气体限流孔板的计算
- 格式:docx
- 大小:36.96 KB
- 文档页数:2
孔板流量计流量计算方法本方法所需配置:适宜的孔板流量计,空盒气压计,压差计,温度计,瓦斯浓度测定仪。
孔板流量计由抽采瓦斯管路中加的一个中心开孔的节流板、孔板两侧的垂直管段和取压管等组成。
当气体流经管路内的孔板时,流束将形成局部收缩,在全压不变的条件下,收缩使流速增加、静压下降,在节流板前后便会产生静压差。
在同一管路截面条件下,气体的流量越大,产生的压差也越大,因而可以通过测量压差来确定气体流量。
混合气体流量由下式计算:Q=Kb△h1/2δPδT (1)该公式系数计算如下:K=189.76a0mD2 (2)b=(1/(1-0.00446x))1/2 (3)K—孔板流量计系数,由实验室确定;b—瓦斯浓度校正系数,由有关手册查取;△h—孔板两侧的静压差,mmH2O,由现场实际测定获取;δP—压力校正系数;δT—温度校正系数;x--混合气体中瓦斯浓度,%;t--同点温度,℃;a0--标准孔板流量系数;(在相关手册中查出)m--孔板截面与管道截面比;D--管道直径,米;P T--孔板上风端测得的绝对压力,毫米水银柱;抽采的纯瓦斯流量,采用下式计算:Qw=x·Q (6)式中x—抽采瓦斯管路中的实际瓦斯浓度,%。
孔板流量计在安装时要注意孔板与瓦斯管的同心度,不能装偏。
在钻场内安装流量计时,应保证孔板前后各1m段应平直,不要有阀门和变径管。
在抽采巷瓦斯管末端安装流量计应保证孔板前后各5m段应平直,不要有阀门和变径管。
煤矿抽放瓦斯使用孔板流量计计算抽放要领及参考系数孔板流量计由抽采瓦斯管路中扩展的一个焦点开孔的节流板、孔板两侧的垂直管段和取压管等组成,如下图。
煤矿。
当气体流经管路内的孔板时,流束将造成局限缩短,孔板流量计原理。
在全压不变的条件下,缩短使流速扩展、静抬高落,孔板流量计原理。
在节流板前后便会出现静压差。
学习孔板流量计计算公式。
在同一管路截面条件下,计算公式。
气体的流量越大,你知道流量计。
出现的压差也越大,是以能够经历丈量压差来肯定气体流量。
计算说明如下:1 输入数据介质相态:根据介质情况填写相应字母。
G—气体L—气体G/L—气体/液体正常流量:根据物料和热量平衡数据表填写。
孔板前流体正常温度:根据物料和热量平衡数据表填写孔板前流体正常温度。
计算临界限流压力的公式选择说明:根据流体情况填写相应数字。
1—饱和蒸汽2—过热蒸汽及多原子气体3—空气及双原子气体孔板流量系数:由本附录“限流孔板C-Re-d0/D关系图”查取。
孔板作用:根据孔板作用填写相应数字:1-降压作用2-限流作用孔数:根据情况填写相应数字:1-单孔2-多孔板数:根据情况填写相应数字:1-单板 2-多板2 计算数据2.1孔板前压力孔板前压力(P1)根据管道压力降计算结果填写。
2.2 孔板后压力a. 气体、蒸汽:根据管道压力降计算得出的孔板后压力(P2)、计算的临界限流压力(Pc),取两者中的较大值。
推荐的临界限流压力值计算如下:饱和蒸汽:Pc=0.58P1过热蒸汽及多原子气体:Pc=0.55P1空气及双原子气体:Pc=0.53P1b.液体:根据压力降计算结果填写。
2.3 孔板压差孔板压差为ΔP= P1-P2,式中:ΔP—通过孔板的压降,MPaP1—孔板前压力,MPa(A)P2—孔板后压力,MPa(A)2.4 计算孔径a. 气体、蒸汽单板孔板式中: W—流体流量,kg/hC—孔板流量系数d0—孔板孔径,mD—管道内径,mP1—孔板前压力,MPa(A)P2—孔板后压力,MPa(A)M—分子量Z—压缩系数。
T—孔板前流体温度,Kk—绝热指数,k=Cp/CvCp—流体定压热容,kJ/(kg•K)Cv—流体定容热容,kJ/(kg•K)b. 液体单板孔板式中: Q—液体流量,m3/hΔP—通过孔板的压降,MPaγ—液体密度,kg/m3c.气-液两相流孔板分别按气、液流量用各自公式计算气相和液相孔板孔径,然后按下式计算两相流孔板孔径:式中: d—两相流孔板孔径,mdL—液相孔板孔径,mdV—气相孔板孔径,md.限流作用的孔板按上述公式计算孔板的孔径,然后根据值和k值,查本附录“γc-k-d0/D关系表”求取临界流率压力比(γc),当每块孔板前后压力比P2/P1≤γc 时,可使液体流量限制在一定数值,说明计算有d0有效,否则需调整压降或管径,重新计算。
