )A .t >29B .t≤21C .21<t <29D .21≤t≤295.在下列以长为三边的三角形中,不能构成直角三角形的是( ).A .B .C .D .6.学校举行小发明比赛,小刚要做一个直角三角形木架,现有长为30cm 和40cm 的两根木条,那么第三根木条的长应为 cm .7.如图,∠CAB=∠DBA,再添加一个条件,不一定能判△ABC≌△BAD 的是()A.AC=BD B.AD=BC C.∠DAB =∠CBA D.∠C=∠D8.如图,点在上,,∠B=80°,,则的度数为()A.40° B. C.50° D.9.O是△ABC中∠ABC和∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E点,若BC=10cm,那么△ODE的周长为()A.8cm B.9cm C.10cm D.11cm 10.已知点(-5,y1)、(3,y2)都在直线y=-8x+7上,则y1、y2的大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.无法比较二、判断题11.正方形的对称轴有四条.12.小强骑自行车去郊游,右图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象,小强9点离开家,15点回家,根据这个图象,请你回答下列问题:(1)小强到离家最远的地方需要几小时?此时离家多远?(2)何时开始第一次休息?休息时间多长?(3)小强离家速度与回家速度各是多少?(写出计算过程)13.计算 (1)(2) (3)14.阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k 1x+b 1(k 1≠0)的图象为直线l 1,一次函数y=k 2x+b 2(k 2≠0)的图象为直线l 2,若k 1=k 2,且b 1≠b 2,我们就称直线l 1与直线l 2互相平行.(1)已知一次函数y=﹣2x 的图象为直线l 1,求过点P (1,4)且与已知直线l 1平行的直线l 2的函数表达式,并在坐标系中画出直线l 1和l 2的图象;(2)设直线l 2分别与y 轴、x 轴交于点A 、B ,过坐标原点O 作OC ⊥AB ,垂足为C ,求l 1和l 2两平行线之间的距离OC 的长;(3)若Q 为OA 上一动点,求QP+QB 的最小值,并求取得最小值时Q 点的坐标.15.已知x =+2,y =-2,求x 2+2xy +y 2和x 2 - y 2的值.三、填空题16.某校艺术节演出中,5位评委给某个节目打分如下:9分,9.3分,8.9分,8.7分,9.1分,则该节目的平均得分是 分.17.一架2.5米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端0.7米.如果梯子的顶端沿墙下滑0. 4米,那么梯足将滑动 米。
初二下学期数学期末考试模拟测试题(有答案)题型归纳大学网初中频道为大家推荐了初二下学期数学期末考试模拟测试题,相信大家阅读之后一定会对大家的学习有帮助的。
一.细心选一选:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在表格中.1.在分式中,_的取值范围是( )A. _≠1B. _≠0C. _>1D. _2.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是( )A. B. C. D.3.已知α、β是一元二次方程_2﹣2_﹣3=0的两个根,则α+β的值是( )A. 2B. ﹣2C. 3D. ﹣34.如图,反比例函数y=的图象过点A,过点A分别向_轴和y轴作垂线,垂足为B和C.若矩形ABOC的面积为2,则k的值为( )A. 4B. 2C. 1D.5.如图所示,▱ABCD中,对角线AC,BD交于点O,E是CD中点,连接OE,若OE=3cm,则AD的长为( )A. 3cmB. 6cmC. 9cmD. 12cm6.方程_2+6_﹣5=0的左边配成完全平方后所得方程为( )A. (_+3)2=14B. (_﹣3)2=14C.D. (_+3)2=47.一个多边形的每个内角都是108°,那么这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形8.分式方程的解是( )A. _=﹣5B. _=5C. _=﹣3D. _=39.如图,菱形ABCD中,已知∠D=110°,则∠BAC的度数为( )A. 30°B. 35°C. 40°D. 45°10.若关于_的一元二次方程k_2﹣6_+9=0有两个不相等的实数根,则k的取值范围( )A. k111.下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有9个,第(2)个图形中面积为1的正方形有14个,…,按此规律.则第(10)个图形中面积为1的正方形的个数为( )A. 72B. 64C. 54D. 5012.已知四边形OABC是矩形,边OA在_轴上,边OC在y轴上,双曲线与边BC 交于点D、与对角线OB交于点中点E,若△OBD的面积为10,则k的值是( )A. 10B. 5C.D.