源自的垂直平分线上.●O
以线段AB的垂直平分线上的任意
一点为圆心,这点到A或B的距离为
半径作圆.
想一想
确定圆的条件
驶向胜利 的彼岸
3.作圆,使它过已知点A,B,C(A,B,C三点不在同一条直 线上),你能作出几个这样的圆?
你准备如何(确定圆心,半径)作圆?
其圆心的位置有什么特点?与A,B,C有什么关系?
做一做
驶向胜利
三角形与圆的位置关系 的彼岸
因此,三角形的三个顶点确定一
个圆,这圆叫做三角形的外接圆.
A
这个三角形叫做圆的内接三角形.
外接圆的圆心是三角形三边垂直 平分线的的交点,叫做三角形的外 B
●O C
心.
老师提示:
多边形的顶点与圆的位置关系称为接.
随堂练习
驶向胜利
三角形与圆的位置关系 的彼岸
老师提示:
●A
能否转化为2的情况:经过两点A,B的圆
的圆心在线段AB的垂直平分线上. 经过两点B,C的圆的圆心在线段AB的垂
●B
┏ ●O
●C
直平分线上.
经过三点A,B,C的圆的圆心应该这两条 垂直平分线的交点O的位置.
想一想
确定圆的条件
驶向胜利 的彼岸
请你作圆,使它过已知点A,B,C(A,B,C三点不在同一条 直线上).
分别作出锐角三角形,直角三角形,钝角三角形的外 接圆,并说明与它们外心的位置情况
A
A
A
●O
●O
●O
B
┐
CB
C
B
C
锐角三角形的外心位于三角形内,直角三角形的外心位
于直角三角形斜边中点,钝角三角形的外心位于三角形外.
老师期望: