第一类曲面积分的对称性
- 格式:docx
- 大小:36.49 KB
- 文档页数:1
积分的奇偶对称性----定积分、二重积分、三重积分、第一类曲线积分、第一类曲面积分.)(2)()()2(;0)()()1(],,[0⎰⎰⎰==-∈--aa a a a dx x f dx x f x f dx x f x f a a C f 为偶函数,则若为奇函数,则若设01 定积分的奇偶对称性.),(2),(),,(),(),()2(;0),(),,(),(),()1(,,,),(12121⎰⎰⎰⎰⎰⎰==-=-=-+=D D Ddxdy y x f dxdy y x f y x f y x f x y x f dxdy y x f y x f y x f x y x f y D D D D D D y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在有界闭区域设02 二重积分的奇偶对称性.),(2),(),,(),(),()4(;0),(),,(),(),()3(,,,),(12121⎰⎰⎰⎰⎰⎰==-=-=-+=D D Ddxdy y x f dxdy y x f y x f y x f y y x f dxdy y x f y x f y x f y y x f x D D D D D D y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在有界闭区域设02 二重积分的奇偶对称性03 三重积分的奇偶对称性;),,(2),,(),,,(),,(),,()2(;0),,(),,,(),,(),,()1(,,,),,(12121⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==-=-=-ΩΩΩ+Ω=ΩΩdxdydz z y x f dxdydz z y x f z y x f z y x f z z y x f dxdydz z y x f z y x f z y x f z z y x f xoy z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在有界闭区域设;),,(2),,(),,,(),,(),,()4(;0),,(),,,(),,(),,()3(,,,),,(12121⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==-=-=-ΩΩΩ+Ω=ΩΩdxdydz z y x f dxdydz z y x f z y x f z y x f x z y x f dxdydz z y x f z y x f z y x f x z y x f yoz z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在有界闭区域设03 三重积分的奇偶对称性;),,(2),,(),,,(),,(),,()6(;0),,(),,,(),,(),,()5(,,,),,(12121⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==-=-=-ΩΩΩ+Ω=ΩΩdxdydz z y x f dxdydz z y x f z y x f z y x f y z y x f dxdydz z y x f z y x f z y x f y z y x f zox z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在有界闭区域设03 三重积分的奇偶对称性04 第一类曲线积分的奇偶对称性.⎰⎰⎰==-=-=-+=1),(2),(),,(),(),()2(;0),(),,(),(),()1(,,,),(2121L L Lds y x f ds y x f y x f y x f x y x f ds y x f y x f y x f x y x f y L L L L L L y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在平面曲线设04 第一类曲线积分的奇偶对称性.⎰⎰⎰==-=-=-+=1),(2),(),,(),(),()4(;0),(),,(),(),()3(,,,),(2121L L Lds y x f ds y x f y x f y x f y y x f ds y x f y x f y x f y y x f x L L L L L L y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在平面曲线设05 第一类曲面积分的奇偶对称性.⎰⎰⎰⎰⎰⎰∑∑∑==-=-=-∑∑∑+∑=∑∑1),,(2),,(),,,(),,(),,()2(;0),,(),,,(),,(),,()1(,,,),,(2121dS z y x f dS z y x f z y x f z y x f z z y x f dS z y x f z y x f z y x f z z y x f xoy z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在曲面设05 第一类曲面积分的奇偶对称性.