二、耐心填一填(本大题共6个小题,每小题4分,共24分)请将每小题的正确答案填入下面的表格中.13.分解因式:2m2﹣2= .14.若分式的值为零,则_= .15.如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,则对角线AC的长度为 .16.已知_=2是方程_2+m_+2=0的一个根,则m的值是 .17.由于天气炎热,某校根据《学校卫生工作条例》,为预防“蚊虫叮咬”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间_(分钟)之间的关系如图所示(即图中线段OA和双曲线在A 点及其右侧的部分),当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在分钟内,师生不能呆在教室.18.如图,在正方形ABCD中,AB=2,将∠BAD绕着点A顺时针旋转α°(0三.解答题(本大题共4个小题,19题10分,20题8分,21题8分,22题8分,共34分)解答时每小题必须给出必要的演算过程或推理步骤.19.解方程:(1)_2﹣6_﹣2=0(2)=+1.20.如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.21.如图,一次函数y=k_+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当_在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?22.童装店在服装销售中发现:进货价每件60元,销售价每件100元的某童装平均每天可售出20件.为了迎接“六一”,童装店决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,(1)降价前,童装店每天的利润是多少元?(2)如果童装店每要每天销售这种童装盈利1200元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?四、解答题(本大题共2个小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤.23.先化简,再求值:(﹣)÷(﹣1),其中a是方程a2﹣4a+2=0的解.24.在平面直角坐标系_Oy中,对于任意两点P1(_1,y1)与P2(_2,y2)的“非常距离”,给出如下定义:若|_1﹣_2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|_1﹣_2|;若|_1﹣_2|例如:点P1(1,2),点P1(3,5),因为|1﹣3|(1)已知点A(﹣),B 为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B 的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D 的“非常距离”最小时,相应的点C的坐标.五.解答题(本大题共2个小题,25题12分,26题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)如图1,当E是线段AC的中点,且AB=2时,求△ABC的面积;(2)如图2,当点E不是线段AC的中点时,求证:BE=EF;(3)如图3,当点E是线段AC延长线上的任意一点时,(2)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.26.如图,已知点A是直线y=2_+1与反比例函数y=(_>0)图象的交点,且点A的横坐标为1.(1)求k的值;(2)如图1,双曲线y=(_>0)上一点M,若S△AOM=4,求点M的坐标;(3)如图2所示,若已知反比例函数y=(_>0)图象上一点B(3,1),点P是直线y=_上一动点,点Q是反比例函数y=(_>0)图象上另一点,是否存在以P、A、B、Q 为顶点的平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由. ____-____学年重庆市第一中学八年级(下)期末数学试卷参考答案与试题解析一.细心选一选:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在表格中.1.在分式中,_的取值范围是( )A. _≠1B. _≠0C. _>1D. _考点:分式有意义的条件.分析:根据分式有意义,分母不等于0列式计算即可得解.(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是( )A. B. C. D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断利用排除法求解.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;3.已知α、β是一元二次方程_2﹣2_﹣3=0的两个根,则α+β的值是( )A. 2B. ﹣2C. 3D. ﹣3考点:根与系数的关系.