数学高考知识点导数题型
- 格式:docx
- 大小:37.34 KB
- 文档页数:3
高考数学复习考点题型专题讲解专题43 导数与三角函数的交汇问题1.对于三角函数与幂函数、指数、对数函数混合构成的初等函数问题,常利用导数解决,主要有单调性、极值、最值、零点和不等式证明及求参数范围等问题.2.在解决这些问题时,既要遵循导数解决问题的一般思路和方法,又要注意三角函数本身的性质,特别地要注意三角函数的泰勒公式及常用结论(如x ∈⎝⎛⎭⎪⎫0,π2,sin x <x <tanx 等).类型一 零点问题1.常借助高阶导数,令其为零找到参数讨论的分界点.2.对参数分类后,还常需要对自变量进行讨论.例1(2022·扬州调研)已知函数f (x )=e x -ax sin x -bx +c 的图象与x 轴相切于原点. (1)求b ,c 的值;(2)若f (x )在(0,π)上有唯一零点,求实数a 的取值范围. 解 (1)f ′(x )=e x -a (sin x +x cos x )-b , 依题意,⎩⎨⎧f ′(0)=0,f (0)=0,即⎩⎨⎧1-b =0,1+c =0,解得⎩⎨⎧b =1,c =-1.(2)由(1)得f ′(x )=e x -a (sin x +x cos x )-1, 记g (x )=e x -a (sin x +x cos x )-1, 则g ′(x )=e x -a (2cos x -x sin x ), 所以g ′(0)=1-2a , ①当a >12时,(ⅰ)当x ∈⎝ ⎛⎭⎪⎫0,π2时,g ″(x )=e x+a (3sin x +x cos x )>0,所以g ′(x )在⎝ ⎛⎭⎪⎫0,π2上单调递增,又因为g ′(0)<0,g ′⎝ ⎛⎭⎪⎫π2=e π2+π2a >0,所以存在唯一实数x 0∈⎝ ⎛⎭⎪⎫0,π2,使得g ′(x 0)=0.(ⅱ)当x ∈⎣⎢⎡⎭⎪⎫π2,π时,2cos x -x sin x <0,则g ′(x )>0.由(ⅰ)(ⅱ)可知,x ∈(0,x 0),g ′(x )<0,g (x )单调递减,x ∈(x 0,π),g ′(x )>0,g (x )单调递增. 因为g (0)=0,g (π)=e π+a π-1>0, 所以存在唯一实数x 1∈(x 0,π), 使得g (x 1)=0,所以当x ∈(0,x 1)时,g (x )<0, 即f ′(x )<0,f (x )单调递减;当x ∈(x 1,π),g (x )>0,即f ′(x )>0,f (x )单调递增.因为f (0)=0,f (π)=e π-π-1>0, 所以存在唯一实数x 2∈(x 1,π), 使得f (x 2)=0,即f (x )在(0,π)上有唯一零点,符合题意. ②当a ≤12时,f (x )=e x -ax sin x -x -1≥e x -12x sin x -x -1, 记h (x )=e x-12x sin x -x -1,x ∈(0,π).h ′(x )=e x -12(sin x +x cos x )-1,所以h ″(x )=e x-cos x +12x sin x >e 0-cos x +12x sin x >0,所以h ′(x )在(0,π)上单调递增, 且h ′(x )>e 0-12(sin 0+0cos 0)-1=0,所以h (x )在(0,π)上单调递增,h (x )>e 0-12×0×sin 0-0-1=0,则x ∈(0,π)时,f (x )>0,所以f (x )在(0,π)上没有零点,不合题意,舍去. 综上,a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞. 训练1(2022·苏州八校适考)函数f (x )=x -sin x -cos x . (1)求函数f (x )在⎝ ⎛⎭⎪⎫-π,π2上的极值;(2)证明:F (x )=f (x )-ln x 有两个零点.(1)解 ∵f (x )=x -sin x -cos x , ∴f ′(x )=1-cos x +sin x=1-2cos ⎝ ⎛⎭⎪⎫x +π4,x ∈⎝ ⎛⎭⎪⎫-π,π2,由f ′(x )=0,可得x =-π2或x =0,∴x ∈⎝ ⎛⎭⎪⎫-π,-π2∪⎝ ⎛⎭⎪⎫0,π2,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2分别单调递增;x ∈⎝ ⎛⎭⎪⎫-π2,0,f ′(x )<0,f (x )单调递减, ∴x =-π2时,函数f (x )有极大值f ⎝ ⎛⎭⎪⎫-π2=1-π2;x =0时,函数f (x )有极小值f (0)=-1.(2)证明 ∵F (x )=f (x )-ln x =x -sin x -cos x -ln x ,x >0, ∴h (x )=F ′(x )=1-cos x +sin x -1x,x >0,∴h ′(x )=sin x +cos x +1x 2=2sin ⎝⎛⎭⎪⎫x +π4+1x 2.当x ∈⎝ ⎛⎭⎪⎫0,3π4时,h ′(x )>0,h (x )单调递增,即F ′(x )单调递增,又F ′⎝ ⎛⎭⎪⎫π4=1-4π<0,F ′⎝ ⎛⎭⎪⎫π2=2-2π>0,故存在x 0∈⎝ ⎛⎭⎪⎫π4,π2,F ′(x 0)=0,∴x ∈(0,x 0)时,F ′(x )<0,F (x )单调递减;x ∈⎝ ⎛⎭⎪⎫x 0,3π4时,F ′(x )>0,F (x )单调递增,∴x ∈⎝⎛⎭⎪⎫0,3π4时,函数F (x )min =F (x 0)<F (1)=1-sin 1-cos 1<0,F (e -2)=e -2-sin e -2-cos e -2+2>0,F ⎝ ⎛⎭⎪⎫3π4=3π4-ln 3π4>0,故x ∈⎝ ⎛⎭⎪⎫0,3π4时,F (x )=f (x )-ln x 有两个零点.当x ∈⎣⎢⎡⎭⎪⎫3π4,7π4时,2sin ⎝⎛⎭⎪⎫x +π4≤0, F (x )=x -sin x -cos x -ln x =x -2sin ⎝ ⎛⎭⎪⎫x +π4-ln x ≥x -ln x , 对于函数φ(x )=x -ln x ,则φ′(x )=1-1x =x -1x>0,又φ(1)=1,∴x ∈⎣⎢⎡⎭⎪⎫3π4,7π4,φ(x )>φ(1)=1,即F (x )>0,此时函数F (x )=f (x )-ln x 没有零点. 当x ∈⎣⎢⎡⎭⎪⎫7π4,+∞时,F (x )=x -sin x -cos x -ln x =x -2sin ⎝ ⎛⎭⎪⎫x +π4-ln x ≥x -2-ln x , 由上可知F (x )≥7π4-2-ln 7π4>0, 故当x ∈⎣⎢⎡⎭⎪⎫7π4,+∞时,函数F (x )=f (x )-ln x 没有零点, 综上,函数F (x )=f (x )-ln x 有两个零点. 类型二 证明不等式1.所证不等式不含参数时,常需对自变量分类讨论证明.2.所证不等式含参数时,要注意灵活应用切线不等式或利用参数的范围进行放缩. 例2 已知函数f (x )=ln x +1x,e 为自然对数的底数,e≈2.718.求证:f (x )<e xx+sin x .证明依题意,要证f(x)<e xx+sin x,x>0,即证:x ln x-e x-x sin x+1<0,令h(x)=x ln x-e x-x sin x+1,x>0.①当0<x≤1时,x sin x>0,1-e x<0,x ln x<0,故h(x)<0.②当1<x≤2时,x sin x>0,h(x)<x ln x-e x+1,令u(x)=x ln x-e x+1,x∈(1,2],u′(x)=1+ln x-e x,显然u″(x)=1x-e x在(1,2]上单调递减,u″(x)<u″(1)=1-e<0,所以u′(x)在(1,2]上单调递减,u′(x)<u′(1)=1-e<0,所以u(x)在(1,2]上单调递减,u(x)<u(1)=1-e<0,所以,当x∈(1,2]时,h(x)<u(x)<0.③当x>2时,-1≤sin x≤1,-x≤x sin x≤x,故h(x)≤x ln x-e x+x+1,令v(x)=x ln x-e x+x+1,x>2,v′(x)=2+ln x-e x,显然v″(x)=1x-e x在(2,+∞)上单调递减,v″(x)<v″(2)=12-e2<0,所以v′(x)在(2,+∞)上单调递减,v′(x)<v′(2)=2+ln 2-e2<0,所以v(x)在(2,+∞)上单调递减,v(x)<v(2)=2ln 2-e2+2+1<5-e2<0,所以,当x>2时,h(x)≤v(x)<0.综上所述,当x>0时,h(x)<0,得证.训练2(2022·苏州八校联考)已知函数f(x)=e-x-a ln x-2x(a∈R,x>0).(1)若a=1,x0是函数f(x)的零点,求证:x0·e x0=1;(2)证明:对任意x >0,0<a ≤1,都有a sin x -x ln x <e -x +x 2. 证明 (1)当a =1时,f (x )=e -x -ln x -2x , 由题意知f (x 0)=e -x 0-ln x 0-2x 0=0, 即e -x 0-x 0=x 0+ln x 0=e -x 0+ln e -x 0.令g (x )=x +ln x ,显然g (x )在(0,+∞)上单调递增,x 0,e -x 0>0. 由g (x 0)=g (e -x 0),得x 0=e -x 0, 所以x 0e x 0=1.(2)对∀x >0,令φ(x )=x -sin x ,φ′(x )=1-cos x ≥0,则φ(x )在(0,+∞)上单调递增,且φ(0)=0,所以当x >0时,φ(x )>0,即x >sin x .当0<a ≤1时,e -x +x 2+x ln x -a sin x >e -x +x 2+x ln x -ax ≥e -x +x 2+x ln x -x =x ⎝ ⎛⎭⎪⎫1x e x +x +ln x -1. 令h (x )=1x e x +x +ln x -1=1x ex +ln(x e x )-1,令x e x=t ,t ∈(0,+∞), 所以H (t )=1t+ln t -1,H ′(t )=-1t 2+1t =t -1t2.则H (t )在(0,1)上单调递减,在(1,+∞)上单调递增, 所以H (t )≥H (1)=0,即h (x )≥0, 所以e -x +x 2+x ln x -a sin x >0, 即a sin x -x ln x <e -x +x 2得证. 类型三 不等式恒成立、能成立求参数1.分离参数,归纳为函数的最值问题.2.注意利用已知参数的范围.例3(2022·辽宁协作体模拟改编)已知函数f (x )=14x 3-x 2sin α+x +1,α∈⎣⎢⎡⎦⎥⎤-π6,π2.证明:存在α∈⎣⎢⎡⎦⎥⎤-π6,π2,使得不等式f (x )>e x 有解(e 是自然对数的底数).证明 不等式f (x )>e x 等价于 ⎝ ⎛⎭⎪⎫14x 3-x 2sin α+x +1·e -x >1, 所以只需证⎝ ⎛⎭⎪⎫14x 3-x 2sin α+x +1e -x 的最大值大于1.因为α∈⎣⎢⎡⎦⎥⎤-π6,π2,-1≤-sin α≤12,又x 2∈[0,+∞),所以-x 2sin α≤12x 2,当α=-π6时等号成立,所以⎝ ⎛⎭⎪⎫14x 3-x 2sin α+x +1e -x≤⎝ ⎛⎭⎪⎫14x 3+12x 2+x +1e -x .设函数g (x )=⎝ ⎛⎭⎪⎫14x 3+12x 2+x +1e -x ,g ′(x )=-14x 2(x -1)e -x ,当x ∈(-∞,1)时,g ′(x )≥0,g (x )单调递增,当x ∈(1,+∞),g ′(x )<0,g (x )单调递减.因为g (1)=14+12+1+1e =2.75e >1,所以存在α∈⎣⎢⎡⎦⎥⎤-π6,π2,使得不等式f (x )>e x 有解.训练3(2022·潍坊二模改编)已知函数f (x )=ax +cos x +sin x (a ∈R ). 若f (x )≤1+2sin x +2cos x 在x ∈(0,π]上恒成立,求实数a 的取值范围. 解 f (x )≤1+2sin x +2cos x , 即a ≤⎝ ⎛⎭⎪⎫1+sin x +cos x x min .令g (x )=1+sin x +cos xx,x ∈(0,π],则g ′(x )=(cos x -sin x )x -1-sin x -cos xx2=(x -1)cos x -(x +1)sin x -1x 2.令h (x )=(x -1)cos x -(x +1)sin x -1,则h ′(x )=cos x -(x -1)sin x -sin x -(x +1)cos x =-x (sin x +cos x ) =-2x sin ⎝ ⎛⎭⎪⎫x +π4,当0<x <3π4时,h ′(x )<0,h (x )单调递减; 当3π4<x <π时,h ′(x )>0,h (x )单调递增. 而h (0)=-2<0,h (π)=-π<0, 故h (x )<0在x ∈(0,π]上恒成立, 故g ′(x )<0在x ∈(0,π]上恒成立, 所以g (x )在x ∈(0,π]为减函数, 所以g (x )min =g (π)=0,故a ≤0,所以实数a的取值范围是(-∞,0].类型四必要性探路1.常用探路方法有:取点探路、保号性探路、洛必达探路等.2.{探得的参数范围}⊇{参数取值范围},无需再考虑不在探得参数范围内的情形. 例4(2022·海安模拟)已知函数f(x)=e x+x cos x.(1)判断函数f(x)在[0,+∞)上的单调性,并说明理由;(2)对任意的x≥0,e x+x sin x+cos x≥ax+2,求实数a的取值范围.解(1)函数f(x)在[0,+∞)上是单调增函数,理由如下:因为f(x)=e x+x cos x,所以f′(x)=e x+cos x+x(-sin x).记g(x)=e x-x-1,则g′(x)=e x-1,令g′(x)=0,得x=0.当x>0时,g′(x)>0,g(x)在(0,+∞)上单调递增;当x<0时,g′(x)<0,g(x)在(-∞,0)上单调递减,所以g(x)min=g(0)=0,所以g(x)=e x-x-1≥0,即e x≥x+1.又sin x≤1,cos x≥-1,所以f′(x)≥x+1+cos x+x(-sin x)=x(1-sin x)+(1+cos x)≥0,所以函数f(x)在[0,+∞)上是单调增函数.(2)由题意知e x+x sin x+cos x-ax-2≥0对∀x≥0恒成立,令F(x)=e x+x sin x+cos x-ax-2,∴F ′(x )=e x+sin x +x cos x -sin x -a =e x +x cos x -a ,而F (x )≥F (0)对∀x ≥0恒成立, ∴F ′(0)=1-a ≥0⇒a ≤1(必要性). 下证充分性:当a ≤1时,F (x )=e x +x sin x +cos x -ax -2≥e x +x sin x +cos x -x -2. 令h (x )=e x +x sin x +cos x -x -2,h ′(x )=e x +sin x +x cos x -sin x -1=e x +x cos x -1, 由(1)知,h ′(x )在[0,+∞)上单调递增, ∴h ′(x )≥h ′(0)=0, ∴h (x )在[0,+∞)上单调递增,h (x )≥h (0)=0⇒F (x )≥0符合题意. 综上:实数a 的取值范围为(-∞,1].训练4 已知函数f (x )=2sin x -x cos x -x ,f ′(x )是f (x )的导函数. (1)证明:f ′(x )在区间(0,π)存在唯一的零点; (2)若x ∈[0,π]时,f (x )≥ax 恒成立,求a 的取值范围. (1)证明 因为f (x )=2sin x -x cos x -x ,所以f ′(x )=2cos x -cos x +x sin x -1=cos x +x sin x -1, 令g (x )=cos x +x sin x -1,则g ′(x )=-sin x +sin x +x cos x =x cos x , 当x ∈⎝⎛⎭⎪⎫0,π2时,g ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫π2,π,g ′(x )<0,所以当x =π2时,g (x )的极大值为g ⎝ ⎛⎭⎪⎫π2=π2-1>0,g (0)=0,g (π)=-2,所以g (x )在(0,π)上有唯一零点, 即f ′(x )在(0,π)上有唯一零点. (2)解 当x =π,由不等式f (x )≥ax , 得f (π)=0≥a π,可得a ≤0(必要性). 下证充分性:由(1)知,f ′(x )在(0,π)上有唯一零点x 0使得f ′(x 0)=0,且f ′(x )在(0,x 0)上为正,在(x 0,π)上为负,所以f (x )在[0,x 0]上单调递增,在[x 0,π]上单调递减. 结合f (0)=0,f (π)=0,可知f (x )在[0,π]上非负, 所以x ∈[0,π]时,f (x )≥0. 又当a ≤0,x ∈[0,π]时,ax ≤0, 所以f (x )≥ax ,所以a 的取值范围是(-∞,0].一、基本技能练1.已知函数f (x )=x -12sin x +m ln x +1,g (x )=f (x )+12sin x .当x ≥1时,若不等式g (x )-x -e x -1≤0恒成立,求实数m 的取值范围. 解 由题意知m ln x +1-e x -1≤0在[1,+∞)恒成立.令h(x)=m ln x+1-e x-1,必要性:即证x≥1时,h(x)≤0恒成立,h(1)=0.h′(x)=mx-e x-1,h′(1)=m-1≤0.即h(x)在x=1处保持单调递减趋势时,m≤1.下证充分性:当m≤1,x≥1,m ln x≤ln x.则m ln x+1-e x-1≤ln x+1-e x-1,根据指对不等式ln x≤x-1,e x-1≥x,原式h(x)≤ln x+1-e x-1≤x-1+1-x=0,当且仅当x=1时取等号.故实数m的取值范围为(-∞,1].2.(2022·南京师大附中模拟)已知f(x)=ln(x+1)-ax(a∈R),g(x)=-sin x.若函数f(x)与g(x)的图象恰有一个交点,求a的取值范围.解函数f(x)与g(x)的图象恰有一个交点,等价于h(x)=f(x)-g(x)有一个零点,h(x)=f(x)-g(x)=ln(x+1)-ax+sin x,显然h(0)=0,即函数h(x)除0之外无其他零点.h′(x)=1x+1-a+cos x,令m(x)=1x+1-a+cos x,m′(x)=-1(x+1)2-sin x,当-1<x<0时,-1(x+1)2<-1,则m′(x)=-1(x+1)2-sin x<0,即h′(x)在(-1,0)单调递减.若a≤0,当-1<x<0时,ln(x+1)<0,sin x<0,则h(x)=ln(x+1)-ax+sin x<0;当0<x<π时,ln(x+1)>0,sin x>0,则h(x)=ln(x+1)-ax+sin x>0;当x≥π时,ln(x+1)>1,ln(x+1)+sin x>0,则h(x)=ln(x+1)-ax+sin x>0,即h(x)除0之外无其他零点,符合题意.