孔板流量计的测定与计算在孔板流量计的前后端测出压差后可按以下两种方法进行计算;(一)、可按公式计算出瓦斯流量。
计算公式:Q混=Kb(Δh)1/2δpδT(1)Q纯= Q混X式中:Q混——抽放的瓦斯混合量,m3/min;Q纯——抽放的瓦斯纯量,m3/min;K——实际孔板流量特性系数,计算见(2)式;b——瓦斯浓度校正系数,计算见(3)式;δp——气压校正系数,计算见(4)式;δT——温度校正系数,计算见(5)式;Δh——在孔板前后端所测之压差,mmH2O;X——混合气体中瓦斯浓度,%。
K=189.76a0mD2(2)式中:a0——标准孔板流量系数;m=(d1/D)2m——截面比;D——管道直径,米;d1——孔板直径,米;b=[1/(1-0.00446X)]1/2(3)δp=(P T/760)1/2(4)式中:P T——孔板上风端测得的绝对压力,mmHg;P T=测定当地压力(mmHg)+[该点管内正压(正)或负压(负)(mmH2O)]/13.6 760——标准大气压,mmHg;δT=293°/(273°+t°)1/2 (5)式中:t°——瓦斯管内测点温度,℃;293°——标准绝对温度,℃;四寸管路d1=49.50mmD=98.28mm则:m=0.2536查(表一)得a0=0.6327K=0.3001六寸管路d1=74.68mmD=151.20mm则:m=0.2439查(表一)得a0=0.6294K=0.6718(二)、在计算过程中为加快计算速度,可把公式中的各项数值表格化,查表得出b、δp、δT。
瓦斯浓度校正系数b值表二;瓦斯浓度(%)0 1 2 3 4 5 6 7 8 90 10 20 30 40 50 60 70 80 90 100 1.001.0241.0481.0741.1031.1341.1681.2061.241.0021.0261.051.0771.1061.1371.1721.211.251.0041.0281.0531.081.1091.1411.1761.2141.251.0071.0311.0561.0821.1131.1441.1791.221.261.0091.0321.0581.0851.1161.1481.1821.2221.261.0111.0351.061.0881.1191.1511.1861.2251.261.0141.0381.0631.0911.1221.1541.191.2291.271.00161.0401.0661.0951.1251.1581.1941.2341.2781.3281.0191.0431.0681.0971.1281.1621.1981.2381.281.0211.0451.0711.101.1311.1641.2021.2431.287 1.29 2 1.34 411.29761.3021.30831.31391.31841.32431.33471.339 气压校正系数δp值表三;压力(mmHg) δp压力(mmHg)δp压力(mmHg)δp压力(mmHg)δp压力(mmHg)δp150 155 160 165 170 175 180 185 190 195 200 0.4440.4520.4580.4660.4720.482902953003053103153203253303353400.6170.6230.6290.6330.6390.6430.6490.6540.6590.6630.6694304354404454504554604654704754800.7520.7560.7610.7650.7690.7740.7780.7820.7860.7910.7945705755805855905956006056106156200.8660.8700.8740.8780.8810.8860.8890.8920.8960.9000.9037107157207257307357407457507557600.9670.9700.9730.9770.9800.9840.9870.9900.9930.9971.000205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 