无线电波的传播特性
- 格式:docx
- 大小:14.82 KB
- 文档页数:2
无线电波的产生与传播无线电波是一种特殊的电磁波,它具有广泛的应用范围,我们日常生活中许多设备和通信系统都离不开无线电波的产生和传播。
本文将从产生无线电波的物理原理、无线电波的传播特性以及无线电通信系统中的应用等方面进行探讨。
一、无线电波的产生无线电波是由振动频率在无线电频段内的电子所产生的。
它的产生是通过一种特殊的电子器件——发射器来实现的。
发射器中的振荡电路会产生高频振荡信号,这些信号随后经过功率放大和调制等处理,最终被传输至天线,从而以无线电波的形式发出。
无线电波的产生可根据不同的原理进行分类,包括震荡振荡原理、放电原理、反馈原理等。
其中,震荡振荡原理是应用最广泛的一种。
例如,无线电广播中的发射机通过震荡电路中的电子组件,如电感、电容和晶体管等,产生稳定的高频振荡信号,进而发出电磁波。
二、无线电波的传播特性无线电波在传播过程中具有一些特殊的性质和规律。
了解这些特性可以帮助我们更好地设计和优化通信系统。
1. 方向性传播:无线电波在空间中以直线传播,呈现出“直线传播”或“射线传播”的特点。
它的行进路径受到反射、折射、散射等影响,从而在传播过程中发生多次的反射和绕射现象。
2. 衰减和衰落:无线电波在传播过程中会经历衰减和衰落。
衰减指的是电磁波强度随着传输距离的增加而减弱;衰落表示电磁波接收信号的强度在时间和空间上的随机性变化。
3. 多径传播:多径传播是指无线电波在传播过程中,由于遇到不同的障碍物或媒介的影响,会有多个传播路径同时存在。
这导致接收到的信号由多个不同的波前构成,产生多径干扰。
4. 功率密度:无线电波的功率密度随着距离的增加而逐渐减小。
这是由于能量随着波传播的面积扩散而变得更为稀疏。
三、无线电通信系统中的应用无线电通信系统以其便捷性和广泛性在现代社会扮演着重要的角色。
以下是几种常见的无线电通信系统及其应用:1. 无线电广播:通过无线电波的传播,向广大听众提供信息、音乐等广播节目。
2. 手机通信:通过无线电波的传输,实现移动电话之间、手机与基站之间的通信。
无线电波的传播特性传播特性(一)移动通信的一个重要基础是无线电波的传播,无线电波通过多种方式从发射天线传播到接收天线,我们按照无线电波的波长人为地把电波分为长波(波长1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等.为了更好地说明移动通信的问题,我们先介绍一下电波的各种传播方式:1.表面波传播表面波传播是指电波沿着地球表面传播情况.这时电波是紧靠着地面传播的,地面的性质,地貌,地物等的情况都会影响着电波的传播.当电波紧靠着实际地面--起伏不平的地面传播时,由于地表面是半导体,因此一方面使电波发生变化和引起电波的吸收.另一方面由于地球表面是球型,使沿它传播的电波发生绕射.从物理课程中我们已经知道,只有当波长与障碍物高度可以比较的时候,才能有绕射功能.由此可知,在实际情况中只有长波,中波以及短波的部分波段能绕过地球表面的大部分障碍到达较远的地方.在短波的部分波段和超短波,微波波段,由于障碍高度比波长大,因而电波在地面上不绕射,而是按直线传播.2.天波传播短波能传至地球上较远的地方,这种现象并不能用绕射或其他的现象做解释.直到1925年,利用在地面上垂直向上发射一个脉冲,并收到其反射回波,才直接证明了高层大气中存在电离层.籍此电离层的反射作用,电波在地面与电离层之间来回反射传播至较远的地方.我们把经过电离层反射到地面的电波叫天波.电离层是指分布在地球周围的大气层中,60km以上的电离区域.在这个区域中,存在有大量的自由电子与正离子,还可能有大量的负离子,以及未被电离的中性离子.发现电离层后,尤其近三四十年来,随着火箭与卫星技术的发展,利用这些工具对电离层进行了深入的试验和研究.当前电离层的研究已经成为空间物理的一个重要的组成部分,其研究的空间范围和频段也日益宽广.