⎰⎰⎰⎰⎰⎰∑∑∑==-=-=-∑∑∑+∑=∑∑1),,(2),,(),,,(),,(),,()4(;0),,(),,,(),,(),,()3(,,,),,(2121dS z y x f dS z y x f z y x f z y x f x z y x f dS z y x f z y x f z y x f x z y x f yoz z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在曲面设05 第一类曲面积分的奇偶对称性.⎰⎰⎰⎰⎰⎰∑∑∑==-=-=-∑∑∑+∑=∑∑1),,(2),,(),,,(),,(),,()6(;0),,(),,,(),,(),,()5(,,,),,(2121dS z y x f dS z y x f z y x f z y x f y z y x f dS z y x f z y x f z y x f y z y x f zox z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在曲面设。
华北水利水电学院数学实践报告华北水利水电学院对称性在积分中的应用学院:环境与市政工程学院专业:建筑环境与设备工程班级:2010108成员:王永辉 201010804朱虹光 201010810余维召 201010811对称性在积分中的应用积分的计算是积分运用中的一个难点.在某些积分的计算过程中,若能利用对称性,则可以简化积分的计算过程.本文介绍了几种常见的对称性在积分计算过程中的几个结论及其应用,并通过实例讨论了利用积分区域的对称性及被积函数的奇偶性简化重积分,曲线积分,曲面积分的计算方法.另外,对于曲面积分的计算,本文还给出了利用积分曲面关于变量的轮换对称性简化曲面积分的计算,是曲面积分的计算更加便捷.积分的对称性包括重积分,曲线积分,曲面积分的对称性.在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果.下面我将从积分相关的定理和结论,再结合相关的实例进行具体的探讨.本文结合积分域关于平行于坐标轴的直线,平行于坐标面的平面,平行于坐标轴对角线的直线的对称性定义,以及相应对称区域上定理中的函数约定在该区域都连续或偏导数连续定义1: 设平面区域为D ,若点),(y x ),2(y x a D -⇔∈,则D 关于直线a x =对称,对称点),(y x 与),2(y x a -是关于a x =的对称点.若点),(y x ∈D ⇔)2,(y b x -),(y x D ∈,则D 关于直线b y =对称,称点),(y x 与)2,(y b x -是关于b y =的对称(显然当0=a ,0=b 对D 关于y ,x 轴对称)定义2: 设平面区域为D ,若点),(y x D ∈⇔),(a x a y --,则D 关于a x y +=对称,称点),(y x 与),(a x a y --是关于a x y +=的对称点.若点),(y x D ∈⇔),(x a y a --D ∈,则D 关于直线z y ±=对称) 1、 二重积分的对称性定理定理1:设有界闭区域12D D D =,1D 与2D 关于y 或x 轴对称.设函数),(y x f 在有界闭区域D 上连续,那么(ⅰ)若),(y x f 是关于y (或x )的奇函数,则(,)Dif x y d σ⎰⎰0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则Df(x,y)d σ⎰⎰=2(,)Dif x y d σ⎰⎰1(=i ,)2注释:设函数),(y x f 在有界闭区域D 上连续(ⅰ)若D 关于y 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD x y x f d y x f y x f d y x f !),(),(2),(,0),(为偶函数关于变量,如果关于变量为奇函数如果σσ其中1D 是D 的右半部分:1D =}0|),{(≥∈x D y x(ii )若D 关于x 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD y y x f d y x f y x f d y x f 2),(),(2),(,0),(为偶函数关于变量,如果关于变量为奇函数如果σσ其中2D 是D 的上半部分:2D =}0|),{(≥∈y D y x定理2:设有界闭区域D 关于x 轴和y 轴均对称,函数),(y x f 在D 上连续且),(y x f 关x 和y 均为偶函数,则⎰⎰⎰⎰=DD d y x f d y x f 3),(4),(σσ其中3D 是D 的第一象限的部分:3D =}0,0|),{(≥≥∈y x D y x 定理3:则设有界闭区域D 关于原点对称,函数),(y