2850.4880.4930.500.5060.5130.5190.5250.5320.5380.5440.553453503553603653703753803853903954004054104154204250.6740.6780.6830.6890.6930.6980.7020.7070.7120.7160.7200.7250.7290.7340.7390.7430.7484854904955005055105155205255305355405455505555605650.7990.8030.8070.8110.8150.8190.8230.8270.8310.8350.8390.8430.8470.8500.8540,8580.8626256306356406456506556606656706756806856906957007050.9070.9100.9140.9180.9220.9250.9280.9320.9350.9390.9420.9460.9490.9530.9560.9600.9637657707757807857907958008058108158208258308358408451.0031.0061.0091.0131.0161.0191.0231.0261.0291.0311.0341.0371.0401.0431.0471.0501.0530.55 6 0.56 2 0.56 8 0.57 4 0.57 9 0.58 5 0.59 0 0.59 6 0.60 1 0.60 7 0.61温度校正系数δT值表四;温度℃0 1 2 3 4 5 6 7 8 9403020 10 0 -0 -1 0 -2 0 -3 0 -4 0 0.9680.9831.0001.0171.0351.0351.0561.0761.0981.1220.9660.9820.9981.0161.0341.0371.0581.0781.0991.1230.9640.9800.9971.0141.0331.0391.0591.0801.1031.1260.9630.9790.9951.0121.0321.0411.0611.0831.1051.1290.9610.9770.9931.0101.0291.0431.0631.0851.1081.1310.9600.9750.9921.0081.0271.0451.0661.0861.1091.1330.9580.9740.9901.0071.0251.0471.0681.0891.1151.1390.9570.9720.9881.0051.0231.0491.0701.0911.1151.1390.9550.9710.9871.0031.0211.0521.0721.0941.1171.1410.9540.9690.9851.0011.0191.0541.0741.0951.1191.143例题:某钻场瓦斯支管路D=25.4mm,孔板直径d1=12.7mm,在井下实测,测得压差为30mmH2O,瓦斯浓度30%,测得大气压力1.01×105pa,管内负压0.07Mpa,瓦斯管内温度为20℃,求瓦斯流量?解:由公式Q混=K*b*(Δh)1/2* δp*δT求K值m=(d1/D)1/2=(12.7/25.4) 1/2=0.25查表一得:a0=0.6417 K=0.0190b值查表二得:b=1.074求δp值P T=1.01*105/(9.8*13.6)-0.07*106/(9.8*13.6)=232.6mmHg求δp查表三得:δp=0.556求δT查表四得:δT=0.983则Q混=0.019*1.074*301/2*0.556*0.983=0.061m3/minQ纯= Q混*X=0.061*30%=0.0183 m3/min(举例)YD-2型孔板流量计的应用与计算孔板流量计用以测定瓦斯管路中的瓦斯流量(如下图)。
节流孔板的原理管道的前后压差较大时,往往采用增加节流孔板的方式,其原理是:流体在管道中流动时,由于孔板的局部阻力,使得流体的压力降低,能量损耗,该现象在热力学上称为节流现象。
该方式比采用调节阀要简单,但必须选择得当,否则,液体容易产生汽蚀现象,影响管道的安全运行。
1汽蚀现象节流孔板的作用,就是在管道的适当地方将孔径变小,当液体经过缩口,流束会变细或收缩。
流束的最小横断面出现在实际缩口的下游,称为缩流断面。