在电离层中,当被调制的无线电波信号在电离层内传播时,组成信号的不同频率成分有着不同的传播速度.所以波形会发生失真.这就是电离层的色散性.同时,由于自由电子受电波电场作用而发生运动,所以当电波经过电离层,其能量会被吸收一部分.而且,从电离层吸收电波的规律看,若使用电波的工作频率太低,则电离层对电波的吸收作用很强.所以天波传播中有一个最低可用频率,低于这个频率,就会因为电离层对电波的吸收作用太大而无法工作.传播特性(二)1.空间波传播当发射以及接收天线架设得较高的时候,在视线范围内,电磁波直接从发射天线传播到接收天线,另外还可以经地面反射而到达接收天线.所以接收天线处的场强是直接波和反射波的合成场强,直接波不受地面影响,地面反射波要经过地面的反射,因此要受到反射点地质地形的影响.空间波在大气的底层传播,传播的距离受到地球曲率的影响.收,发天线之间的最大距离被限制在视线范围内,要扩大通信距离,就必须增加天线高度.一般地说,视线距离可以达到50km左右.空间波除了受地面的影响以外,还受到低空大气层即对流层的影响.移动通信中,电波主要以空间波的形式传播.类似的还有微波传播.2.散射传播大气对流层中,除了有规则的片状或层状气流外,还存在有不规则的,这类似于水流中漩涡的不均匀体.相应的,在电离层中则有电子密度的不均匀性.当天线辐射出去的电波,投射到这些不均匀体的时候,类似于光的散射和反射现象,电波发生散射或反射,一部分能量传播到接收点的这种传播称为散射传播.这种通信方式通信距离可达300-800km,适用于无法建立微波中继站的地区,例如用于海岛之间和跨越湖泊,沙漠,雪山等地区.但是,由于散射信号相当微弱,所以散射传播接收点的接收信号也相当微弱,即传播损耗很大,这样,散射通信必须采用大功率发射机,高灵敏度接收机和高增益天线.3.外层空间传播电磁波由地面发出(或返回),经低空大气层和电离层而到达外层空间的传播,如卫星传播,宇宙探测等均属于这种远距离传播.由于电磁波传播的距离很远,且主要是在大气以外的宇宙空间内进行,而宇宙空间近似于真空状态,因而电波在其中传播时,它的传输特性比较稳定.我们可以把电波穿过电离层外面的空间传播,基本上当作自由空间中的传播来研究.至于电波在大气层中传播所受到的影响,可以在考虑这一简单的情况基础上加以修正. 传播特性(三)前面我们对电磁波的各种传播方式做了介绍,在这里,我们简单地介绍一下各个波段的传播特点,我们按照无线电波的波长人为地把电波分为长波(波长1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等.各个波段的传播特点如下:1.长波传播的特点由于长波的波长很长,地面的凹凸与其他参数的变化对长波传播的影响可以忽略.在通信距离小于300km时,到达接收点的电波,基本上是表面波.长波穿入电离层的深度很浅,受电离层变化的影响很小,电离层对长波的吸收也不大.因而长波的传播比较稳定.虽然长波通信在接收点的场强相当稳定,但是它有两个重要的缺点:①由于表面波衰减慢,发射台发出的表面波对其他接受台干扰很强烈.②天电干扰对长波的接收影响严重,特别是雷雨较多的夏季.2.中波传播的特点中波能以表面波或天波的形式传播,这一点和长波一样.但长波穿入电离层极浅,在电离层的下界面即能反射.中波较长波频率高,故需要在比较深入的电离层处才能发生反射.波长在3000-2000米的无线电通信,用无线或表面波传播,接收场强都很稳定,可用以完成可靠的通信,如船舶通信与导航等.波长在2000-200m的中短波主要用于广播,故此波段又称广播波段.3.短波传播的特点与长,中波一样,短波可以靠表面波和天波传播.由于短波频率较高,地面吸收较强,用表面波传播时,衰减很快,在一般情况下,短波的表面波传播的距离只有几十公里,不适合作远距离通信和广播之用.与表面波相反,频率增高,天波在电离层中的损耗却减小.因此可利用电离层对天波的一次或多次反射,进行远距离无线电通信.4.超短波和微波传播的特点超短波,微波的频率很高,表面波衰减很大;电波穿入电离层很深,甚至不能反射回来,所以超短波,微波一般不用表面波,天波的传播方式,而只能用空间波,散射波和穿透外层空间的传播方式.超短波,微波,由于他们的频带很宽,因此应用很广.超短波广泛应用于电视,调频广播,雷达等方面.利用微波通信时,可同时传送几千路电话或几套电视节目而互不干扰.超短波和微波在传播特点上有一些差别,但基本上是相同的,主要是在低空大气层做视距传播.因此,为了增大通信距离,一般把天线架高.。