若0<a<2,当0<x<π时,m′(x)=-1(x+1)2-sin x<0,即h′(x)在(0,π)上单调递减,又h′(0)=2-a>0,h′(π)=1π+1-a-1<0,则存在x0∈(0,π)使h′(x0)=0,即h(x)在(0,x0)上单调递增,在(x0,π)上单调递减,又h(0)=0,x→+∞时,h(x)→-∞,故h(x)在(0,+∞)上至少存在1个零点,不合题意.若a=2,当-1<x<0时,由上知h′(x)在(-1,0)上单调递减,h′(x)>h′(0)=2-a =0,则h(x)在(-1,0)上单调递增,即h(x)<h(0)=0;当x>0时,令n(x)=ln(x+1)-x,则n′(x)=1x+1-1=-xx+1<0,即n(x)单调递减,n(x)<n(0)=0,即ln(x+1)<x,令t(x)=sin x-x,则t′(x)=cos x-1≤0,即t(x)单调递减,t(x)<t(0)=0,即sin x<x,则h (x )=ln(x +1)-2x +sin x <0,即h (x )除0之外无其他零点,符合题意. 若a >2,当-1<x <0时,由上知h ′(x )在(-1,0)单调递减,又-1<1a -1<0,h ′⎝ ⎛⎭⎪⎫1a -1=cos ⎝ ⎛⎭⎪⎫1a -1>0,h ′(0)=2-a <0,则存在x 1∈⎝ ⎛⎭⎪⎫1a -1,0使h ′(x 1)=0,即h (x )在(-1,x 1)上单调递增,(x 1,0)上单调递减, 又h (0)=0,x →-1时,h (x )→-∞, 故h (x )在(-1,0)存在1个零点,不合题意. 综上,a 的取值范围是{a |a ≤0或a =2}.3.(2022·苏州模拟)已知a ∈R ,函数f (x )=e x -a sin x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2.(1)讨论f (x )的导函数f ′(x )零点的个数; (2)若f (x )≥3-12a ,求a 的取值范围. 解 (1)令g (x )=f ′(x )=e x -a cos x ,g ′(x )=e x +a sin x .若a <1,则f ′(x )=e x -a cos x >1-1=0, 所以f ′(x )的零点个数为0; 若a =1,g ′(x )=e x +sin x >0, 所以f ′(x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增,又f ′(0)=e 0-cos 0=1-1=0, 所以f ′(x )的零点个数为1;若a >1,g ′(x )=e x+a sin x >0, 所以f ′(x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增, 又f ′(0)=1-a <0,f ′⎝ ⎛⎭⎪⎫π2=e π2>0,所以f ′(x )的零点个数为1.综上得,当a <1时,f ′(x )的零点个数为0;当a ≥1时,f ′(x )的零点个数为1. (2)由(1)知,若a ≤1,f ′(x )=e x -a cos x ≥0,故f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增,所以f (x )min =f (0)=1>3-12≥3-12a ,所以a ≤1满足题意; 若a >1,存在唯一x 0∈⎝ ⎛⎭⎪⎫0,π2,使得f ′(x 0)=e x 0-a cos x 0=0,且当x ∈(0,x 0)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫x 0,π2时,f ′(x )>0, 所以f (x )在(0,x 0)上单调递减,在⎝ ⎛⎭⎪⎫x 0,π2上单调递增.所以f (x )min =f (x 0)=e x 0-a sin x 0=a cos x 0-a sin x 0≥3-12a , 化简得cos ⎝ ⎛⎭⎪⎫x 0+π4≥6-24=cos 5π12,又x 0∈⎝ ⎛⎭⎪⎫0,π2,所以x 0∈⎝ ⎛⎦⎥⎤0,π6.设h (x )=cos x e x ,x ∈⎝⎛⎦⎥⎤0,π6, ∴h ′(x )=-sin x -cos xe x <0,所以y =cos x e x 在⎝ ⎛⎦⎥⎤0,π6上单调递减,所以1a =cos x 0e x 0∈⎣⎢⎡⎭⎪⎫32e π6,1, 解得a ∈⎝ ⎛⎦⎥⎤1,233e π6.综上所述,a 的取值范围为⎝ ⎛⎦⎥⎤-∞,233e π6.二、创新拓展练4.(2022·温州测试)已知函数f (x )=e x ·cos x (e 为自然对数的底数). (1)求证:当x ∈(0,π)时,f (x )<x +1;(2)设f (x )=m (-2π<x <2π)的解为x i (i =1,2,…),x i >x i +1. (ⅰ)当x i ∈⎝ ⎛⎭⎪⎫0,π2时,求x i -f (x i +1)的取值范围;(ⅱ)判断是否存在x i <π,使得x i +x i +1≥π2成立?并说明理由. (1)证明 设g (x )=e x ·cos x -x -1, 则g ′(x )=e x ·(cos x -sin x )-1. 令F (x )=g ′(x ),则F ′(x )=e x ·(-sin x -sin x ) =-2e x ·sin x . ∵x ∈(0,π), ∴F ′(x )<0,∴g ′(x )在(0,π)上单调递减, ∴g ′(x )<g ′(0)=0, ∴g (x )在(0,π)上单调递减,∴g (x )<g (0)=0,∴当x ∈(0,π)时,f (x )<x +1.(2)解 (ⅰ)∵f ′(x )=e x ·(cos x -sin x )=2e x cos ⎝⎛⎭⎪⎫x +π4,∴f (x )在⎝ ⎛⎭⎪⎫-2π,-7π4,⎝ ⎛⎭⎪⎫-3π4,π4,⎝ ⎛⎭⎪⎫5π4,2π上单调递增,在⎝ ⎛⎭⎪⎫-7π4,-3π4,⎝ ⎛⎭⎪⎫π4,5π4上单调递减,且f ⎝ ⎛⎭⎪⎫-3π2=f ⎝ ⎛⎭⎪⎫-π2=f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫3π2=0,f (0)=1,f (π)=-e π<-1.又当x <0时,e x ∈(0,1),cos x ∈[-1,1], ∴f (x )∈(-1,1), ∴f (x )的部分图象如图所示.观察图象知,当x i ∈⎝ ⎛⎭⎪⎫0,π2时,又x i >x i +1,必有x i ∈⎝ ⎛⎭⎪⎫π4,π2.设h (x i )=x i -f (x i +1)=x i -f (x i )=x i -e x i ·cos x i ,x i ∈⎝ ⎛⎭⎪⎫π4,π2.∵x i ∈⎝ ⎛⎭⎪⎫π4,π2,因f (x )在⎝ ⎛⎭⎪⎫π4,5π4上单调递减,则e xi ·cos x i 在⎝ ⎛⎭⎪⎫π4,π2上单调递减,因此h (x i )=x i -e x i ·cos x i 在⎝ ⎛⎭⎪⎫π4,π2上单调递增,∴x i -f (x i +1)∈⎝ ⎛⎭⎪⎫π4-22e π4,π2.(ⅱ)不存在,理由如下:①当x i ∈(-∞,0]时,x i +1不存在或者显然x i +x i +1<π2,即x i +x i +1≥π2不成立; 因x i <π,则②当x i ≤π4时,由x i >x i +1,必有x i +x i +1<π2,即x i +x i +1≥π2不成立; ③当x i ∈⎣⎢⎡⎭⎪⎫π2,π时,x i +1不存在或者x i +1≤-π2,此时x i +x i +1<π-π2=π2,即x i +x i+1≥π2不成立; ④当x i ∈⎝ ⎛⎭⎪⎫π4,π2时,x i +1∈⎝ ⎛⎭⎪⎫-π2,π4,构造函数t (x )=f ⎝ ⎛⎭⎪⎫π2-x -f (x ),x ∈⎝ ⎛⎭⎪⎫π4,π2,则t ′(x )=-f ′⎝ ⎛⎭⎪⎫π2-x -f ′(x )=-e π2-x ·(sin x -cos x )-e x ·(cos x -sin x )=(cos x -sin x )·(e π2-x -e x ).因而当x ∈⎝ ⎛⎭⎪⎫π4,π2时,cos x -sin x <0,e π2-x -e x<e π2-π4-e π4=0,∴t ′(x )>0,∴t (x )在⎝ ⎛⎭⎪⎫π4,π2上单调递增,∴t (x )>t ⎝ ⎛⎭⎪⎫π4=0,∴f ⎝ ⎛⎭⎪⎫π2-x >f (x ),x ∈⎝ ⎛⎭⎪⎫π4,π2,∴f ⎝ ⎛⎭⎪⎫π2-x i >f (x i )=f (x i +1).又-π2<x i+1<π4,0<π2-x i<π4且f(x)在⎝⎛⎭⎪⎫-π2,π4上单调递增,∴π2-x i>x i+1,∴x i+x i+1<π2,即x i+x i+1≥π2不成立.综上所述,不存在x i+1<x i<π,使得x i+x i+1≥π2.。
导数题型归纳例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.例2:设函数),10(3231)(223R b a b x a ax x x f ∈<<+-+-= (Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围.例3;已知函数32()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-,326()(1)3(0)2t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域;(Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。