在缩流断面处,流速是最大的,流速的增加伴随着缩流断面处压力的大大降低。
当流束扩展进入更大的区域,速度下降,压力增加,但下游压力不会完全恢复到上游的压力,这是由于较大内部紊流和能量消耗的结果。
如果缩流断面处的压力pvc降到液体对应温度下的饱和蒸汽压力pv以下,流束中就有蒸汽及溶解在水中的气体逸出,形成蒸汽与气体混合的小汽泡,压力越低,汽泡越多。
如果孔板下游的压力p2仍低于液体的饱和蒸汽压力,汽泡将在下游的管道继续产生,液汽两相混合存在,这种现象就是闪蒸。
如果下游压力恢复到高于液体的饱和蒸汽压力,汽泡在高压的作用下,迅速凝结而破裂,在汽泡破裂的瞬间,产生局部空穴,高压水以极高的速度流向这些原汽泡占有的空间,形成一个冲击力。
由于汽泡中的气体和蒸汽来不及在瞬间全部溶解和凝结,在冲击力作用下又分成小汽泡,再被高压水压缩、凝结,如此形成多次反复,并产生一种类似于我们可以想象的砂石流过管道的噪音,此种现象称为空化(见图2)。
流道材料表面在水击压力作用下,形成疲劳而遭到严重破坏。
我们把汽泡的形成、发展和破裂以致材料受到破坏的全部过程称为汽蚀现象。
闪蒸和空化的主要区别在于汽泡是否破裂。
存在闪蒸现象的系统管道,由于介质为汽水两相流,介质比容和流速成倍增加,冲刷表面磨损相当厉害,其表现为冲刷面有平滑抛光的外形。
闪蒸也产生噪音和振动,但其声级值一般为80 dB以下,不超出规范规定的许可范围。
空化则不然,汽泡破裂和高速冲击会引起严重的噪音,管道振动大,在流道表面极微小的面积上,冲击力形成的压力可高达几百甚至上千兆帕,冲击频率可达每秒几万次,在短时间内就可能引起冲刷面的严重损坏,其表现为冲刷面会产生类似于煤渣的粗糟表面。
节流孔板的原理及限流计算节流孔板的原理管道的前后压差较大时,往往采用增加节流孔板的方式,其原理是:流体在管道中流动时,由于孔板的局部阻力,使得流体的压力降低,能量损耗,该现象在热力学上称为节流现象。
该方式比采用调节阀要简单,但必须选择得当,否则,液体容易产生汽蚀现象,影响管道的安全运行。
1汽蚀现象节流孔板的作用,就是在管道的适当地方将孔径变小,当液体经过缩口,流束会变细或收缩。
流束的最小横断面出现在实际缩口的下游,称为缩流断面。
在缩流断面处,流速是最大的,流速的增加伴随着缩流断面处压力的大大降低。
当流束扩展进入更大的区域,速度下降,压力增加,但下游压力不会完全恢复到上游的压力,这是由于较大内部紊流和能量消耗的结果。
如果缩流断面处的压力pvc降到液体对应温度下的饱和蒸汽压力pv以下,流束中就有蒸汽及溶解在水中的气体逸出,形成蒸汽与气体混合的小汽泡,压力越低,汽泡越多。
如果孔板下游的压力p2仍低于液体的饱和蒸汽压力,汽泡将在下游的管道继续产生,液汽两相混合存在,这种现象就是闪蒸。
如果下游压力恢复到高于液体的饱和蒸汽压力,汽泡在高压的作用下,迅速凝结而破裂,在汽泡破裂的瞬间,产生局部空穴,高压水以极高的速度流向这些原汽泡占有的空间,形成一个冲击力。
由于汽泡中的气体和蒸汽来不及在瞬间全部溶解和凝结,在冲击力作用下又分成小汽泡,再被高压水压缩、凝结,如此形成多次反复,并产生一种类似于我们可以想象的砂石流过管道的噪音,此种现象称为空化(见图2)。
流道材料表面在水击压力作用下,形成疲劳而遭到严重破坏。
我们把汽泡的形成、发展和破裂以致材料受到破坏的全部过程称为汽蚀现象。
闪蒸和空化的主要区别在于汽泡是否破裂。
存在闪蒸现象的系统管道,由于介质为汽水两相流,介质比容和流速成倍增加,冲刷表面磨损相当厉害,其表现为冲刷面有平滑抛光的外形。
闪蒸也产生噪音和振动,但其声级值一般为80 dB以下,不超出规范规定的许可范围。
空化则不然,汽泡破裂和高速冲击会引起严重的噪音,管道振动大,在流道表面极微小的面积上,冲击力形成的压力可高达几百甚至上千兆帕,冲击频率可达每秒几万次,在短时间内就可能引起冲刷面的严重损坏,其表现为冲刷面会产生类似于煤渣的粗糟表面。
孔板流量计的测定与计算在孔板流量计的前后端测出压差后可按以下两种方法进行计算;(一)、可按公式计算出瓦斯流量。
计算公式:Q混=Kb(Δh)1/2δpδT(1)Q纯= Q混X式中:Q混——抽放的瓦斯混合量,m3/min;Q纯——抽放的瓦斯纯量,m3/min;K——实际孔板流量特性系数,计算见(2)式;b——瓦斯浓度校正系数,计算见(3)式;δp——气压校正系数,计算见(4)式;δT——温度校正系数,计算见(5)式;Δh——在孔板前后端所测之压差,mmH2O;X——混合气体中瓦斯浓度,%。