分析:根据根与系数的关系得到α+β=﹣=2,即可得出答案.解答:解:∵α、β是一元二次方程_2﹣2_﹣3=0的两个根,4.如图,反比例函数y=的图象过点A,过点A分别向_轴和y轴作垂线,垂足为B和C.若矩形ABOC的面积为2,则k的值为( )A. 4B. 2C. 1D.考点:反比例函数系数k的几何意义.分析:设点A的坐标为(_,y),用_、y表示OB、AB的长,根据矩形ABOC的面积为2,列出算式求出k的值.解答:解:设点A的坐标为(_,y),则OB=_,AB=y,5.如图所示,▱ABCD中,对角线AC,BD交于点O,E是CD中点,连接OE,若OE=3cm,则AD的长为( )A. 3cmB. 6cmC. 9cmD. 12cm考点:三角形中位线定理;平行四边形的性质.分析:由平行四边形的性质,易证OE是中位线,根据中位线定理求解.解答:解:根据平行四边形基本性质:平行四边形的对角线互相平分.可知点O是BD中点,所以OE是△BCD的中位线.6.方程_2+6_﹣5=0的左边配成完全平方后所得方程为( )A. (_+3)2=14B. (_﹣3)2=14C.D. (_+3)2=4考点:解一元二次方程-配方法.专题:配方法.分析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解答:解:由原方程移项,得_2+6_=5,等式两边同时加上一次项系数一半的平方,即32,得7.一个多边形的每个内角都是108°,那么这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形考点:多边形内角与外角.分析:利用多边形的内角和=180(n﹣2)可得.8.分式方程的解是( )A. _=﹣5B. _=5C. _=﹣3D. _=3考点:解分式方程.专题:计算题.分析:观察可得最简公分母是(_+1)(_﹣1),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.解答:解:方程两边同乘以(_+1)(_﹣1),得3(_+1)=2(_﹣1),(2)解分式方程一定注意要验根.9.如图,菱形ABCD中,已知∠D=110°,则∠BAC的度数为( )A. 30°B. 35°C. 40°D. 45°考点:菱形的性质.专题:计算题.分析:先根据菱形的对边平行和直线平行的性质得到∠BAD=70°,然后根据菱形的每一条对角线平分一组对角求解.解答:解:∵四边形ABCD为菱形,∴AD∥AB,∴∠BAD=180°﹣∠D=180°﹣110°=70°,∵四边形ABCD为菱形,10.若关于_的一元二次方程k_2﹣6_+9=0有两个不相等的实数根,则k的取值范围( )A. k1考点:根的判别式;一元二次方程的定义.专题:计算题.分析:根据根的判别式和一元二次方程的定义,令△>0且二次项系数不为0即可.解答:解:∵关于_的一元二次方程k_2﹣6_+9=0有两个不相等的实数根,∴△>0,即(﹣6)2﹣4_9k>0,解得,k∵为一元二次方程,(2)△=0⇔方程有两个相等的实数根;(3)△11.下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有9个,第(2)个图形中面积为1的正方形有14个,…,按此规律.则第(10)个图形中面积为1的正方形的个数为( )A. 72B. 64C. 54D. 50考点:规律型:图形的变化类.分析:由第1个图形有9个边长为1的小正方形,第2个图形有9+5=14个边长为1的小正方形,第3个图形有9+5_2=19个边长为1的小正方形,…由此得出第n个图形有9+5_(n﹣1)=5n+4个边长为1的小正方形,由此求得答案即可.解答:解:第1个图形边长为1的小正方形有9个,第2个图形边长为1的小正方形有9+5=14个,第3个图形边长为1的小正方形有9+5_2=19个,…第n个图形边长为1的小正方形有9+5_(n﹣1)=5n+4个,所以第10个图形中边长为1的小正方形的个数为5_10+4=54个.12.已知四边形OABC是矩形,边OA在_轴上,边OC在y轴上,双曲线与边BC交于点D、与对角线OB交于点中点E,若△OBD的面积为10,则k的值是( )A. 10B. 5C.D.考点:反比例函数系数k的几何意义.分析:设双曲线的解析式为:y=,E点的坐标是(_,y),根据E是OB的中点,得到B点的坐标,求出点E的坐标,根据三角形的面积公式求出k.解答:解:设双曲线的解析式为:y=,E点的坐标是(_,y),∵E是OB的中点,∴B点的坐标是(2_,2y),则D点的坐标是(,2y),∵△OBD的面积为10,二、耐心填一填(本大题共6个小题,每小题4分,共24分)请将每小题的正确答案填入下面的表格中.13.分解因式:2m2﹣2= 2(m+1)(m﹣1) .考点:提公因式法与公式法的综合运用.专题:压轴题.分析:先提取公因式2,再对剩余的多项式利用平方差公式继续分解因式.解答:解:2m2﹣2,14.若分式的值为零,则_= ﹣3 .考点:分式的值为零的条件.专题:计算题.分析:分式的值为零,分子等于0,分母不为0.解答:解:根据题意,得15.