例4:已知R a ∈,函数x a x a x x f )14(21121)(23++++=. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值;(Ⅱ)如果函数)(x f 是),(∞+-∞上的单调函数,求a 的取值范围.例5、已知函数3211()(2)(1)(0).32f x x a x a x a =+-+-≥ (I )求()f x 的单调区间;(II )若()f x 在[0,1]上单调递增,求a 的取值范围。
子集思想例6、已知函数232)1(31)(x k x x f +-=,kx x g -=31)(,且)(x f 在区间),2(+∞上为增函数. (1) 求实数k 的取值范围;(2) 若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.例7、已知函数321()22f x ax x x c =+-+ (1)若1x =-是()f x 的极值点且()f x 的图像过原点,求()f x 的极值;(2)若21()2g x bx x d =-+,在(1)的条件下,是否存在实数b ,使得函数()g x 的图像与函数()f x 的图像恒有含1x =-的三个不同交点?若存在,求出实数b 的取值范围;否则说明理由。
高中高考导数考点知识点高中数学是高考的重要科目之一,其中导数是一个重要的考点。
导数是微积分中的一个重要概念,它是函数在某一点处的变化率。
在高考中,导数的考察主要涉及到函数的求导和应用。
本文将介绍高中高考导数考点的知识点,帮助同学们对导数的理解和掌握。
一、导数的定义和求导法则导数的定义是函数在某一点处的极限值,用符号f’(x)表示。
求导的法则主要包括常数的导数为0、幂函数的导数、指数函数和对数函数的导数、三角函数的导数以及求导法则的综合运用。
1.1 常数的导数为0常数函数的导数为0,即f'(c)=0,其中c为常数。
1.2 幂函数的导数幂函数f(x) = x^n (n为正整数)的导数为f'(x) = nx^(n-1)。
1.3 指数函数和对数函数的导数指数函数f(x) = a^x (a>0, a≠1)和自然对数函数f(x) = ln(x)的导数分别为f'(x) = a^xlna和f'(x) = 1/x。
1.4 三角函数的导数三角函数的导数是根据基本三角函数的导数法则得出的。
常用的三角函数的导数有:f'(x) = cos(x)、f'(x) = sin(x)、f'(x) = -sin(x)和f'(x) = cos(x)。
1.5 求导法则的综合运用在求导过程中,可以根据求导法则进行综合运用,例如使用常数乘法法则、和差法则、乘积法则、商法则和复合函数求导法则等。
二、导数的性质和运算法则导数具有一些重要的性质和运算法则,这些性质和法则在求导过程中起到了重要的作用。
2.1 导数的性质导数具有以下性质:导数存在的函数必然是连续的、导数可以表示切线的斜率、若在某点导数存在则函数在该点可导等。
2.2 导数的运算法则导数具有一些运算法则,如常数倍法则、和差法则、乘积法则、商法则、复合函数导数法则和逆函数导数法则等。
这些法则可以帮助我们更快地求得函数的导数。
高考数学热点必会题型第4讲 导数求切线及公切线归类 ——每天30分钟7天轻松掌握一、重点题型目录【题型】一、零点存在定理法判断函数零点所在区间 【题型】二、方程法判断函数零点个数 【题型】三、数形结合法判断函数零点个数 【题型】四、转化法判断函数零点个数 【题型】五、利用函数的零点或方程有根求参数 【题型】六、利用函数的交点或交点个数求参数 【题型】七、一元二次不等式恒成立问题 【题型】八、一元二次不等式能成立问题 二、题型讲解总结第一天学习及训练【题型】一、求曲线切线的斜率与倾斜角例1.(2023·全国·高三专题练习)函数()ln f x x x =+在1x =处的切线的斜率为( ) A .2 B .-2 C .0 D .1【答案】A【分析】求出函数的导数后可得切线的斜率. 【详解】()11f x x'=+,故()12f '=,故曲线()y f x =在1x =处的切线的斜率为2, 故选:A.例2.(2023·全国·高三专题练习)函数()f x 的导函数为()f x ',若已知()f x '的图像如图,则下列说法正确的是( )A .()f x 一定存在极大值点B .()f x 有两个极值点C .()f x 在(),a -∞单调递增D .()f x 在x =0处的切线与x 轴平行【答案】ACD【分析】根据导函数()f x '的图象,得到函数的单调区间与极值点,即可判断ABC ,利用导数的几何意义可判断D.【详解】由导函数()f x '的图象可知,当x a <时()0f x '≥,当x a >时()0f x '<,当0x =或x a =时()0f x '=,则()f x 在(),a -∞上单调递增,在(),a +∞上单调递减,所以函数()f x 在x a =处取得极大值,且只有一个极值点,故AC 正确,B 错误; 因为()00f '=,所以曲线()y f x =在0x =处切线的斜率等于零,即()f x 在x =0处的切线与x 轴平行,故D 正确. 故选:ACD.例3.(2023·全国·高三专题练习)若函数()()ln 2f x x x =+,则( ) A .()f x 的定义域是()0,∞+ B .()f x 有两个零点C .()f x 在点()()1,1f --处切线的斜率为1-D .()f x 在()0,∞+递增 【答案】BCD【分析】对A ,根据定义域即可判断;对B ,直接解方程可求解;对C ,求出()f x 在=1x -处的导数可得;对D ,求出函数导数,根据导数可判断单调性. 【详解】对于A :函数的定义域是()2,-+∞,故A 错误;对于B :令()0f x =,即()ln 20x x +=,解得:0x =或=1x -,故函数()f x 有2个零点,故B 正确;对于C :斜率()()11ln 12112k f -'=-=-++=--+,故C 正确; 对于D :()()ln 22xf x x x '=+++,0x >时, ()ln 20x +>,02xx >+,故0f x,()f x 在()0,∞+单调递增,故D 正确.故选:BCD.【题型】二、求在曲线上一点处的切线方程或斜率例4.(2023·上海·高三专题练习)2(5)3lim2,(3)32x f x f x →--==-,()f x 在(3,(3))f 处切线方程为( ) A .290x y ++= B .290x y +-= C .290x y -++= D .290x y -+-=【答案】B【分析】根据已知条件,结合导数的几何意义,求出()32f '=-再结合直线的点斜式公式,即可求解. 【详解】由已知,2(5)3lim2,(3)32x f x f x →--==-,令2x x ∆=-,∴()()33limx f x f x∆→-∆-∆=()()()033lim32x f x f f x∆→-∆--'==-∆,解()32f '=-,∴()f x 在(3,(3))f 处切线方程为32(3)y x -=--,即290x y +-=.故选:B .【点睛】本题主要考查导数的几何意义,考查转化能力,属于基础题.例6.(2023·全国·高三专题练习)在平面直角坐标系xOy 中,抛物线2:2(0)C x py p =>的焦点为,F P 是C 上位于第一象限内的一点,若C 在点P 处的切线与x 轴交于M 点,与y 轴交于N 点,则与PF 相等的是( ) A .MN B .FN C .PM D .ON【答案】B【分析】设2,(0)2a P a a p ⎛⎫> ⎪⎝⎭,求出222a pPF p =+,得到PF FN ON =>,PF PM MN >=,即得解.【详解】解:如图,设2,(0)2a P a a p ⎛⎫> ⎪⎝⎭,由22x y p =,得x y p '=, 所以C 在点P 处的切线方程为()22a a y x a p p -=-,从而2,0,0,22a a M N p ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,根据抛物线的定义,得2;22a pPF p =+ 又(0,)2pF ,222222p a a p FN p p ⎛⎫=--=+ ⎪⎝⎭,所以;PF FN ON => 由2,,,022a a P a M p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,20,2a N p ⎛⎫- ⎪⎝⎭,得M 是PN 的中点,则MF PN ⊥,从而PF PM MN >=. 故选:B .例7.(2023·江苏南京·高三阶段练习)已知双曲线C :224x y -=,曲线E :2y ax x b =++,记两条曲线过点()1,0的切线分别为1l ,2l ,且斜率均为正数,则( ) A .若=0a ,1b =,则C 与E 有一个交点 B .若=1a ,=0b ,则C 与E 有一个交点C .若0a b ,则1l 与E 夹角的正切值为7-D .若==1a b ,则1l 与2l 【答案】AC【分析】利用双曲线的渐近线、切线,利用导数求抛物线的切线,结合到角公式、向量的夹角公式进行求解.