K=189.76a0mD2(2)式中:a0——标准孔板流量系数;m=(d1/D)2m——截面比;D——管道直径,米;d1——孔板直径,米;b=[1/(1-0.00446X)]1/2(3)δp=(P T/760)1/2(4)式中:P T——孔板上风端测得的绝对压力,mmHg;P T=测定当地压力(mmHg)+[该点管内正压(正)或负压(负)(mmH2O)]/13.6 760——标准大气压,mmHg;δT=293°/(273°+t°)1/2 (5)式中:t°——瓦斯管内测点温度,℃;293°——标准绝对温度,℃;四寸管路d1=49.50mmD=98.28mm则:m=0.2536查(表一)得a0=0.6327K=0.3001六寸管路d1=74.68mmD=151.20mm则:m=0.2439查(表一)得a0=0.6294K=0.6718(二)、在计算过程中为加快计算速度,可把公式中的各项数值表格化,查表得出b、δp 、δT。
瓦斯浓度校正系数b值表二;瓦斯浓度(%)0 1 2 3 4 5 6 7 8 90 10 20 30 40 50 60 70 80 90 100 1.0001.0241.0481.0741.1031.1341.1681.2061.2471.2921.3441.0021.0261.0501.0771.1061.1371.1721.2101.2511.2971.0041.0281.0531.0801.1091.1411.1761.2141.2561.3021.0071.0311.0561.0821.1131.1441.1791.2201.2601.3081.0091.0321.0581.0851.1161.1481.1821.2221.2631.3131.0111.0351.0601.0881.1191.1511.1861.2251.2691.3181.0141.0381.0631.0911.1221.1541.1901.2291.2741.3241.00161.0401.0661.0951.1251.1581.1941.2341.2781.3281.0191.0431.0681.0971.1281.1621.1981.2381.2831.3341.0211.0451.0711.1001.1311.1641.2021.2431.2871.339气压校正系数δp值表三;压力(mmHg) δp压力(mmHg)δp压力(mmHg)δp压力(mmHg)δp压力(mmHg)δp150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 0.4440.4520.4580.4660.4720.4800.4880.4930.5000.5060.5130.5190.5250.5320.5380.5440.5500.5560.5620.5680.5740.5792902953003053103153203253303353403453503553603653703753803853903950.6170.6230.6290.6330.6390.6430.6490.6540.6590.6630.6690.6740.6780.6830.6890.6930.6980.7020.7070.7120.7160.7204304354404454504554604654704754804854904955005055105155205255305350.7520.7560.7610.7650.7690.7740.7780.7820.7860.7910.7940.7990.8030.8070.8110.8150.8190.8230.8270.8310.8350.8395705755805855905956006056106156206256306356406456506556606656706750.8660.8700.8740.8780.8810.8860.8890.8920.8960.9000.9030.9070.9100.9140.9180.9220.9250.9280.9320.9350.9390.9427107157207257307357407457507557607657707757807857907958008058108150.9670.9700.9730.9770.9800.9840.9870.9900.9930.9971.0001.0031.0061.0091.0131.0161.0191.0231.0261.0291.0311.034260 