如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,则对角线AC的长度为 8 .考点:矩形的性质;含30度角的直角三角形.分析:由矩形的性质得出OA=OB,再证明△AOB是等边三角形,得出OA=OB=AB=4,得出AC=2OA即可.解答:解:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,16.已知_=2是方程_2+m_+2=0的一个根,则m的值是﹣3 .考点:一元二次方程的解.分析:将_=2代入方程即可得到一个关于m的方程,解方程即可求出m值.解答:解:把_=2代入方程可得:4+2m+2=0,17.由于天气炎热,某校根据《学校卫生工作条例》,为预防“蚊虫叮咬”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间_(分钟)之间的关系如图所示(即图中线段OA和双曲线在A 点及其右侧的部分),当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在 75 分钟内,师生不能呆在教室.考点:反比例函数的应用.分析:首先根据题意,药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间_(分钟)成正比例;药物释放完毕后,y与_成反比例,将数据代入用待定系数法可得反比例函数的关系式;进一步求解可得答案.解答:解:设反比例函数解析式为y=(k≠0),将(25,6)代入解析式得,k=25_6=150,则函数解析式为y=(_≥15),当y=2时,=2,18.如图,在正方形ABCD中,AB=2,将∠BAD绕着点A顺时针旋转α°(0考点:旋转的性质;正方形的性质.分析:先根据旋转的性质得∠EAB=∠FAD=α,再根据正方形的性质得AB=AD,∠ADB=∠ABD=45°,则利用BE⊥BD得∠EBA=∠FDA=45°,于是可根据“ASA”判定△ABE≌△ADF,得到S△ABE=S△ADF,所以S四边形AEBF=S△ABD=4,则S△CDM=2,利用三角形面积公式可计算出DM=2,延长AB到M′使BM′=DM=2,如图,接着根据勾股定理计算出CM=2,再通过证明△BCM≌△DCM得到CM′=CM=2,∠BCM′=∠DCM,然后证∠M′NC=∠M′CN得到M′N=M′C=2,则BN=M′C﹣BM′=2﹣2.解答:解:∵∠BAD绕着点A顺时针旋转α°(0∴∠EAB=∠FAD=α,∵四边形ABCD为正方形,∴AB=AD,∠ADB=∠ABD=45°,∵BE⊥BD,∴∠EBD=90°,∴∠EBA=45°,∴∠EBA=∠FDA,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴S△ABE=S△ADF,∴S四边形AEBF=S△ABE+S△ABF=S△ADF+S△ABF=S△ABD=_2_2=4,∵S四边形AEBF=S△CDM,∴S△CDM==2,∴DM•2=2,解得DM=2,延长AB到M′使BM′=DM=2,如图,在Rt△CDM中,CM==2,在△BCM′和△DCM中,∴△BCM≌△DCM(SAS),∴CM′=CM=2,∠BCM′=∠DCM,∵AB∥CD,∴∠M′NC=∠DCN=∠DCM+∠NCM=∠BCM′+∠NCM,而NC平分∠BCM,∴∠NCM=∠BCN,∴∠M′NC=∠BCM′+∠BCN=∠M′CN,∴M′N=M′C=2,三.解答题(本大题共4个小题,19题10分,20题8分,21题8分,22题8分,共34分)解答时每小题必须给出必要的演算过程或推理步骤.19.解方程:(1)_2﹣6_﹣2=0(2)=+1.考点:解一元二次方程-配方法;解分式方程.分析:(1)移项,配方,再开方,即可得出两个一元一次方程,求出方程的解即可;(2)先把分式方程转化成整式方程,求出方程的解,再进行检验即可.解答:解:(1)_2﹣6_﹣2=0,_2﹣6_=2,_2﹣6_+9=2+9,(_﹣3)2=11,_﹣3=,_1=3+,_2=3﹣;(2)方程两边都乘以_﹣2得:1﹣_=﹣1+_﹣2,解这个方程得:_=2,检验:当_=2时,_﹣2=0,20.如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.考点:矩形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)根据平行四边形性质得出AB=CD,∠A=∠C.求出∠ABD=∠CDB.推出∠ABE=∠CDF,根据ASA推出全等即可;(2)根据全等得出AE=CF,根据平行四边形性质得出AD∥BC,AD=BC,推出D E∥BF,DE=BF,得出四边形DFBE是平行四边形,根据等腰三角形性质得出∠DEB=90°,根据矩形的判定推出即可.解答:证明:(1)在□ABCD中,AB=CD,∠A=∠C.∵AB∥CD,∴∠ABD=∠CDB.∵BE平分∠ABD,DF平分∠CDB,∴∠ABE=∠ABD,∠CDF=∠CDB.∴∠ABE=∠CDF.∵在△ABE和△CDF中,∴△ABE≌△CDF(ASA).