【详解】对于A ,若=0a ,1b =,则21y ax x b x =++=+, 因为双曲线C :224x y -=的渐近线为y x =±, 所以曲线E :=+1y x 与双曲线C 的渐近线为=y x 平行, 所以C 与E 有一个交点,故A 正确;对于B ,若=1a ,=0b ,则曲线E :2y x x =+,与双曲线C :224x y -=联立,则()22240x x x -+-=,即43240x x ++=,令()4324h x x x =++,则()()32246223h x x x x x '=+=+,则由()0h x '>有32x >-,由()0h x '≤有32x <-,所以()min 302h x h ⎛⎫=-> ⎪⎝⎭,所以43240x x ++=无解,故B 错误;对于C ,若0a b ,曲线E :=y x ,对于双曲线C :224x y -=,易知过点()1,0的切线的斜率显然存在,设切线方程为()1y k x =- ,与224x y -=联立有:()22221240k x k x k -+--=,由()()4222444116120k k k k ∆=++-=-=,解得k =因为斜率均为正数,所以1l为:)1y x =-, 则1l 与E17=--C 正确; 对于D ,若==1a b ,曲线E :21y x x =++,则21y x '=+,则1|3x y ='=, 则2l 为:()31y x =- ,其方向向量()1,3m = ,又1l为:)1y x =-,其方向向量231,3n ⎛= ⎝⎭, 所以3cos ,70m n m n m n⋅+==,故D 错误. 故答案为:AC.例8.(2023·江苏·苏州中学高三阶段练习)已知函数()()e e x xf x x -=- ,则( )A .()f x 在()0,∞+单调递增B .()f x 有两个零点C .()=y f x 在点()()ln 2,ln 2f 处切线的 斜率为35ln 222+D .()f x 是奇函数 【答案】AC【分析】求导,运用导函数的符号判断单调性,并由此判断零点数量,运用定义法判断奇偶性.【详解】()()'=e e +e +e ,>0x x x xf x x x --- 时,e e >0x x --,()()()'e +e >0,>0,x x x f x f x -∴∴ 在()0,+∞ 上单调递增,A 正确;当0x < 时,()'0f x < ,单调递减,∴()f x 在0x = 处有极小值,()00f = ,()f x 有且仅有一个零点,B 错误;()'1135ln2=2+2+ln2=+ln22222f -⎛⎫ ⎪⎝⎭ ,C 正确; ()()()()()=e e =e e =,x x x x f x x x f x f x ------∴为偶函数,D 错误;故选:AC .第二天学习及训练【题型】三、利用导数求直线的倾斜角或倾斜角范围例9.(2023·全国·高三专题练习)已知()()2cos 0cos 2f x x f x π⎛⎫=-+ '⎪⎝⎭,则曲线()y f x =在点33,44f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为( )A B .C .D .-【答案】D【分析】根据导数的几何意义,写出切线方程的公式,直接计算求解即可【详解】对()()()2cos 0cos 2sin 0cos 2x f x x f x f x π⎛⎫-+=+' ⎝⎭=⎪',求导可得,()()2cos 0sin f x x f x ''=-,得到(0)2f '=,所以,()22sin cos x x f x +=,所以,()2cos 2sin f x x x '=-,332cos 2sin 4434f πππ⎛⎫'=-=- ⎪⎝⎭故选D例10.(2023·全国·高三专题练习)已知点M 是曲线()22ln 5f x x x x =+-上一动点,当曲线在M 处的切线斜率取得最小值时,该切线的倾斜角为( ) A .4πB .3π C .23π D .34π 【答案】D【分析】先求出()()2250f x x x x'=+->,再利用基本不等式求解即可. 【详解】根据题意得,()()2250f x x x x'=+->,所以()22551f x x x '=+-≥=-,当且仅当1x =时成立, 所以该切线的倾斜角为:34π. 故选:D.例11.(2022·江西省定南中学高二阶段练习(理))若()ln f x x x =,则()f x 图像上的点的切线的倾斜角α满足( ) A .一定为锐角 B .一定为钝角 C .可能为0︒ D .可能为直角【答案】C【分析】求出导函数,判断导数的正负,从而得出结论. 【详解】()ln 1f x x '=+,10e x <<时,()0f x '<,()f x 递减,1ex >时,()0f x '>,()f x 递增,而11ln 10e e f ⎛⎫'=+= ⎪⎝⎭,所以切线斜率可能为正数,也可能为负数,还可以为0, 则倾斜角可为锐角,也可为钝角,还可以为0︒,当90α=时,斜率不存在,而()f x '存在,则90α=不成立.故选:C .例12.(2022·全国·高三专题练习)已知函数()()ln 0sin 0x x f x x x ⎧-<=⎨≥⎩,,, ()020x kx x g x x >⎧=⎨≤⎩,,,若x 1、x 2、x 3,x 4是方程()()f x g x =仅有的4个解,且x 1<x 2<x 3<x 4,则( ) A .0<x 1x 2<1 B .x 1x 2>1 C .43πtan π2x ,⎛⎫∈ ⎪⎝⎭D .4πtan π2x ,⎛⎫∈ ⎪⎝⎭【答案】AC【分析】分别作出函数()()f x ,g x 的图象,根据图象得出x 1、x 2、x 3,x 4的数量关系及范围即可求出结果.【详解】如图所示,|ln()|y x =-与2x y =的图象在(,0)-∞上有两个交点,所以()()12ln ln x x -<--,则()12ln 0x x <,则1201x x <<,故A 正确;|sin |y x =与y kx =的图象在(0,)+∞上有两个交点,则43,2x ππ⎛⎫∈ ⎪⎝⎭,且直线y kx =与|sin |y x =在4x x =处相切,所以44sin x kx -=,由导数几何意义得4cos x k -=,将上述两式相除得443tan ,2x x ππ⎛⎫=∈ ⎪⎝⎭,故C 正确.故选:AC.【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 【题型】四、求在过一点的切线方程例13.(2023·全国·高三专题练习)过点()0,P b 作曲线e x y x =的切线,当240e b -<<时,切线的条数是( ) A .0 B .1C .2D .3【答案】D【分析】设切点(),e mm m ,由导数几何意义可表示出切线方程,代入()0,P b 可将问题转化为方程2e m b m =-的解的个数的求解;令()2e mf m m =-,利用导数可得()f m 图象,根据y b=与()f m 图象交点个数可确定方程解的个数,进而得到切线条数.【详解】设切点为(),e mm m ,()1e x y x '=+,∴切线斜率()1e m k m =+, ∴切线方程为:()()e 1e m m y m m x m -=+-;又切线过()0,P b ,()2e 1e e m m mb m m m m ∴=-+=-;设()2e m f m m =-,则()()2e mf m m m '=-+,∴当()(),20,m ∈-∞-+∞时,()0f m '<;当()2,0m ∈-时,()0f m '>;()f m ∴在(),2-∞-,()0,∞+上单调递减,在()2,0-上单调递增,又()242e f -=-,()00f =,()0f m ≤恒成立,可得()f m 图象如下图所示,则当240e b -<<时,y b =与()f m 有三个不同的交点, 即当240eb -<<时,方程2e m b m =-有三个不同的解,∴切线的条数为3条. 故选:D.例14.(2023·全国·高三专题练习)若过点(,)a b 可以作曲线ln y x =的两条切线,则( ) A .ln a b < B .ln b a <C .ln b a <D .ln a b <【答案】D【分析】设切点坐标为00(,)x y ,由切点坐标求出切线方程,代入坐标(,)a b ,关于0x 的方程有两个不同的实数解,变形后转化为直线与函数图象有两个交点,构造新函数由导数确定函数的图象后可得.【详解】设切点坐标为00(,)x y ,由于1y x'=,因此切线方程为0001ln ()y x x x x -=-,又切线过点(,)a b ,则000ln a x b x x --=,01ln ab x x +=+, 设()ln a f x x x =+,函数定义域是(0,)+∞,则直线1y b =+与曲线()ln af x x x =+有两个不同的交点,221()a x af x x x x-'=-=, 当0a ≤时,()0f x '>恒成立,()f x 在定义域内单调递增,不合题意;当0a >时,0x a <<时,()0f x '<,()f x 单调递减,x a >时,()0f x '>,()f x 单调递增,所以min ()()ln 1f x f a a ==+,结合图像知1ln 1b a +>+,即ln b a >. 故选:D.例15.