265 270 275 280 285 0.5850.5900.5960.6010.6070.6124004054104154204250.7250.7290.7340.7390.7430.7485405455505555605650.8430.8470.8500.8540,8580.8626806856906957007050.9460.9490.9530.9560.9600.9638208258308358408451.0371.0401.0431.0471.0501.053温度校正系数δT值表四;温度℃0 1 2 3 4 5 6 7 8 940 30 20 10 0 -0 -10 -20 -30 -40 0.9680.9831.0001.0171.0351.0351.0561.0761.0981.1220.9660.9820.9981.0161.0341.0371.0581.0781.0991.1230.9640.9800.9971.0141.0331.0391.0591.0801.1031.1260.9630.9790.9951.0121.0321.0411.0611.0831.1051.1290.9610.9770.9931.0101.0291.0431.0631.0851.1081.1310.9600.9750.9921.0081.0271.0451.0661.0861.1091.1330.9580.9740.9901.0071.0251.0471.0681.0891.1151.1390.9570.9720.9881.0051.0231.0491.0701.0911.1151.1390.9550.9710.9871.0031.0211.0521.0721.0941.1171.1410.9540.9690.9851.0011.0191.0541.0741.0951.1191.143例题:某钻场瓦斯支管路D=25.4mm,孔板直径d1=12.7mm,在井下实测,测得压差为30mmH2O,瓦斯浓度30%,测得大气压力 1.01×105pa,管内负压0.07Mpa,瓦斯管内温度为20℃,求瓦斯流量?解:由公式Q混=K*b*(Δh)1/2*δp*δT求K值m=(d1/D)1/2=(12.7/25.4) 1/2=0.25查表一得:a0=0.6417 K=0.0190b值查表二得:b=1.074求δp值P T=1.01*105/(9.8*13.6)-0.07*106/(9.8*13.6)=232.6mmHg求δp查表三得:δp=0.556求δT查表四得:δT=0.983则Q混=0.019*1.074*301/2*0.556*0.983=0.061m3/minQ纯= Q混*X=0.061*30%=0.0183 m3/min(举例)YD-2型孔板流量计的应用与计算孔板流量计用以测定瓦斯管路中的瓦斯流量(如下图)。
压差孔板气体流量计算公式pv=nrt1. 概述压差孔板气体流量计是一种常用的流量计量装置,用于测量气体在管道中的流量。
在工业生产过程中,对气体流量进行准确测量非常重要,因此压差孔板气体流量计具有着广泛的应用。
2. 压差孔板气体流量计原理压差孔板气体流量计是利用压差原理来进行流量测量的。
当气体经过孔板时,会产生压降,而压差则与流量成正比。
根据理想气体状态方程pv=nrt,我们可以推导出压差孔板气体流量计的计算公式。
3. 理想气体状态方程理想气体状态方程表达了气体的压力、体积、温度之间的关系,其数学表达式为pv=nrt,其中p为气体的压力,v为气体的体积,n为气体的物质量,r为气体常数,t为气体的温度。
4. 压差孔板气体流量计计算公式的推导根据理想气体状态方程,我们可以推导出压差孔板气体流量计的计算公式。
设D为孔板的直径,ρ为气体的密度,Q为气体的流量,ΔP为压差,那么可以得到如下的计算公式:Q=cdA(2gΔP/ρ)^0.5其中,cd为扩散系数,通常取0.62,A为孔板的面积。