x f 在D 上连续,则⎰⎰⎰⎰⎰⎰⎪⎩⎪⎨⎧=--=-=--=DD D y x f y x f d y x f d y x f y x f y x f d y x f 12),(),(,),(2),(2),(),(,0),(如果如果σσσ其中1D =}0|),{(≥∈x D y x ,2D =}0|),{(≥∈y D y x 例1:计算⎰⎰Dxydxdy ,其中D 由下列双纽线围成:(1) )(2)(22222y x y x -=+ (2)xy y x 2)(222=+解:(1)由于)(2)(22222y x y x -=+围成的区域关于x 轴y 轴均对称,而被积函数xy 关于x (或y 轴)为奇函数则有⎰⎰Dxydxdy 0=(2)由)(2)(22222y x y x -=+围成的区域对称于原点,而被积函数xy 是关于x ,y 的偶函数则有⎰⎰Dxydxdy =2⎰⎰1D xydxdy由极坐标知θθsin ,cos r y r x ==,代入xy y x 2)(222=+得θ2sin =r 且由xy 0>,知02sin 212>θr则20πθ≤≤于是⎰⎰Dxydxdy 61cos 2sin 220sin 03=⎰⎰dr r d θθθπθ定理4:设有界闭区域D 关于x y =对称, 函数),(y x f 在D 上连续,则Df(x,y)d σ⎰⎰=(,)Df y x d σ⎰⎰例2:设函数f(x)在]1,0[上的正值连续函数 证明:()()1()()()2Daf x bf y dxdy a b f x f y +=++⎰⎰,其中b a,为常数,1}y x,0|y){(x,D ≤≤=证明:∵积分区域D 关于x y =对称∴(,)(,)DDf x y d f y x d σσ=⎰⎰⎰⎰设()()()()Daf x bf y I dxdy f x f y +=+⎰⎰由函数关于两个变量()()()()Daf x bf y I dxdy f x f y +=+⎰⎰,以上两式相,得2()DI a b dxdy a b =+=+⎰⎰,从而1()2I a b =+一般地,有以下定理:定理5:设有界闭区域12D D D =,1D 与2D 关于直线0:=++c by ax L 对称, 函数),(y x f 在D 上连续,那么:(ⅰ)若),(y x f 是关于直线L 的奇函数,则(,)Df x y d σ⎰⎰0=(ⅱ)若),(y x f 是关于直线L 的偶函数,则(,)Df x y d σ=⎰⎰2(,)Dif x y d σ⎰⎰1(=i ,)22、三重积分的对称性定理定理6:设空间有界闭区域12Ω=ΩΩ,1Ω与2Ω关于xoy 坐标面对称,函数),,(z y x f 在Ω上连续,那么:(ⅰ)若),,(z y x f 是关于z 的奇函数,则(,,)f x y z dv Ω⎰⎰⎰=0(ⅱ)若),,(z y x f 是关于z 的偶函数,则:(,,)f x y z dv Ω⎰⎰⎰=2⎰⎰⎰Ω1),,(dv z y x f同时,若Ω关于yox 坐标面对称,),,(z y x f 关于奇函数或偶函数;或者若Ω关于xoz 坐标面对称),,(z y x f 关于y 为奇函数或偶函数,同样也有类似结论.例7:求下列曲面所界的均匀物体的重心坐标222x y z a b c++,c z =解: 若令cos ,sin ,x ar y br z z θθ===,则质量为203zcc abcM ab dz d rdr ππθ==⎰⎰⎰设重心坐标为0x ,0y ,o z 由对称性知000==y x ,而o z =22033..44z cc abc cdz d rdr abc ππθπ=⎰⎰⎰于是,重心为点(0,0,34c ) ※曲线积分的对称性1、第一型曲线积分的对称性定理定理7:设平面内光滑曲线12L L L =+,1L 与2L 关于x (或y )轴对称,函数),(y x f 在L 上连续,那么:(ⅰ)若),(y x f 是关于y (或x )的奇函数,则(,)f x y ds ⎰0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则(,)f x y ds ⎰=2(,)if x y ds ⎰1(i =,)2注:设平面分段光滑曲线L 关于y 轴对称,则10,(,)(,)(,),(,)LL f x y f x y ds f x y ds f x y x ⎧⎪=⎨⎪⎩⎰⎰如果关于变量x 为奇函数2如果关于变量为偶函数其中1L 是L 的右半段:1L =}0|),{(≥∈x D y x定理8:设平面内光滑曲线12L L L =+,1L 与2L 关于x 轴对称且方向相反,函数),(y x p 在L 上连续,那么:(ⅰ)若),(y x p 是关于x 的偶函数,则(,)p x y dx ⎰0=(ⅱ)若),(y x p 是关于y 的奇函数,则(,)2(,)ip x y dx p x y dx =⎰⎰1(i =,)2例4:求曲线积分[]22()cos(2)sin(2)xy ce xy dx xy dy -++⎰,其中c 是单位圆周221x y +=,方向为逆时针方向解: ∵曲线积分c 可分为上,下两个对称的部分,在对称点),(y x 与),(y x -上, 函数22()cos(2)xy e xy dx -+大小相同,但投影元素dx 在上半圆为负,下半圆为正∴22()cos(2)xy e xy dx -+在对称的两个半圆上大小相等,符号相反故22()cos(2)xy ce xy dx -+⎰0=类似可知22()sin(2)xy ce xy dy -+⎰0=因此[]22()cos(2)sin(2)xy ce xy dx xy dy -++⎰0=定理9:设L 是xoy 平面上关于直线a x =对称的一条曲线弧 (ⅰ)若),(y x f =),2(y x a f --,则(,)Lf x y ds ⎰0=(ⅱ)若),(y x f =),2(y x a f -,则(,)Lf x y ds ⎰=21(,)L f x y ds ⎰})|),{((1a x L y x L ≤∈=例5:计算3(2)LI y y x ds =+-⎰,其中L 是曲线22(2)4x y -+=所围成的回路解: ∵L 关于轴及直线2=x 对称∴3(2)(2)2LLLI y y ds x ds ds =+--+⎰⎰⎰设),(y x f =32y y + 则),(y x f =),(y x f -设 ),(y x g =2-x则),2(y x f --=2-x =),(y x f 即200I ++=lds ⎰=8π2、第二类曲线积分的对称性定理定理1:对于第二类曲线积分还需考虑投影元素的符号.当积分方向与坐标正方向之间的夹角小于2π时,投影元素为正,否则为负.就(,)p x y dx ⎰而言,考察(,)p x y dx 在对称点上的符号定理2:若积分曲线T 关于x ,y ,z 具轮换对称性,则(,,)(,,)(,,)tttp x y z dz p y z x dy p z x y dx ==⎰⎰⎰=13 (,,)(,,)(,,)tp x y z dz p y z x dy p z x y dx ++⎰ 定理3:设L 是xoy 平面上关于a x =对称的一条光滑曲线弧,12L L L =+,任意),(y x ∈L ,有),2(y x a -∈2L ,且1L ,2L 在y 轴投影方向相反,则(ⅰ)若θ),(y x =-θ),2(y x a -,则(,)Lx y dy θ⎰0=(ⅱ)若θ),(y x =θ),2(y x a -,则(,)L x y dy θ⎰=2(,)Lx y dy θ⎰定理3中,若1L ,2L 在x 轴投影方向相同,其他条件不变,则有 (ⅰ)若p ),(y x =-p ),2(y x a -,则(,)Lp x y dx ⎰0=(ⅱ)若θ),(y x =θ),2(y x a -,则(,)Lp x y dx ⎰=21(,)L p x y dx ⎰例:计算I =|2|(2)(1)LLx x y dx -+--⎰⎰,其中抛物线2(2)x -上从)1,1(A 到)1,3(B 的一段弧解:I =|2|(2)(1)LLx x y dx -+--⎰⎰=12I I +因为关于2=x 对称θ),4(y x =|2|-x θ),(y x由定理3有)1)(2(),4(---=-y x y x p =),(y x p -所以2I =0,即12I I I =+0=※曲面积分的对称性定义1:若∀)(),,(321N n R D x x x x p n n n ∈⊂∈⋅⋅⋅⋅⋅有),,(1211111-+⋯⋯i x x x x x x p n)2,1(n i D n ⋯=∈成立,则称n D 关于),,(321n x x x x p ⋅⋅⋅⋅⋅具有轮换对称性.定义2:若函数),,(321n x x x x F ⋅⋅⋅⋅⋅),,(321n x x x x F ⋅⋅⋅⋅⋅≡)2,1(n i X ⋅⋅⋅⋅⋅⋅=,则称函数),,(321n x x x x F ⋅⋅⋅⋅⋅关于函数n x x x x ⋅⋅⋅⋅⋅321,,具有轮换对称性. 1、第一类曲面积分对称性定理定理1:若积分曲面S 可以分成对称的两部分12S S S =+,在对称点上被积函数的绝对值相等{即光滑曲面S 关于xoy (或yoz ,或zox )坐标面对称},则有(ⅰ)(,,)sf x y z ds ⎰⎰0=,在对称点上),,(z y x f 取相反的符号{即),,(z y x f 关于z(或x ,或y )的奇函数}(ⅱ)(,,)sf x y z ds ⎰⎰=2(,,)sf x y z ds ⎰⎰,在对称点上),,(z y x f 取相同的符号{即),,(z y x f 为关于z (或x ,或y )的偶函数}推论1:若光滑曲面S 可以分成对称的两部分12S S S =+,且关于原点对称, 则(ⅰ)(,,)sf x y z ds ⎰⎰0=,为关于z (或x ,或y )的奇函数(ⅱ)(,,)sf x y z ds ⎰⎰=81(,,)s f x y z ds ⎰⎰,),,(z y x f 为关于z (或x ,或y )的偶函数例1:计算下列面积的曲面积分,()x y z ds ∑++⎰⎰,其中∑为球面2222x y z a ++=上z h ≥)0(a h <<的部分解: 利用对称性知xds yds ∑∑=⎰⎰⎰⎰0=设xy D ={|),(y x 2222x y a h +≤-} 则()x y z ds ∑++⎰⎰=zds ∑⎰⎰=⎰⎰=aDxydxdy ⎰⎰=22()a a h π-例2:计算曲面积分x ∑⎰⎰,其中2222:x y z a ∑++=解: 令22221:x y z a ∑++=,0,0,0x a y a z a ≤≤≤≤≤≤ 则 2221:,0,0D x y a x a y a +≤≤≤≤≤ds ==∑关于原点对称,解被积函数),,(z y x f =x 为关于),,(z y x 的偶函数由推论1.1x ∑⎰⎰=8x ∑⎰⎰=a881D x dsdy ⎰⎰⎰⎰=189cos 8D d r a θθdr r d a a⎰⎰=209cos 8πθθ=a810117!!7.108!!264a a ππ= 定理2:若积分曲面∑关于x ,y ,z 具有轮换对称性,则:(,,)(,,)(,,)f x y z ds f y z x ds f z x y ds ∑∑∑==⎰⎰⎰⎰⎰⎰1(,,)(,,)(,,)3f x y z ds f y z x ds f z x y ds ∑∑∑=++⎰⎰⎰⎰⎰⎰ 例3:计算曲面积分2z ds ∑⎰⎰,其中s 是球面2222x y z a ++=解:如果按照常规方法来解,计算量比较大,如果利用对称函数的特性,非常简捷∵球面2222x y z a ++=关于x ,y ,z 具有对称性∴222x ds y ds z ds ∑∑∑==⎰⎰⎰⎰⎰⎰∴2z ds ∑⎰⎰=2221()3x y z ds ∑++⎰⎰ =21133a ds ds ∑∑=⎰⎰⎰⎰ 22214.433a a a ππ== 2、第二类曲面积分的对称性定理利用对称性计算第二类曲面积分同样需要注意投影元素的符号.现以曲面积分(,,)sf x y z ds ⎰⎰为例来讨论.当曲面指定侧上动点的法线方向与z 轴正向成锐角时,面积元素ds 在xoy 面上的投影dxdy 为正减钝角时为负.一般地,有如下定理:定理1:若积分曲面S 可以分成对称的两部分12S S S =+,在对称点上|f|的值相等,则有(ⅰ)1(,,)s f x y z dxdy ⎰⎰0=,在对称点上fdxdy 取相反的符号(ⅱ)1(,,)s f x y z dxdy ⎰⎰=21(,,)s f x y z dxdy ⎰⎰,在对称点上fdxdy 的符号相同,对于积分1(,,)s f x y z dydz ⎰⎰,1(,,)s f x y z dzdx ⎰⎰也有类似的结论定理2:若积分曲面∑关于x ,y ,z 具有轮换对称性,则:(,,)(,,)(,,)p x y z dydz p y z x dzdx p z x y dxdy ∑∑∑==⎰⎰⎰⎰⎰⎰=1(,,)(,,)(,,)3p x y z dydz p y z x dzdx p z x y dxdy ∑++⎰⎰ 例3:计算sxdydz ydxdy zdxdy ++⎰⎰,其中S 是球面2222x y z R ++=的外侧解: ∵球面2222x y z R ++=关于x ,y ,z 具有对称性∴sssxdydz ydxdz zdxdy ==⎰⎰⎰⎰⎰⎰先计算sxdydz ⎰⎰为此应分别考虑前半球面(记为1S )及后半球面(记为2S )上的曲面部分1S的方程为x =它在oyz 平面上的投影域y D 为圆域222y z R +≤,因此,若用1w S 表示前半球面的外侧则有:1S w Dyxdydz σ=⎰⎰=230023R d r R πθπ=⎰⎰ 对于在后半球面2S 上的曲面积分,由于2S的方程为:x =后外侧,故关于后半球面外侧(记为2w S )的曲面积分为:2S w xdydz =⎰⎰Dy σ=323R π 因此S xdydz =⎰⎰31243S w S wxdyxz xdydz R π+=⎰⎰⎰⎰ 3S Sxdydz ydxdz zdxdy xdyxz ++=⎰⎰⎰⎰ 334343R R ππ=⋅= ※小结应用对称性计算积分时应注意以下几点:1.必须兼顾被积函数和积分区域两个方面,只有当两个方面面都具有某种对称性是才能利用,如果只有积分区域具有某种对称性,这时根据具体情况,我们可以把被积函数经过恒等变形使之具有某种对称性,在考虑利用上述结论2.对第二类曲线积分和第二类曲面积分,在利用对称性时,尚需考虑积分路 线的方向和曲面的侧,确定投影元素的符号,需慎重3.有些问题利用轮换对称性可得到简便的解答对于重积分,曲线积分,曲面积分等定理的研究,是积分学运用的一个难点.本 文在探讨相关定理的同时,特别是巧妙的运用其对称性的特点,通过具体实例对积分运用的几个重要的定理进行了一些列研究,发现积分区域与被积函数二者均具对称性时,运用上述对称性定理可以极大地简化计算过程,尤其对于第二类曲线积分和第二类曲面积分来说,应用此方法能够 方向和曲面侧的讨论,简化了计算的过程,给积分的运算带来了便捷,.在以后的学习中,只要我们能把对称性这个重要的特点结合在实际中,相信一定会达到了事倍功半的效果.。