(2)∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴DE∥BF,DE=BF,∴四边形DFBE是平行四边形,∵AB=DB,BE平分∠ABD,21.如图,一次函数y=k_+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当_在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?考点:反比例函数与一次函数的交点问题.专题:数形结合;待定系数法.分析:(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.解答:解:(1)一次函数y=k_+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2_﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)22.童装店在服装销售中发现:进货价每件60元,销售价每件100元的某童装平均每天可售出20件.为了迎接“六一”,童装店决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,(1)降价前,童装店每天的利润是多少元?(2)如果童装店每要每天销售这种童装盈利1200元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?考点:一元二次方程的应用.专题:销售问题.分析:(1)用降价前每件利润_销售量列式计算即可;(2)设每件童装降价_元,利用童装平均每天售出的件数_每件盈利=每天销售这种童装利润列出方程解答即可.解答:解:(1)童装店降价前每天销售该童装可盈利:(100﹣60)_20=800(元);(2)设每件童装降价_元,根据题意,得(100﹣60﹣_)(20+2_)=1200,解得:_1=10,_2=20.∵要使顾客得到更多的实惠,四、解答题(本大题共2个小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤.23.先化简,再求值:(﹣)÷(﹣1),其中a是方程a2﹣4a+2=0的解.考点:分式的化简求值;一元二次方程的解.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加减法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.解答:解:原式=[﹣]÷=•=,24.在平面直角坐标系_Oy中,对于任意两点P1(_1,y1)与P2(_2,y2)的“非常距离”,给出如下定义:若|_1﹣_2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|_1﹣_2|;若|_1﹣_2|例如:点P1(1,2),点P1(3,5),因为|1﹣3|(1)已知点A(﹣),B 为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B 的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D 的“非常距离”最小时,相应的点C的坐标.考点:一次函数综合题.分析:(1)①根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;②设点B的坐标为(0,y),根据|﹣﹣0|≥|0﹣y|,得出点A与点B的“非常距离”最小值为|﹣﹣0|,即可得出答案;(2)设点C的坐标为(_0,_0+3).根据材料”若|_1﹣_2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|_1﹣_2|”知,C、D两点的“非常距离”的最小值为﹣_0=_0+2,据此可以求得点C的坐标;解答:解:(1)①∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠2,∴|0﹣y|=2,解得,y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2);②设点B的坐标为(0,y).∵|﹣﹣0|≥|0﹣y|,∴点A与点B的”非常距离”最小值为|﹣﹣0|=;(2)如图2,取点C与点D的“非常距离”的最小值时,需要根据运算定义“若|_1﹣_2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|_1﹣_2|”解答,此时|_1﹣_2|=|y1﹣y2|. 即AC=AD,∵C是直线y=_+3上的一个动点,点D的坐标是(0,1),∴设点C的坐标为(_0,_0+3),∴﹣_0=_0+2,此时,_0=﹣,∴点C与点D的“非常距离”的最小值为:|_0|=,五.解答题(本大题共2个小题,25题12分,26题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)如图1,当E是线段AC的中点,且AB=2时,求△ABC的面积;(2)如图2,当点E不是线段AC的中点时,求证:BE=EF;(3)如图3,当点E是线段AC延长线上的任意一点时,(2)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.