这个公式就是压差孔板气体流量计的计算公式,它通过测量压差ΔP来计算气体的流量Q。
5. 计算公式的应用压差孔板气体流量计的计算公式可用于工业生产中对气体流量的准确测量。
在实际应用中,可以通过测量压差ΔP和知道气体密度ρ的情况下,利用计算公式来求解气体流量Q。
这对于控制和调节气体流量具有着重要的意义。
6. 结论压差孔板气体流量计的计算公式pv=nrt是根据理想气体状态方程推导而来的,它通过测量气体流过孔板时的压差来进行流量的计算。
该计算公式在工业生产中有着重要的应用价值,能够对气体流量进行准确的测量和控制。
7. 实际应用利用压差孔板气体流量计的计算公式可以对气体流量进行准确的测量和监控,从而满足工业生产中对气体流量精准控制的需求。
在石油化工、能源、化工、冶金、制药等领域,压差孔板气体流量计广泛应用于气体输送、加热炉燃烧、燃气锅炉、空气压缩机等设备中。
节流孔板的原理及限流计算节流孔板的原理管道的前后压差较大时,往往采用增加节流孔板的方式,其原理是:流体在管道中流动时,由于孔板的局部阻力,使得流体的压力降低,能量损耗,该现象在热力学上称为节流现象。
该方式比采用调节阀要简单,但必须选择得当,否则,液体容易产生汽蚀现象,影响管道的安全运行。
1汽蚀现象节流孔板的作用,就是在管道的适当地方将孔径变小,当液体经过缩口,流束会变细或收缩。
流束的最小横断面出现在实际缩口的下游,称为缩流断面。
在缩流断面处,流速是最大的,流速的增加伴随着缩流断面处压力的大大降低。
当流束扩展进入更大的区域,速度下降,压力增加,但下游压力不会完全恢复到上游的压力,这是由于较大内部紊流和能量消耗的结果。
如果缩流断面处的压力pvc降到液体对应温度下的饱和蒸汽压力pv以下,流束中就有蒸汽及溶解在水中的气体逸出,形成蒸汽与气体混合的小汽泡,压力越低,汽泡越多。
如果孔板下游的压力p2仍低于液体的饱和蒸汽压力,汽泡将在下游的管道继续产生,液汽两相混合存在,这种现象就是闪蒸。
如果下游压力恢复到高于液体的饱和蒸汽压力,汽泡在高压的作用下,迅速凝结而破裂,在汽泡破裂的瞬间,产生局部空穴,高压水以极高的速度流向这些原汽泡占有的空间,形成一个冲击力。
由于汽泡中的气体和蒸汽来不及在瞬间全部溶解和凝结,在冲击力作用下又分成小汽泡,再被高压水压缩、凝结,如此形成多次反复,并产生一种类似于我们可以想象的砂石流过管道的噪音,此种现象称为空化(见图2)。
流道材料表面在水击压力作用下,形成疲劳而遭到严重破坏。
我们把汽泡的形成、发展和破裂以致材料受到破坏的全部过程称为汽蚀现象。
闪蒸和空化的主要区别在于汽泡是否破裂。
存在闪蒸现象的系统管道,由于介质为汽水两相流,介质比容和流速成倍增加,冲刷表面磨损相当厉害,其表现为冲刷面有平滑抛光的外形。
闪蒸也产生噪音和振动,但其声级值一般为80 dB以下,不超出规范规定的许可范围。
空化则不然,汽泡破裂和高速冲击会引起严重的噪音,管道振动大,在流道表面极微小的面积上,冲击力形成的压力可高达几百甚至上千兆帕,冲击频率可达每秒几万次,在短时间内就可能引起冲刷面的严重损坏,其表现为冲刷面会产生类似于煤渣的粗糟表面。
孔板流量计的测定与计算在孔板流量计的前后端测出压差后可按以下两种方法进行计算;(一)、可按公式计算出瓦斯流量。
计算公式:Q 混=Kb(Δh)1/2δpδT (1)Q 纯= Q 混X式中:Q 混——抽放的瓦斯混合量,m3/min ;Q 纯——抽放的瓦斯纯量,m3/min ;K——实际孔板流量特性系数,计算见(2)式;b——瓦斯浓度校正系数,计算见(3)式;δp——气压校正系数,计算见(4)式;δT——温度校正系数,计算见(5)式;Δh——在孔板前后端所测之压差,mmH2O;X——混合气体中瓦斯浓度,%。