创新教育科技创新导报 Science and Technology Innovation Herald242DOI:10.16660/ki.1674-098X.2018.14.242对称性在求解第一型和第二型曲线积分上的区别①孟泽红(浙江财经大学数据科学学院 浙江杭州 310018)摘 要:利用对称性求解曲线积分可以大大简化曲线积分的求解,但学生在利用对称性求解第一型曲线积分和第二型曲线积分时很容易弄错使用条件,因此,本文针对这些情况,从曲线的同向对称和异向对称的定义开始介绍,接下来给出了第一型曲线积分和第二型曲线积分对称性使用的定理,并给出了一些例题来对比这些定理的使用条件,并对第二型曲线积分对称性求解的例题进行了正确和错误两种解法来进行分析归纳总结定理的使用条件。
关键词:对称性 第一型曲线积分 第二型曲线积分 异向 同向中图分类号:O17 文献标识码:A 文章编号:1674-098X(2018)05(b)-0242-02①作者简介:孟泽红(1978—),女,汉族,浙江杭州人,博士,副教授,研究方向:反问题与不适定问题的研究,高等数学 课题研究。
曲线积分的求解是高等数学里面本科生必须熟练掌握的,也是全国研究生入学考试中的重点内容。
利用积分区域对称性和函数的奇偶性可以简化积分运算,在教学过程中发现,由于第一型曲线积分和第二型曲线积分一个与方向无关,一个与方向有关,因此在使用中,一旦使用不当,会造成对问题的错解,为了让学生在学习过程中注意到这个陷阱,本文通过具体的例题把错误的结题方法和正确的解题方法进行比较,并对这两种积分的对称性使用进行了简要的总结。
1 预备知识定义1:有向曲线L 成两段有向弧L 1和L 2,如果观察者沿L 1行到L 2时方向不发生改变,就称L 1与L 2同向,否则称异向。
定义2:如果有向积分曲线课分为关于点A 对称的两段弧L 1和L 2,L 1和L 2同向,则称该积分曲线关于点A 同向对称,否则,L 1和L 2异向,则称该积分曲线关于点A 异向对称。
第一型曲面积分的对称性
一维、二维以及其它多维曲面积分,在积分学中占据重要的地位,是许多基础、重要的数学方法的基础。
而第一型曲面积分是其中一个特殊的实例,其具有独一无二的特性和对称性,有别于传统的积分方法。
第一型曲面积分即示意函数曲面积分,也称为花瓣积分,是一种以曲面的形式
把轴对称函数积分起来的方法。
其原理是用轴对称函数在曲面上的旋转形成的新的函数,然后用积分来计算这个函数的积分。
其对称性指的是,从某一点可以进行等距的旋转,从而得到此曲面积分的等效表示,而无论积分的方向如何变化,其结果都不会发生变化。
由于第一型曲面积分所具有的独有特性和对称性,广泛应用于不同领域。
例如
经典物理学中,经常用其来分析有关多轴对称物理系统的轨道运动;在量子力学领域,第一型曲面积分可以解决许多具有对称性的复杂量子力学问题;在工程应用中,由于其可以准确、快捷的计算带有多轴对称结构设计的一系列数值,因此被广泛采用。
从中可见,第一型曲面积分是一种重要的数学工具,广泛应用于各种不同领域,它具有特有的对称性和独有的优势。
在基础教育过程中,对于对其进行详细的研究将有助于提升我们在该领域的应用能力。
关于积分对称性定理1、定积分:设 f ( x) 在 a,a 上连续,则2、 二重积分:若函数f(x,y)在平面闭区域D 上连续,则(1) 如果积分区域D 关于x 轴对称,f(x,y)为y 的奇(或偶)函数, 即 f(x, y) f(x, y)(或 f(x, y) f (x, y)),则二重积分0,f x,y 为y 的奇函数f x, y dxdy2 f x, y dxdy, f x,y 为y 的偶函数DD 1其中:D i 为D 满足y 0上半平面区域。
(2) 如果积分区域D 关于y 轴对称,f(x,y)为x 的奇(或偶)函数, 即 f x, y f x, y (或 f x, y f x, y ),则二重积分0, f x, y 为x 的奇函数,fx,ydxdy 2 f x,ydxdy, f x, y 为)的偶函数.DD 2其中:D 2为D 满足x 0的右半平面区域。
(3) 如果积分区域D 关于原点对称,f(x,y)为x,y 的奇(或偶)函a -ax dx0,a2 f x dx,0 x 为X 的奇函数, X 为X 的偶数,即卩f ( x, y) f (x,y)(或 f ( x, y) f(x,y))则二重积分0, f x,y为x,y的奇函数f x,ydx:y2 f xydxy,f x,y 为Xy的偶函数DD2其中:D1为D在y 0上半平面的部分区域。
(4)如果积分区域D关于直线y x对称,则二重积分f x, ydxdy f y,x dxdy .(二重积分的轮换对称性)D D(5)如果积分区域D关于直线y x对称,则有0, 当f( y, x) f(x,y)时f(x,y)dxdy 2 f(x,y)dxdy 当仁y, x) f(x,y)时D D利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D对称及被积函数fx,y具有奇偶性两个特性。