考点:四边形综合题.分析:(1)根据菱形的性质证明△ABC是等边三角形和AB=2,求出△ABC的面积;(2)作EG∥BC交AB于G,证明△BGE≌△ECF,得到BE=EF;(3)作EH∥BC交AB的延长线于H,证明△BHE≌△ECF,得到BE=EF.解答:解:(1)∵四边形ABCD是菱形,∠ABC=60°,∴△ABC是等边三角形,又E是线段AC的中点,∴BE⊥AC,AE=AB=1,∴BE=,∴△ABC的面积=_AC_BE=;(2)如图2,作EG∥BC交AB于G,∵△ABC是等边三角形,∴△AGE是等边三角形,∴BG=CE,∵EG∥BC,∠ABC=60°,∴∠BGE=120°,∵∠ACB=60°,∴∠ECF=120°,∴∠BGE=∠ECF,在△BGE和△ECF中,,∴△BGE≌△ECF,∴EB=EF;(3)成立,如图3,作EH∥BC交AB的延长线于H,∵△ABC是等边三角形,∴△AHE是等边三角形,∴BH=CE,在△BHE和△ECF中,26.如图,已知点A是直线y=2_+1与反比例函数y=(_>0)图象的交点,且点A的横坐标为1.(1)求k的值;(2)如图1,双曲线y=(_>0)上一点M,若S△AOM=4,求点M的坐标;(3)如图2所示,若已知反比例函数y=(_>0)图象上一点B(3,1),点P是直线y=_上一动点,点Q是反比例函数y=(_>0)图象上另一点,是否存在以P、A、B、Q 为顶点的平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由. 考点:反比例函数综合题.分析:(1)点A是直线y=2_+1的点,点A的横坐标为1,代入y=2_1+1=3,求得点A即可得到结果;(2)如图1,设点M(m,),过A作AE⊥_轴于E,过M作MF⊥_轴于F,根据题意得:S△AOM=S梯形AEFM=(3+)(m﹣1)=4,解方程即可得到结果;(3)首先求得反比例函数的解析式,然后设P(m,m),分若PQ为平行四边形的边和若PQ为平行四边形的对角线两种情况分类讨论即可确定点Q的坐标.解答:解:(1)∵点A是直线y=2_+1的点,点A的横坐标为1,∴y=2_1+1=3,∴A(1,3),∵点A是反比例函数y=(_>0)图象上的点,∴k=3;(2)如图1,设点M(m,),过A作AE⊥_轴于E,过M作MF⊥_轴于F,根据题意得:S△AOM=S梯形AEFM=(3+)(m﹣1)=4,解得:m=3(负值舍去),∴M(3,1);(3)∵反比例函数y=(_>0)图象经过点A(1,3),∴k=1_3=3,∴反比例函数的解析式为y=,∵点P在直线y=_上,∴设P(m,m),若PQ为平行四边形的边,∵点A的横坐标比点B的横坐标小2,点A的纵坐标比点B的纵坐标大2,∴点Q在点P的下方,则点Q的坐标为(m+2,m﹣2)如图2,若点Q在点P的上方,则点Q的坐标为(m﹣2,m+2)如图3,把Q(m+2,m﹣2)代入反比例函数的解析式得:m=±,∵m>0,∴m=,∴Q1(+2,﹣2),同理可得另一点Q2(﹣2,+2);②若PQ为平行四边形的对角线,如图4,∵A、B关于y=_对称,∴OP⊥AB此时点Q在直线y=_上,且为直线y=_与双曲线y=的交点,由解得,(舍去)∴Q3(,)综上所述,满足条件的点Q有三个,坐标分别为:Q1(+2,﹣2),Q2(﹣2,+2),Q3(,).大学网为大家推荐的初二下学期数学期末考试模拟测试题,大家一定要仔细阅读哦,祝大家学习进步。
一、选择题 1.反映一组数据变化范围的是( )
A.极差 B.方差 C.众数 D.平均数
2.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示,如果从这四位同学中,选
出一位同学参加数学竞赛,那么应选___________去.
甲 乙 丙 丁 平均分 85 90 90 85 方差 50 42 50 42
A.甲 B.乙 C.丙 D.丁
3.一组数据中有m个a,n个b,k个c,那么这组数据的平均数为( )
A.3abc B.3mnk C.3manbkc D.
manbkcmnk
4.某中学九年级二班的8名女同学在一次仰卧起坐测试中的成绩如下(单位:个),135 138 142 144 140 147 145 145;则这组数据的中位数、平均数分别是( )
A.142,142 B.143,142 C.143,143 D.144,143 5.在数轴上,点A表示-2,点B表示4.,PQ为数轴上两点,点Р从点A出发以每秒1个
单位长度的速度向左运动,同时点Q从点B出发以每秒2个单位长度的速度向左运动,点Q到达原点О后,立即以原来的速度返回,当点Q回到点B时,点Р与点Q同时停止运
动.设点Р运动的时间为x秒,点Р与点Q之间的距离为y个单位长度,则下列图像中表示y与x的函数关系的是( )
A. B. C. D.
6.如图,在平面直角坐标系中点A的坐标为0,6,点B的坐标为3,52,将
AOB
沿x轴向左平移得到AOB,若点B的坐标为19,52,点A落在直线ykx上,则k的值为( )
A.43 B.34 C.34 D.