(2023·全国·高三专题练习)过曲线()3:C f x x ax b =-+外一点1,0A 作C 的切线恰有两条,则( ) A .a b = B .1a b -= C .1b a =+ D .2a b =【答案】A【分析】设出切点,求出切点处的导函数即切线的斜率,据点斜式写出切线的方程,将切点代入,列出关于切点横坐标的方程,据题意此方程有两个根,构造函数,通过导函数求出两个极值,令极值为0,求出a ,b 的关系.【详解】()23f x x a '=-,过点1,0A 作曲线C 的切线,设切点()()00,x f x ,则切线方程为:()()2031y x a x =--, 将()()00,x f x 代入得:()()()230000031f x x a x x ax b =--=-+ 即3200230x x a b -+-=(*) 由条件切线恰有两条,方程(*)恰有两根.令()3223u x x x a b =-+-,()()26661u x x x x x '=-=-,显然有两个极值点0x =与1x =,于是()00u =或()10u =当()00u =时,a b =;当()10u =时,1a b -=,此时()()()32111f x x ax a x x x a =-+-=-++-经过()1,0与条件不符,所以a b =, 故选:A.例16.(2023·江西·赣州市赣县第三中学高三期中(理))已知定义域为R 的奇函数()f x 满足:()()ln ,0121,1x x x f x f x x <≤⎧=⎨->⎩,若方程()12f x kx =-在[]1,2-上恰有三个根,则实数k 的取值范围是________. 【答案】11ln 2,2⎛⎫- ⎪⎝⎭【分析】由题可知直线1:2l y kx =-与函数()y f x =的图像有三个交点,利用导数研究函数的性质,利用数形结合思想能求出实数k 的取值范围.【详解】定义为R 的奇函数()f x 满足:()()ln ,0121,1x x x f x f x x <≤⎧=⎨->⎩,方程1()2f x kx =-在[]1,2-上恰有三个根,即直线1:2l y kx =-与函数()y f x =的图像有三个交点, 由()f x 是R 上的奇函数,则(0)0f =,当01x <≤时,()ln f x x x =,则()ln 1f x x '=+, 当10e x <<时,()0f x '<,当11ex <≤时,()0f x '>,()f x ∴在10,e ⎛⎫⎪⎝⎭上递减,()f x 在1,1e ⎛⎤ ⎥⎝⎦上递增,结合奇函数的对称性和“周期现象”得()f x 在[1-,2]上的图像如下:由于直线1:2l y kx =-过定点10,2A ⎛-⎫ ⎪⎝⎭,如图,连接A ,(1,0)B 两点作直线111:22l y x =-, 过点A 作()ln (01)f x x x x =<<的切线2l ,设切点0(P x ,0)y ,其中000ln y x x =,()ln 1f x x '=+,则斜率20ln 1l k x =+, 切线20000:ln (ln 1)()l y x x x x x -=+-过点10,2A ⎛-⎫ ⎪⎝⎭,则00001ln (ln 1)(0)2x x x x --=+-,即012x =,则21ln 11ln 22l k =+=-,当直线1:2l y kx =-绕点10,2A ⎛-⎫ ⎪⎝⎭在1l 与2l 之间旋转时,直线1:2l y kx =-与函数()y f x =在[1-,2]上的图像有三个交点,故11ln 2,2k ⎛⎫∈- ⎪⎝⎭.故答案为:11ln 2,2⎛⎫- ⎪⎝⎭例17.(2023·全国·高三专题练习)若过点()1,P t 可作出曲线3y x =的三条切线,则实数t 的取值范围是___________ 【答案】()0,1【分析】根据函数切线的求解方法,设切点求切线方程,代入点P ,根据方程与函数的关系,将问题转化为两个函数求交点问题,利用导数,作图,可得答案.【详解】由已知,曲线3y x =,即令3()f x x =,则()23f x x '=,设切点为300(,)x x ,切线方程的斜率为()2003f x x '=,所以切线方程为:00320(3)y x x x x -=-,将点()1,P t 代入方程得:320003(1)t x x x -=-,整理得230032t x x =-,设函数23()32g x x x =-,过点()1,P t 可作出曲线3y x =的三条切线, 可知两个函数图像y t =与23()32g x x x =-有三个不同的交点,又因为()()26661g x x x x x '=-=-,由()0g x '=,可得0x =或1x =,则当0x <或1x >时,()0g x '<;当01x <<时,()0g x '>, 所以函数()g x 在(,0)-∞,(1,)+∞上单调递减,在(0,1)上单调递增,所以函数()g x 的极大值为(1)321g =-=,函数()g x 的极小值为(0)000g =-=, 如图所示,当()0,1t ∈时,两个函数图像有三个不同的交点. 故答案为:()0,1.第三天学习及训练【题型】五、利用导数值求出参数值例18.(2023·上海·高三专题练习)已知P 是曲线)2:ln C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)⎡⎣B .)⎡⎣C .(,-∞D .(-∞【答案】D【分析】对函数求导,利用导数的几何意义以及给定倾斜角的范围,转化为恒成立问题求解a 的范围即可.【详解】因为)2ln y x x a x =++,所以12y x a x'=++, 因为曲线在M 处的切线的倾斜角ππ,32θ⎡⎫∈⎪⎢⎣⎭,所以πtan3y ≥'0x >恒成立,即12x a x+≥0x >恒成立,即12a x x≤+,又12x x +≥12x x =,即x =时,等号成立,故a ≤所以a 的取值范围是(-∞. 故选:D .例19.(2023·全国·高三专题练习)若曲线()ln a xf x x=在点(1,f (1))处的切线方程为1y x =-,则a =( ) A .1 B .e 2C .2D .e【答案】A【分析】利用导数的几何意义求解. 【详解】解:因为曲线()ln a xf x x=, 所以()()21ln a x f x x -'=, 又因为曲线()ln a xf x x=在点(1,f (1))处的切线方程为1y x =-,所以()11f a '==, 故选:A例20.(2023·全国·高三专题练习)首钢滑雪大跳台是冬奥史上第一座与工业旧址结合再利用的竞赛场馆,它的设计创造性地融入了敦煌壁画中飞天的元素,建筑外形优美流畅,飘逸灵动,被形象地称为雪飞天.中国选手谷爱凌和苏翊鸣分别在此摘得女子自由式滑雪大跳台和男子单板滑雪大跳台比赛的金牌.雪飞天的助滑道可以看成一个线段PQ 和一段圆弧QM 组成,如图所示.假设圆弧QM 所在圆的方程为22:(25)(2)162C x y ++-=,若某运动员在起跳点M 以倾斜角为45且与圆C 相切的直线方向起跳,起跳后的飞行轨迹是一个对称轴在y 轴上的抛物线的一部分,如下图所示,则该抛物线的轨迹方程为( )A .232(1)y x =--B .21364y x =-- C .232(1)x y =-- D .2364x y =-+【答案】C【分析】由题意可得到直线CM 所在的方程和圆方程联立求得点M 的坐标,设所求抛物线方程2y ax c =+,求导,根据导数的几何意义结合题意,可求得a,c ,即得答案. 【详解】由于某运动员在起跳点M 以倾斜角为45且与圆C 相切的直线方向起跳, 故1CM k =-,所以直线CM 所在的方程为:2(25)y x -=-+,代入22(25)(2)162x y ++-=,解得167x y =-⎧⎨=-⎩ 或3411x y =-⎧⎨=⎩ (舍,离y 轴较远的点),所以点M 的坐标为(16,7)--.由于起跳后的飞行轨迹是一个对称轴在y 轴上的抛物线的一部分, 故设抛物线方程为:2y ax c =+,则2y ax '=,则由M 点处切线斜率为1可得321a -=,132a ∴=-, 又217(16)32c -=--+,解得1c =, 所以该抛物线的轨迹方程为21132y x =-+,即232(1)x y =--, 故选:C.例21.(2023·全国·高三专题练习)已知奇函数()()()()220f x x x ax b a =-+≠在点()(),a f a 处的切线方程为()y f a =,则b =( )A .1-或1B .C .2-或2D .【答案】D【分析】由函数为奇函数可得2b a =,根据切线的斜率为0建立方程求出a 即可得解.【详解】由()()()()220f x x x ax b a =-+≠可得32()(2)2f x ax b a x bx =+--,因为()()f x f x -=-,所以20b a -=,解得2b a =.所以()424y f a a a ==-,故切线斜率()0k f a '==,又2()(34)f x a x '=-,所以2()(34)0f a a a '=-=,解得a =a =,所以b =故选:D例22.(2023·上海·高三专题练习)设函数()ln f x x x =,()1x g x x =+. (1)若直线12y x b =+是曲线()f x 的一条切线,求b 的值; (2)证明:①当01x <<时,()()()112g x f x x x ⋅>-; ②0x ∀>,()()2e-<g x f x .