3、三重积分:(1)若f X, y,z为闭区域上的连续函数,空间有界闭区域关于xoy坐标面对称,1为位于xoy坐标面上侧z 0的部分区域,贝卩有0, f x, y, z为z的奇函数f儿y,zcXdydz 2 f x,y,zdxdydz, f x,y,z 为z的偶函数1注:f (x, y,z)是z的奇函数:f(x, y z) f (x,y,z)f (x, y,z)是z的偶函数:f(x,y z) f(x, y,z)同样,对于空间闭区域关于xoz, yoz坐标面对称也有类似的性质。
对称性在积分中的应用摘要:对称性是宇宙中许多事物都具有的性质,大到银河星系, 小到分子原子.根据对称性, 我们就可以把复杂的东西简单化,把整体的东西部分化. 本文介绍运用数学中的对称性来解决积分中的计算问题, 主要介绍了几种常见的对称性在积分计算过程中的一些结论及其应用,并通过实例讨论了利用积分区间、积分区域、被积函数的奇偶性, 从而简化定积分、重积分、曲线积分、曲面积分的计算方法. 另外对于曲面积分的计算,本文还给出了利用轮换对称性简化积分的计算. 积分的计算是高等数学教学的难点, 在积分计算时, 许多问题用“正规” 的方法解决,反而把计算复杂化, 而善于运用积分中的对称性,往往能使计算简捷, 达到事半功倍的效果.关键词:积分对称定积分重积分曲线积分曲面积分区域对称轮换对称目录一、引言二、相关对称的定义(一)区域对称的定义(二)函数对称性定义(三)轮换对称的定义三、重积分的对称性(一)定积分中的对称性定理及应用(二)二重积分中的对称性定理及应用(三)三重积分中的对称性定理及应用四、曲线积分的对称性(一)第一曲线积分的对称性定理及应用(二)第二曲线积分的对称性定理及应用五、曲线积分的对称性(一)第一曲面积分的对称性定理及应用(二)第二曲面积分的对称性定理及应用六、小结参考文献引言积分的对称性包括重积分、曲线积分、曲面积分的对称性•在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果•下面我将从积分对称性的定理及结论,再结合相关的实例进行具体探讨•本文从积分区域平行于坐标轴、对角线的直线的对称性,平行于坐标面的平面等的对称性定义•二、相关的定义定义1:设平面区域为D ,若点(x, y) • D= (2a-x,y),则D关于直线x = a对称,对称点(x,y)与(2a - x,y)是关于x = a的对称点•若点(x, y) € D = (x,2b-y)-D(x, y),则D关于直线y二b对称,称点(x, y)与(x,2b - y)是关于y = b的对称(显然当a =0,b = 0对D关于y , x轴对称).定义2:设平面区域为D ,若点(x, y) • D = (y—a,x-a),则D y二x,a对称,称点(x, y)与(y - a, x - a)是关于y 二x • a 的对称点.若点(x, y) • D = (a - y,a - x)-D,贝U D关于直线y 对称.注释:空间区域关于平行于坐标面的平面对称;平面曲线关于平行于坐标轴的直线对称;平面曲面以平行于坐标面对称,也有以上类似的定义.空间对称区域.定义3: (1)若对-(x, y, z^ 1,点(x,y,-z)・1 ,则称空间区域门关于xoy面对称;利用相同的方法,可以定义关于另外两个坐标面的对称性.⑵ 若对P(x, y, z)匕0 ,二点(x, y,—z)匕O ,则称空间区域0关于z轴对称;利用相同的方法,可以定义关于另外两个坐标轴的对称性.(3)若对_(x, y, z^ 1 1, -J点(-x,-y,-z) • 11,则称空间区域门关于坐标原点对称.⑷ 若对一(x, y,z) •门,T点(y,乙x),(z, x, 1 1 ,则称空间区域门关于x, y, z具有轮换对称性.定义4:若函数f(x)在区间- a,a上连续且有f(x-a) = f(x • a),则f(x)关于x二a对称当且仅当a = 0时f (-x)二f (x),则f (x)为偶函数.若f (a - x) =-f (a x),则f(x)为关于a,0中心对称.当且仅当a=0时有f(_x)-_f(x)则f(x)为奇函数.若f (x -a) = f (x • a)且f (a -x) = - f (a x)则f (x)既关于x = a对称,又关于a,0 中心对称.定义5 若n元函数f(X i,X2,…,X n)三f (X i,X i 1,…,X n,X i,…,x:丄),(i =1,2,…,n ), 则称n元函数f (X i,X2,…,X n)关于X i,X2,…,X n具有轮换对称性•定义6:若- p(X i,X2, ,X n) D n R n( n N)有P i(X i,X i 1, ,X n,X i,厶J D n(i =1,2,…,n)成立,则称D n关于p(X i,X2,…,X n)具有轮换对称性.