无线电考试题库a类一、选择题1.无线电通信是指利用无线电波传输信息的一种通信方式,其主要特点是:A.通信距离远,但受地形、建筑物等遮挡物影响较大B.通信距离近,但不受地形、建筑物等遮挡物影响C.通信距离远,且不受地形、建筑物等遮挡物影响D.通信距离近,但受地形、建筑物等遮挡物影响较大答案:C2.下列关于无线电波传播的说法中,错误的是:A.无线电波可以传播到很远的地方,甚至可以传播到太空B.无线电波的传播速度等于光速C.无线电波在传播过程中,其频率和波长都不会发生变化D.无线电波的传播需要介质,不能在真空中传播答案:D3.在无线电通信中,调制的作用是:A.将低频信号变成高频信号B.将高频信号变成低频信号C.将模拟信号变成数字信号D.将数字信号变成模拟信号答案:A4.下列关于无线电发射设备的说法中,正确的是:A.无线电发射设备不需要进行任何的调制就可以直接发射信号B.无线电发射设备发射的信号功率越大,通信距离就越远C.无线电发射设备发射的信号频率越高,通信距离就越远D.无线电发射设备必须满足国家相关技术标准才能使用答案:D5.下列关于无线电接收设备的说法中,错误的是:A.无线电接收设备可以接收到所有频率的无线电信号B.无线电接收设备的灵敏度越高,接收到的信号就越清晰C.无线电接收设备在接收信号时需要进行解调D.无线电接收设备必须具备选择性,以避免接收到干扰信号答案:A6.下列关于无线电干扰的说法中,正确的是:A.无线电干扰只会对无线电通信造成影响,不会对人体健康造成影响B.无线电干扰只会对无线电通信造成影响,不会对其他电子设备造成影响C.无线电干扰既会对无线电通信造成影响,也会对其他电子设备造成影响D.无线电干扰不会对无线电通信造成影响,但会对其他电子设备造成影响答案:C7.下列关于无线电频谱资源的说法中,错误的是:A.无线电频谱资源是有限的,必须合理规划和使用B.无线电频谱资源的使用不需要向相关部门申请和缴费C.无线电频谱资源的分配和使用必须遵守国家相关法规和规定D.无线电频谱资源的不合理使用会造成资源浪费和干扰问题答案:B8.下列关于无线电测向的说法中,正确的是:A.无线电测向只能测定无线电信号的方向,不能测定距离B.无线电测向只能测定无线电信号的距离,不能测定方向C.无线电测向既能测定无线电信号的方向,也能测定距离D.无线电测向无法测定无线电信号的方向和距离答案:A9.下列关于业余无线电台的说法中,错误的是:A.业余无线电台是供业余无线电爱好者进行自我训练、相互通信和技术研究的无线电台B.业余无线电台的使用必须遵守国家相关法规和规定C.业余无线电台可以随意使用任何频率进行通信D.业余无线电台的使用需要申请并取得相关执照答案:C10.下列关于无线电管理机构的说法中,正确的是:A.无线电管理机构是负责管理无线电频谱资源和无线电设备的政府机构B.无线电管理机构是负责管理无线电通信业务的政府机构C.无线电管理机构是负责管理无线电广播和电视业务的政府机构D.无线电管理机构是负责管理无线电科研和教育的政府机构答案:A二、填空题1.无线电波的传播速度与_______相同,约为每秒_______千米。
无线电波的传播特性分析随着社会的发展和科技的改善,人们越来越依赖于无线电通讯系统。
无线电通讯试验表明,无线电波在移动通信、卫星通信、广播电视、雷达、导航、天文学、医学设备、物理实验等领域都有着重要的应用。
因此无线电波的传播特性研究是通信领域的重要课题。