(e 是自然对数的底数,e 2.718≈)【答案】(1)12e --(2)①证明见解析②证明见解析【分析】(1)首先利用导函数的几何意义求出切点,再将切点代入切线即可求出b ; (2)①将原不等式化简为1()2ln 0h x x x x=-+>,然后利用导函数求()h x 在(0,1)上的最大值大于0即可;②结合①中条件,利用放缩法只需证明2112122ex x x -+<+,然后利用隐零点证明不等式在(0,1)上恒成立即可,最后结合()f x 和()g x 的单调性即可证明原不等式在[1,)+∞上恒成立. (1)由()ln f x x x =,则'()ln 1f x x =+,设12y x b =+在()f x 上的切点为000(,ln )x x x ,从而1'20001()ln 1e 2f x x x -=+=⇒=,故12y x b =+在()f x 上的切点为11221(e ,e )2---,将11221(e ,e )2---代入12y x b =+得,11122211e e e 22b b ----=+⇒=-,故b 的值为12e --. (2)①当01x <<时,()()()1112ln 02g x f x x x x x x⋅>-⇔-+>, 不妨令1()2ln h x x x x =-+,则2'2221(1)()10x h x x x x -=--=-<, 故()h x 在(0,1)上单调递减,从而对(0,1)x ∀∈,都有()(1)0h x h >=,故当01x <<时,()()()112g x f x x x ⋅>-. ②(i)由①知,当01x <<时,()()()112g x f x x x ⋅>-, 从而21ln (1)2x x x >-,故()()211122x g x f x x x -<-++, 欲证()()2e -<g x f x ,只需证2112()122ex x x x ϕ=-+<+, 则2'2211(1)()(1)(1)x x x x x x ϕ-+=-=++,令2()1(1)x x x φ=-+,则'2()(1)2(1)0x x x x φ=-+-+<, 从而()x φ在(0,1)上单调递减,因为22111119()1(1)1(1)10e e e e 24e φ=-+>-+=->,219191966139111040404064000φ⎛⎫⎛⎫=-+=-< ⎪ ⎪⎝⎭⎝⎭,由零点存在的基本定理可知,0119,e 40x ⎛⎫∃∈ ⎪⎝⎭,使得2000()1(1)0x x x φ=-+=,从而20000(1)1x x x x =++, 结合()x φ在(0,1)上单调递减可知,'0()00x x x ϕ>⇒<<;'0()01x x x ϕ<⇒<<,故()ϕx 在0(0,)x 上单调递增,在0(),1x 上单调递减, 从而222320max 00000000111111()()(1)1222222x x x x x x x x x x ϕϕ==-+=+-+=+++, 故32max 1911912()()()0.72402402ex ϕ<+⋅+<<, 即当01x <<时,()()2e-<g x f x ; (ii) 由'1()ln 10e f x x x =+>⇒>-,从而()f x 在1[,)e-+∞上单调递增,故当1x ≥时,()(1)0f x f ≥=,又因为()1111x g x x x ==-++在(0,)+∞上单调递增, 故当1e x ≤≤时,()()e 2()11e 1ex x g x f x f x x x -=-<≤<+++, 当e x >时,()(e)e f x f >=,此时()()121e<01eg x f x x -<--<+, 综上所述,0x ∀>,()()2e-<g x f x . 【点睛】利用隐零点证明不等式需要注意的地方:一、在利用隐零点求函数最值的时候,一定要精确隐零点所在区间I 的端点值,否则在证明的时候放缩过大或过小都很难求证;二、二分法是一种精确隐零点所在区间I 的一种较好的方法. 【题型】六、已知切线的斜率求参数方程例23.(2023·江苏南京·高三阶段练习)已知函数()2e ,<1=e ,1x x x f x x -≥⎧⎨⎩若方程()0f x x a --=有三个不同的解,则a 的取值范围是( ) A .()0,1 B .()1,e 1- C .()1,e D .()e 1,e -【答案】B【分析】将原题转化为()=y f x 与y x a =+有三个不同的交点,结合图象分析相应的临界位置求解,并利用导数处理切线问题. 【详解】∵()0f x x a --=,则()f x x a =+ ∴原题转化为()=y f x 与y x a =+有三个不同的交点 y x a =+表示为斜率为1,纵截距为a 的直线,如图可知:满足条件的直线以过点()1,e A 的直线2l ,与()()e 1xf x x =≤相切的直线1l 为临界位置若过点()1,e A ,则e 1a =+,即e 1a =-若与()()e 1xf x x =≤相切,则()e 1x f x '==,可得()0,01x f ==即切点坐标为()0,1,则=1a ∴a 的取值范围是()1,e 1- 故选:B.例24.(2023·江西·赣州市赣县第三中学高三期中(理))已知0a >,0b >,直线2e y x b-=+与曲线ln y x a =-相切,则11a b+的最小值是( ) A .16 B .12C .8D .4【答案】D【分析】设直线2e y x b -=+与曲线ln y x a =-的切点为()00,ln x x a -,求导,根据导数的几何意义求出切点处的切线方程,再结合已知方程求出,a b 的关系,再根据不等式中“1”的整体代换即可得出答案.【详解】解:设直线2e y x b -=+与曲线ln y x a =-的切点为()00,ln x x a -, 因为ln y x a =-,所以1y x'=, 切线方程为()0000011ln ln 1y x x x a x x a x x =-+-=+--, 所以201e x -=,0ln 1x a b --=, 所以1a b +=,又0a >,0b >,所以()111124b a a b a b a b a b ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当12a b ==时,等号成立,故11a b+的最小值是4. 故选:D.例25.(2023·全国·高三专题练习)若函数()ln bf x a x x=-在点(1,f (1))处的切线的斜率为1,则22a b +的最小值为( )A .12 B C D .34【答案】A【分析】由导数几何意义得1a b +=,然后由基本不等式得最小值. 【详解】由已知2()a b f x x x '=+,所以(1)1f a b '=+=, 222()122b a a b +≥=+,当且仅当12a b ==时等号成立.故选:A .例26.(2023·全国·高三专题练习)已知点P 是曲线23ln y x x =-上任意的一点,则点P 到直线2230x y ++=的距离的最小值是( )A .74B .78C D 【答案】D【分析】由题意可知,过点P 的切线与直线2230x y ++=平行,由此可求出点P 的坐标,然后利用点到直线的距离公式求解即可 【详解】令()321,0y x x x'=-=->,则1x =,即(1,1)P ,所以4d ==, 故选:D .例27.(2023·全国·高三专题练习)设函数()e 2xf x x =-,直线=+y ax b 是曲线()=y f x 的切线,则2a b +的最大值是__________ 【答案】2e 4-##24e -+【分析】求出函数的导函数,设切点()(),t f t ,从而表示出()f t ,()f t ',即可得到切线方程,从而得到()=e 2=e 1tta b t --⎧⎪⎨⎪⎩,则243e e t t a b t +=-+-,再构造函数,利用导数求出函数的最大值,即可得解.【详解】解:因为()e 2x f x x =-,所以()e 2xf x '=-,设切点()(),t f t ,则()e 2tf t t =-,()e 2t f t '=-,则切线方程为()())e 2e 2(t ty t x t --=--,即()()e 2e 1t ty x t =-+-,又因为=+y ax b 是曲线()=y f x 的切线,所以()=e 2=e 1tta b t --⎧⎪⎨⎪⎩, 则243e e t t a b t +=-+-,令()43e e t tg t t +=--,则()()2e tg t t '=-,当2t >时,()0g t '<,()g t 在()2,+∞上单调递减, 当2t <时,()0g t '>,()g t 在(),2-∞上单调递增,所以=2t 时,()g t 取最大值()222243e 2e 4e g =-+-=-+,即2a b +的最大值为24e -+. 故答案为:24e -+第四天学习及训练【题型】七、两条切线平行、垂直、重合公切线问题例28.(2023·全国·高三专题练习)对于三次函数()f x ,若曲线()y f x =在点(0,0)处的切线与曲线()y xf x =在点(1,2)处点的切线重合,则(2)f '=()A .34-B .14-C .4-D .14【答案】B【分析】由(0)0f =得0d =,然后求得()f x ',由20(0)10f -'=-求得2c =,设()()g x xf x =,由(1)2g =得(1)2f =及0a b +=,再由(1)2g '=得3220a b ++=,解得,a b 后可得(2)f '. 