三、重积分的对称性(一)对称性在定积分中的应用利用函数图形的对称性可简化定积分的计算■在特殊情况下,甚至可以求出原函数不是初等函数的定积分■因此掌握对称性在积分中的方法是必要的■下面首先给出一个引理,由此得出一系列的结论,并通过实例说明这是结论的应用■引理设函数f (x)在a - h, a h上连续,则有f (x)dx = f (a x) f (a - x) dx (1)证令x二a t,有a h h hf(x)dx f(a t)dt f(a t)dta -h ' -h 0令t u,则0 0 hf (a t)dt = f (a -u)du = i f (a - u)du•山h 0将( 3)式带入(2)式,并将积分变量统一成x ,则(x)dx = ° f (a x) f (a - x)dx dx特别地,令a =0,就得公式:f(x)dx= :〔f(x) f (-x)d x由函数奇偶性的定义及上式,易知定理1设函数f (x)在[- h, h上连续,那么h h2)若 f(x)为偶函数,则f(x)dx=2 f(x)dx■_hoh3)若f(x)为奇函数,则 』f(x)dx=O次结论有广泛的应用,如能恰当地使用,对简化定积分的计算有很大的帮助,是奇函数,后一部分是偶函数,运用定理1的结论简化其计算.2一 : cosxdx 2_ cosxdx匕x 21 2 2cosxdx=2注:而对于任 意区间上的定积分问题,可以平移 到对称区间Lh,h 1上求解。
关于积分对称性定理1、 定积分:设)(x f 在[],a a -上连续,则()()()()-00,d 2d ,a aaf x x f x x f x x f x x ⎧⎪=⎨⎪⎩⎰⎰为的奇函数,为的偶函数.2、 二重积分:若函数),(y x f 在平面闭区域D 上连续,则(1)如果积分区域D 关于x 轴对称,),(y x f 为y 的奇(或偶)函数,即 ),(),(y x f y x f -=-(或),(),(y x f y x f =-),则二重积分()()()()10,,,d d 2,d d ,,D D f x y y f x y x y f x y x y f x y y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数. 其中:1D 为D 满足0≥y 上半平面区域。
(2) 如果积分区域D 关于y 轴对称,),(y x f 为x 的奇(或偶)函数,即()(),,f x y f x y -=-(或()(),,f x y f x y -=),则二重积分()()()()20,,,d d 2,d d ,,DD f x y x f x y x y f x y x y f x y x ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.其中:2D 为D 满足0x ≥的右半平面区域。
(3)如果积分区域D 关于原点对称,),(y x f 为y x ,的奇(或偶)函数,即),(),(y x f y x f -=--(或),(),(y x f y x f =--)则二重积分()()()()20,,,,d d 2,d d ,,,D D f x y x y f x y x y f x y x y f x y x y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.其中:1D 为D 在0≥y 上半平面的部分区域。
(4)如果积分区域D 关于直线x y =对称,则二重积分()()y x x y f y x y x f DDd d ,d d ,⎰⎰⎰⎰=.(二重积分的轮换对称性)(5)如果积分区域D 关于直线y x =-对称,则有10,(,)(,)(,)2(,),(,)(,)D D f y x f x y f x y dxdy f x y dxdy f y x f x y --=-⎧⎪=⎨--=⎪⎩⎰⎰⎰⎰当时当时利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D 对称及被积函数()y x f ,具有奇偶性两个特性。
第一类曲面积分的对称性
第一类曲面积分的对称性是指当它们在相同的条件下接受交换或旋转等操作时,仍可达到完全相同的结果。
从确定一个曲面积分的角度来看,它有一定的对称性,这个对称性可以包括对称性(如内积、外积和交错积)和空间的对称性(如空间翻转和空间旋转)。
要说明第一类曲面积分的对称性,首先要强调内积对称性。
内积是指当一个曲面积分与其法矢量(即曲面积测量的单位矢量)平行时,可以积出完整的曲面积分。
也就是说,当曲面积分向外旋转90°时,其结果可以与原结果相等。
此外,要特别指出外积的对称性。
外积是指在曲面积分不与其法矢量平行时,也能保持积分的完整性。
与内积不同的是,外积的结果可以与原积分的结果相等,而不需要将曲面积分转动90°。
最后,也要强调空间对称性。
空间对称性是指当一个曲面积分被特定的方式翻转或旋转后,其结果与原结果相同。
举例来说,将曲面积分沿y轴进行翻转后,其结果可以与原曲面积分的结果完全相同。
并且,在将空间积分旋转180°或360°后,它仍然可以保持完整性,其结果也
可以与原曲面积分的结果完全相同。
总之,第一类曲面积分的对称性是指它们接受交换或旋转等操作后,还可以达到完全相同的结果,而这种对称性主要体现在内积、外积以及空间的对称性上。