本文将对无线电波的传播特性进行分析。
一、无线电波的概念及特点无线电波是指具有从发射端到接收端传输信息的电磁波。
其特点是不需要空气、水、电线或其他物质介质的支持,具有穿透力强、速度快、方向性好等特点。
无线电波的振幅、频率和波长是测量其特性的重要参数。
二、无线电波的传播方式通常无线电波的传播方式可以分为地波传播和空气波传播两种方式。
1.地波传播地波传播是指在接收机基准面附近的地面或水面上以及建筑物等障碍物中反射、散射和直射而形成的波。
无线电波在地面或水面上远距离传输时,会遇到地球曲率、地形以及自然和人为障碍物的影响。
因此,地波传播适用于距离较短、发射功率较小的低频率无线电信号。
2.空气波传播空气波传播是指无线电波以大气为传导介质,经过电离层反射折射等多次反射模式,形成传播现象。
空气波传播分为天距通信和地距通信两种。
地距通信主要指空气波与障碍物的地面相互作用,而天距通信则是指空气波穿透电离层达到对地通信。
三、无线电波的频率对传输距离的影响无线电波的频率对于通信质量和可靠性具有很大的影响。
从传播距离和功率来看,如果无线电波的频率越高,那么穿透障碍物的能力就越弱,信号的传输距离就越短且对障碍物更敏感;如果无线电波的频率越低,传输的距离则越远,而穿透障碍物的能力也越强。
因此,不同频率的无线电波适用于不同的场合,需要根据实际情况来选择信号的频率。
四、无线电波的衰减和传播损耗无线电波在传输过程中会受到一系列的影响,如传输途经的障碍物、电离层、大气层摩擦阻力等。
由于这些变量的存在,无线电波会产生衰减和传播损耗。
当信号从透明的媒介中穿过非均匀材料时,无论是反射、吸收、散射还是折射,都会使信号发生衰减和传播损耗,影响信号的传输质量和可靠性。
无线电波发射原理无线电波发射原理是指通过将电能转化为无线电波的方式进行信息传输的过程。
无线电波发射原理的研究和应用在现代通信领域具有重要的意义。
一、无线电波的产生无线电波是由振荡电流产生的,而振荡电流则是由振荡器产生的。
振荡器是一种能够产生周期性电信号的电路。
当振荡器中的电荷发生周期性变化时,就会产生振荡电流。
这个振荡电流在天线中产生感应作用,从而产生无线电波。
二、电能转化为无线电波的过程无线电发射器是将电能转化为无线电波的设备。
它包括振荡器、放大器和天线等部件。
振荡器产生振荡电流,经过放大器放大后,送入天线。
天线将电能转化为无线电波,并以一定的频率和波长传播出去。
三、无线电波的特性无线电波具有以下几个重要的特性:1. 频率:无线电波的频率决定了它的特定应用。
不同频率的无线电波可用于不同的通信和广播系统。
2. 波长:无线电波的波长与频率有关,波长越短,频率越高。
3. 传播特性:无线电波可以在真空和大气中传播,它的传播速度与光速相同。
4. 传播距离:无线电波的传播距离与频率和功率有关,功率越大,传播距离越远。
四、无线电波的应用无线电波的应用广泛,包括无线通信、无线电广播、卫星通信、雷达等。
其中,无线通信是无线电波应用最为广泛的领域。
手机、电视、无线网络等现代通信设备都是基于无线电波发射原理工作的。
五、无线电波的发展趋势随着科技的不断进步,无线电波的应用也在不断发展和创新。
无线通信技术不断提升,传输速度和质量得到了显著提高。
卫星通信技术使无线电波可以跨越大洋和边境,实现全球通信。
此外,无线电波在医学、航空航天等领域也有着广泛的应用和发展。
总结:无线电波发射原理是通过将电能转化为无线电波的方式进行信息传输的过程。
无线电波的产生依靠振荡器产生的振荡电流,经过放大器和天线的作用,电能被转化为无线电波并传播出去。
无线电波具有特定的频率、波长、传播特性和传播距离等特点,被广泛应用于无线通信、广播、卫星通信和雷达等领域。
无线电波的传播模型分析无线电通信是人类社会发展进程中的一项重要成就,也是21世纪信息科学的重要组成部分,使用了无线电波传播技术。
无线电波是以电磁场的形式传输的,具有广泛的覆盖范围,便捷性和实时性等诸多优点。