6
11
7.一个一次函数的图象与直线112yx平行,与x轴、y轴的交点分别为A,B,并
且过点(1,5),则在线段AB上(包括端点A,B)横、纵坐标都是整数的点有( ) A.4个 B.5个 C.6个 D.7个
8.已知,整数x满足1266,1,24xyxyx,对任意一个x,p都取12,yy中
2022—2022学年上学期期中达标测试
七年级数学
一、选择题
1、下列三条线段,能组成三角形的是( )
A 、3,3,3
B 、3,3,6
C 、3,2,5
D 、3,2,6 2、的立方根是( ) A 、4
B 、±4
C 、2
D 、±2
3、适合条件3∠A =3∠B =∠C 的三角形一定是 ( ) A . 锐角三角形 B . 钝角三角形 C . 直角三角形 D .任意三角形
4、△ABC 与△A'B'C'中,满足下列条件时必全等的是( ).
A.∠A =∠A' , ∠B =∠B' , ∠C =∠C'
B.∠C =∠C' , AB = A'B' , BC = B'C' = A'B' , AC = A'C' , ∠B =∠B' = A'B' , AC = A'C' , ∠A =∠A'
5、若等腰三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为 ( ) A. 12 cm B. 10 cm C. 8 cm D. 6 cm
6、如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是 (A ) (B )2 2 (C ) 3 (D ) 5
第6题图 第7题图
7、如图,在△ABC 中,DE 垂直平分AB,AE 平分∠BAC,若∠C=90,则∠B 的度数为( ) B.20
8、已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B
与点D 重合,折痕为EF ,则△ABE 的面积为( ) A . 6cm 2 B . 8cm 2 C. 10 cm 2 D. 12cm 2
9、下列说法中,正确的是( )
A.一个有理数的平方根有两个,它们互为相反数
B.一个有理数的立方根,不是正数就是负数
C.负数没有立方根
D.如果一个数的立方根是这个数本身那么这个数一定是-1,0,1.
10、在△ABC 中,∠A =80°,BD 、CE 分别平分∠ABC 、∠ACB ,BD 、CE 相交于点O ,则∠BOC 等于( )
A 、140° B、100° C、50° D、130°
11、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程( 取3)是 ( )
A.20cm;
B.10cm;
C.14cm;
D.无法确定.
12、如图,在等腰△ABC 中AB=AC ,D 为BC 边上一点,BF=CD ,CE=BD ,那么∠EDF 的值为( )
A. 90°-∠A
B. 90°+∠ A
C. 90°-∠A
D. 90°+∠ A 二、填空题
13、若9x 2-49=0,则x =________.
14、如图,直线l 过正方形ABCD 的顶点B ,点A 、C 到直线l 的距离分别是1和2,则EF 的长是___________.
15、在Rt △ABC 中,斜边AB=2,则AB 2+BC 2+CA 2=_______ .
16、如图,AD 是∠BAC 的平分线,DE ⊥AB 于E .若△ABC 的面积为45cm 2,AB=15cm ,AC=12cm ,则DE= _________
B
C A
E
D
A
B
A B
E
F
D C
第8题图
第16题图
C
B A D
E
17、如图,有一个直角三角形纸片,两直角边AC=6cm ,
BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合, 则CD= . 三、解答题 18.已知643+a +|b 3-8|=0,求(a-b)b 的平方根.
19.如图△ABC 中,AD ,AE 分别是△ABC 的高和角平分线,∠B=36°, ∠DAE=16°.求∠CAD 的度数.
第19题图 第20题图
20. 如图所示,铁路上A B ,两站(视为直线上两点).相距25km ,C D ,为两村庄(视为
两个点),DA AB ⊥于A CB AB ,⊥于,已知15DA =km ,10CB =km ,现要在铁路上建设
一个土特产收购站,使得C D ,两村庄到站的距离相等,则站应建在距站多远处?
21.已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACD=∠DCE=90°,D 为AB 边上一点.求证:BD=AE .
22.如图,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 上,
且BE =BD ,连结AE 、DE 、DC .
①求证:△ABE ≌△CBD ;
②若∠CAE =30°,求∠BDC 的度数.
23.如图1,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上. (1)求证:BE =CE ;
(2)若BE 的延长线交AC 于点F ,且BF ⊥AC ,垂足为F ,如图2,∠BAC =45°,原题设其它条件不变. 求证:△AEF ≌△BCF .
A
B C D E
F
(第23题图2) A B C D E
(第23题图1) A E B C D
A B C D E。