K=189.76a0mD2(2)式中:a0——标准孔板流量系数;m=(d1/D)2m——截面比;D——管道直径,米;d1——孔板直径,米;b=[1/(1-0.00446X)]1/2(3)δp=(P T/760)1/2(4)式中:P T——孔板上风端测得的绝对压力,mmHg;P T=测定当地压力(mmHg)+[该点管内正压(正)或负压(负)(mmH2O)]/13.6760——标准大气压,mmHg;δT=293°/(273°+t°)1/2 (5)式中:t°——瓦斯管内测点温度,℃;293°——标准绝对温度,℃;四寸管路d1=49.50mmD=98.28mm则:m=0.2536 查(表一)得a0=0.6327K=0.3001六寸管路d1=74.68mmD=151.20mm则:m=0.2439 查(表一)得a0=0.6294K=0.6718二)、在计算过程中为加快计算速度,可把公式中的各项数值表格化,查表得出b 、δ p、δT。
瓦斯浓度校正系数b 值表二;0 1 2 3 41.00 1.02 1.04 1.07 1.10 1.13 1.16 1.20 1.24 1.001.021.051.071.101.131.171.211.251.001.021.051.081.101.141.171.211.251.001.031.051.081.111.141.171.221.265 6 7 8 91.0091.0321.0581.0851.1161.1481.1821.2221.261.0111.0351.061.0881.1191.1511.1861.2251.261.011.031.061.091.121.1541.191.2291.271.0011.0401.0661.0951.1251.1581.1941.2341.2781.3281.011.041.061.091.121.1621.1981.2381.281.0211.0451.0711.101.1311.1641.2021.2431.28瓦斯浓度(%)0 10 20 30 40 50 60 70 80 90 100气压校正系数δp值表三;温度校正系数δT值表四;i ..DU25∙4mm、l⅛l L蒲m m d l n l 2∙7m m、m ⅛τ料≡、≡≡ls啡冲 30mmH2O、30% '≡≡x-山Etl 1.01X105Pa ' 咂牙耳ls 0∙07M p a、团弩前岡冲20o c、?耦-田An Q gD]u κ*b *(A h )<2*6p*6τ并、b - b u l b 74并6P BPTHl∙01*10>9∙8*13∙6)607*106>9∙8*13∙6τ232∙6mmHg- 6PU0.556 ⅛→51 - 6TU0.983淫Q8ioHO ∙019*l o 74*30<265566983U O∙06Irn3、minQ游H Q 8io *X H O o 61*30%H O∙0183举例)YD-2 型孔板流量计的应用与计算孔板流量计用以测定瓦斯管路中的瓦斯流量(如下图)。
气体限流孔板的计算
气体流动可分为亚临界流动和临界流动两种情况。
亚临界流动指的是
在孔板下游出现背流现象,临界流动则指的是气体速度达到声速时出现的
特殊流动状态。
在实际工程中,一般情况下我们可以采用亚临界流动的计
算方法进行设计。
对于亚临界流动的气体限流孔板,其计算公式如下:
Q=c·A·√(2·ΔP/ρ)
其中,Q为通过孔板的气体流量,c为流量系数,A为孔板的有效截
面积,ΔP为孔板上下游的压差,ρ为气体的密度。
流量系数c是在实验中测定的,它与气体速度和孔板的形状有关。
一
般情况下,可以从相关手册或实验数据中查找到流量系数的数值。
需要注
意的是,流量系数取值时要考虑孔板的类型和孔板面积与管道截面积之比。
常见的气体限流孔板类型包括圆孔板、长方孔板和矩形孔板等。
孔板的有效截面积A可根据实际情况进行计算。
对于圆孔板,其有效
面积即为圆孔面积。
对于长方孔板和矩形孔板,需要根据孔板的长和宽来
计算。
气体密度ρ可根据气体的状态方程进行计算。
一般情况下,可近似
采用理想气体状态方程:PV=nRT。
在一定温度和压力下,可通过查表或使
用计算机程序来获取气体密度的数值。
通过上述公式,我们可以根据给定的气体流量和压差来计算气体限流
孔板的有效截面积。
在实际工程中,为了保证孔板的稳定性和流动特性,
需要进行合理的孔板尺寸选择和安装设计。
此外,还需要根据实际工况和
流体性质,对流量系数进行调整和修正。
总之,气体限流孔板的计算是一个复杂而重要的工作。
只有通过准确
的计算和合理的设计,才能保证气体流量的控制和系统的正常运行。
因此,在进行气体限流孔板计算时,需要充分考虑流体特性、孔板类型和安装要
求等因素,并结合实际情况进行综合考虑和分析,以得到最优的设计结果。