本文将从无线电波的传播模型分析来介绍无线电通信中的传播特性和影响因素。
一、无线电波的传播模型无线电波作为电磁波,传播模型主要分为两种类型:地面波和空间波。
1.地面波地面波也叫地波,是在地球表面与大气继电器的相互作用下产生的,主要依靠短波的反射和散射。
它的传播方式具有一定的局限性,主要适用于频率较低的波段,例如中、低频的AM广播。
由于地波的传播距离有限,因此它的应用范围受到限制。
2.空间波空间波是指在大气层高度以上发送无线电信号产生的波,主要依靠大气继电器的传播方式。
空间波分为直接波、反射波和绕射波。
其中,直接波是指在天线发射的无线电波沿着一条直线传播到达接收方,主要应用于近距离的通信;反射波是指无线电波在大气层中反射,从而到达接收方;绕射波则是指无线电波在距离障碍物一定距离处发生弯曲而传输到接收方。
由于空间波传播距离远,因此被广泛应用于广播、卫星通信和移动通信等领域。
二、无线电波传播特性的影响因素1.频率无线电波向外辐射是以电磁场的形式进行的,不同频率的波对传输距离、传输损耗等有着直接的影响。
频率低的电磁波,因其波长长,具有较好的穿透性,不易受到障碍物的阻碍,有利于传播距离较远的环境;高频无线电波因其波长短,具有更弱的穿透性,主要适用于短距离传输。
根据频率的不同,无线电波传输的特性也会有所区别。
2.天线高度和功率天线是信息传输的重要载体,其高度和功率决定了无线电波的传输效果。
天线高度可以影响电波的传播距离和传输覆盖面积,高天线通信的距离更远,更通畅;天线功率的大小则决定了无线电信号传输的能力,功率越大,传输的距离越远。
在实际应用中,高度和功率的大小应该结合实际情况进行权衡,以达到最佳效果。
3.障碍物和地形无线电波的传输受到障碍物和地形的影响。
无线电波的传播特性1、无线电波的传播特性及信号分析甚低频VLF 3-30KHz 超长波1KKm-100Km 空间波为主海岸潜艇通信;远距离通信;超远距离导航低频LF 30-300KHz 长波10Km-1Km 地波为主越洋通信;中距离通信;地下岩层通信;远距离导航中频MF 0.3-3MHz 中波1Km-100m 地波与天波船用通信;业余无线电通信;移动通信;中距离导航高频HF 3-30MHz 短波100m-10m 天波与地波远距离短波通信;国际定点通信甚高频VHF 30-300MHz 米波10m-1m 空间波电离层散射(30-60MHz);流星余迹通信;人造电离层通信(30-144MHz);对空间飞行体通信;移动通信超高频UHF 0.3-3GHz 分米波1m-0.1m 空间波小容量微波中继通信;(352-420MHz);对流层散射通信(700-10000MHz);中容量微波通信(1700-2400MHz)特高频SHF 3-30GHz 厘米波10cm-1cm 空间波大容量微波中继通信(3600-4200MHz);大容量微波中继通信(5850-8500MHz);数字通信;卫星通信;国际海事卫星通信(1500-1600MHz)ELF 极低频3~30HzSLF 超低频30~300HzULF 特低频 300~3000HzVLF 甚低频3~30kHzLF 低频30~300kHz 中波,长波MF 中频300~3000kHz 100m~1000m 中波 AM广播HF 高频 3~30MHz 10~100m 短波短波广播VHF 甚高频 30~300MHz 1~10m 米波FM广播UHF 特高频 300~3000MHz 0.1~1m 分米波SHF 超高频3~30GHz 1cm~10cm 厘米波EHF 极高频30~300GHz 1mm~1cm 毫米波无线电波按传播途径可分为以下四种:天波—由空间电离层反射而传播;地波—沿地球表面传播;直射波—由发射台到接收台直线传播;地面反射波—经地面反射而传播。
无线电的传播与干扰问题研究引言无线电技术是现代通信领域中不可或缺的重要组成部分,它在传输信息、通讯、导航和广播等方面发挥着重要作用。
随着无线电设备的普及和应用范围的不断扩大,无线电频谱资源的有限性、频段的拥挤、干扰源的增多等问题也日益严重,给无线电的传播和使用带来了诸多困扰。
对无线电的传播与干扰问题进行深入研究,对于保障通信质量,提高频谱利用效率具有重要意义。
本文将围绕无线电的传播特性、干扰机制、干扰抑制等方面展开研究,希望能够为无线电通信领域的相关研究提供一定的参考和借鉴。
一、无线电的传播特性无线电的传播是指无线电波在空间中的传播过程。
无线电波是一种特殊的电磁波,它具有较长的波长和工作在高频段,因此具有一定的穿透能力和广播覆盖能力。
无线电波的传播路径主要有地面波、对流层散射、电离层反射和空间波等多种传播方式。
在地面通信中,地面波是最主要的传播方式,它的传输距离较近,通常用于较低的频段。
而对于较远距离的通信,通常会利用电离层反射或者空间波进行传输。
这些传播方式的存在使得无线电技术具有了一定的通信范围和能力,但同时也给无线电的传输带来了一些问题。
二、无线电的干扰机制无线电的干扰是指其他无关信号或者噪声对无线电信号的影响,造成通信质量下降或者无法正常通信的现象。
无线电的干扰主要包括外部干扰和内部干扰两种。
外部干扰是指来自外部环境的干扰源,如天线干扰、多径传播干扰、电源线干扰等。
电源线干扰是指电力线路上的电磁干扰信号对无线电通信的影响,它主要是由于电力线上的载波通信设备或者电气设备产生的电磁波对无线电信号的干扰。
内部干扰则是指来自系统内部的干扰,如信号混叠、多途径干扰等。
这些干扰机制的存在导致了无线电通信中产生了许多问题,如信号质量差、通信距离受限、通信速率降低等。
三、无线电的干扰抑制技术针对无线电的干扰问题,研究人员提出了许多干扰抑制技术,以提高无线电通信的质量和可靠性。
干扰抑制技术主要包括以下几种:频谱分离技术、调制解调技术、多址接入技术、自适应滤波技术等。
无线电波的传播特性
电波在不同的地形地貌和移动速度的环境下传播,表现为直射波、反射波、绕射波、折射波、散射波等传播方式。
首先在无阻挡物的自由空间中:电波以直射波形式传播,即视距传播LOS (line-of-sight) ,比如卫星通信。
在地面无线通信中,由于发射机与接收机之间通常不存在直接的视距路径,因此地面无线通信主要依靠的是反射、绕射和散射。
当电磁波遇到比波长大得多的物体时,会发生反射;当接收机和发射机之间的无线路径被尖锐的边缘阻挡时,会发生绕射;当波穿行的介质中存在小于波长的物体并且单位体积内阻挡体的个数非常巨大时,会发生散射。
一、反射
反射发生在地面以及建筑物的表面,当电磁波遇到比其波长大得多的物体时就会发生反射。
通常,在考虑地面对电波的反射时,按平面波处理,即电波在反射点的反射角等于入射角。
电磁波的反射发生在不同物体界面上,这些界面可能规则也可能不规则,可能平滑也可能粗糙。
为了简化,我们考虑反射表面都是平滑的,也称为理想介质表面。
电磁波通过理想介质表面后反射,电磁波的能量会全波反射回来。
二、绕射
绕射也指衍射。
绕射是指波遇到障碍物时偏离原来直线传播的物理现象。
当信号遇到大于波长的不可穿透物的边缘,如无线电波中途遇到的尖锐不规则的边缘物时,即使没有来自发送器的视线信号,也可接收到信号。
下图表示了无线电波的绕射现象。
三、散射
在实际的无线环境中,接收的信号通常比单独绕射和反射模型预测的要强一些。
这是因为当电磁波在传播中遇到粗糙表面时,反射能量由于散射而散布于所有方向,像灯柱、树叶等这样的物体都会在所有方向上散射能量,这就给接收机提供了额外的能量。
四、传播路径
在一个典型的蜂窝移动通信环境中,移动台总是比基站天线矮很多,接收机与发射机之间的直达路径被建筑物或其他物体所阻碍。
所以,在蜂窝基站与移动台之间的通信不是通过直达路径,而是通过许多其他路径完成的。
在无线通信频段中,从发射机到接收机电磁波的主要传播模式有反射、绕射和散射。
这些经过不同传播路径到达接收机的信号将具有不同的幅度和相位,它们的合成效果将导致接收机收到的信号变得非常复杂。