【详解】设32()(0)f x ax bx cx d a =+++≠,322(0)0,(),()32f d f x ax bx cx f x ax bx c ==∴=++∴'=++20(0)210f c -∴'===-, 设()()g x xf x =,则(1)(1)22g f a b ==++=,即0a b +=……① 又()()(),(1)(1)(1)2,(1)0g x f x xf x g f f f '=+'∴'=+'=∴'=,即3220a b ++=……②由①②可得2,2,2a b c =-==,(2)14f ∴'=-.故选:B.例29.(2023·全国·高三专题练习)若直线l 与曲线e x y =和ln y x =都相切,则直线l 的条数有( ) A .0 B .1C .2D .无数条【答案】C【分析】先设出所求直线l ,再通过设出的直线斜率得到切点,运用切点和斜率构造方程,再通过构造新的函数求解方程解的情况【详解】设直线:l y kx b =+因为直线l 与曲线e x y =和ln y x =都相切 所以对于曲线e x y =,e x y k '==,ln x k =,切点(ln ,)A k k 对于曲线ln y x =,1y k x '==(0)x >,1x k ,切点11(,ln )B k k(0)k > 因为公切线过A 、B 两点所以1lnln 11ln ln AB A B k y y k k k k x x k k k k--+===--- 进而可得ln ln 10k k k k ---= 令()ln ln 1g k k k k k =--- (0)k >1()ln g x k k'=-(0)k > 因为ln k ,1k -均为增函数,又因为(1)10g '=-<,()1e 10eg =->'所以存在0k 使得001ln =0k k -即001ln k k = 所以()g k 在0(0,)k k ∈时单调递减,在0(,)k k ∈+∞单调递增,()01,e k ∈ 0min 0000()()ln ln 1g k g k k k k k ==---又因为001ln k k =所以min 000000111()10g k k k k k k k =⋅---=--< 当2e k =时,()()222222e e e 1e 30g k g lnelne ==---=->因为()01,e k ∈,所以()()20e 0g k g <所以在()20,e k 内存在1k 使得直线l 与曲线e x y =和ln y x =都相切当21e k =时,()222222111111ln ln 1310e e e e e e g k g ⎛⎫==---=-+> ⎪⎝⎭因为()01,e k ∈,所以()0210e g k g ⎛⎫< ⎪⎝⎭所以在021,e k ⎛⎫⎪⎝⎭内存在2k 使得直线l 与曲线e x y =和ln y x =都相切所以综上所述,存在两条斜率分别为12,k k 的两条直线l 与曲线e x y =和ln y x =都相切 故选:C【点睛】①本题运用导数与斜率之间的关系可以将两曲线公切线的切点表示出来 ②通过构造新的函数求解所得到的跟直线斜率有关的方程③通过零点存在性定理最后得到函数是否存在零点,即方程解的情况例30.(2023·全国·高三专题练习)若直线l 与函数()e xf x =,()lng x x =的图象分别相切于点()()11,A x f x ,()()22,B x g x ,则1212x x x x -+=( ) A .2- B .1- C .1 D .2【答案】B【分析】利用导数可得切线斜率与切线方程,进而可得1x 与2x 的关系,即可得解.【详解】由()e xf x =,()lng x x =,得()e xf x '=,()1g x x'=, 则121e x x =,121ln e ln x x =,即21ln x x =-.曲线()y f x =在点A 处的切线方程为()111e e 1x xy x x =+-,曲线()y g x =在点B 处的切线方程为2211ln y x x x =-+,所以()112e 11ln x x x -=-+,可得()112111x x x -=--,整理得12121x x x x -+=-, 故选:B.例31.(2023·全国·高三专题练习)已知函数()ln f x a x =,()e xg x b =,若直线()0y kx k =>与函数()f x ,()g x 的图象都相切,则1a b+的最小值为( )A .2B .2eC .2e D【答案】B【分析】利用导数的几何意义分别得到e a k =、ekb =,再运用基本不等式即可求解. 【详解】设直线y kx =与函数()f x ,()g x 的图象相切的切点分别为(),A m km ,(),B n kn .由()af x x '=,有ln km a ma k m=⎧⎪⎨=⎪⎩,解得e m =,e a k =. 又由()e xg x b '=,有e e n n kn b b k⎧=⎨=⎩,解得1n =,e k b =,可得1e e 2e a k b k +=+≥=,当且仅当e a =,1eb =时取“=”. 故选:B例32.(2023·全国·高三专题练习)若两曲线ln 1y x =-与2y ax =存在公切线,则正实数a 的取值范围是( ) A .(]0,2e B .31e ,2-⎡⎫+∞⎪⎢⎣⎭C .310,e 2-⎛⎤⎥⎝⎦D .[)2e,+∞【答案】B【分析】设公切线与曲线的切点为()11,ln 1x x -,()222,x ax ,利用导数的几何意义分别求ln 1y x =-和2y ax =上的切线方程,由所得切线方程的相关系数相等列方程求参数关系,进而构造函数并利用导数研究单调性求参数范围.【详解】设公切线与曲线ln 1y x =-和2y ax =的交点分别为()11,ln 1x x -,()222,x ax ,其中1>0x ,对于ln 1y x =-有1y x'=,则ln 1y x =-上的切线方程为()()1111ln 1y x x x x --=-,即()11ln 2xy x x =+-, 对于2y ax =有2y ax '=,则2y ax =上的切线方程为()22222y ax ax x x -=-,即2222y ax x ax =-,所以2121212ln 2ax x x ax ⎧=⎪⎨⎪-=-⎩,有1211ln 24x ax -=-,即()22111112ln 04x x x x a =->, 令()222ln g x x x x =-,()()32ln 32ln g x x x x x x '=-=-,令0g x,得32e x =,当320,e x ⎛⎫∈ ⎪⎝⎭时,0g x,()g x 单调递增,当32,e x ⎛⎫⎪⎝∈+⎭∞时,0g x,()g x 单调递减,所以()332max 1e e 2g x g ⎛⎫== ⎪⎝⎭,故3110e 42a <≤,即31e 2a -≥.故选:B.【点睛】关键点点睛:应用导数几何意义求两条曲线的含参切线方程,由公切线对应系数相等得到相关参数方程,进而构造函数研究单调性求参数范围.例33.(2023·全国·高三专题练习)若函数()()22ln 12x axf x x -=++的图象上,不存在互相垂直的切线,则a 的值可以是( ) A .-1 B .3 C .1 D .2【答案】AC【分析】求导,根据函数()f x 的图象上,不存在互相垂直的切线,由()min 0f x '≥求解. 【详解】解:因为函数()()()22ln 112-=++>-x axf x x x ,所以()11111111'=+-=++--≥-=-++f x x a x a a a x x , 当且仅当111x x +=+,即0x =时,等号成立, 因为函数()f x 的图象上,不存在互相垂直的切线, 所以()min 0f x '≥,即10a -≥, 解得1a ≤, 故选:AC【题型】八、已知某点处的导数求参数或自变量例34.(2023·全国·高三专题练习)已知曲线()40y x x x=+<在点P 处的切线与直线310x y -+=垂直,则点P 的横坐标为( )A .1B .1-C .2D .2-【答案】B【分析】设P 点坐标,求出函数的导数,根据导数的几何意义列出方程,求得答案. 【详解】设()()40f x x x x=+<,点00(,)P x y , 则()241f x x '=-, 由在点P 处的切线与直线310x y -+=垂直可得()03f x '=-,即20413x -=-,又00x <,∴01x =-, 故选:B例35.(2023·全国·高三专题练习)已知函数()sin f x m x b =+在6x π=处的切线方程为1y x =+,则实数b 的值为( )A .12 B C .1 D 【答案】A【分析】求得()cos f x m x '=,利用导数的几何意义,求得1m =,得到()sin f x x b =+,再求得切点(,1)6P π代入函数的解析式,即可求解.【详解】由题意,函数()sin f x m x b =+,则()cos f x m x '=,可得()cos 66f m ππ'==,即切线的斜率k =,=,解得1m =,所以()sin f x x b =+,当6x π=时,116y π+=,即切点(,1)6P π 代入函数()sin f x x b =+,可得sin16b π+=,解得12b =. 故选:A. 【点睛】本题主要考查了利用导数研究曲线在某点处的切线方程及其应用,其中解答中熟记导数的几何意义,合理计算是解答的关键,着重考查运算与求解能力.例36.(2023·全国·高三专题练习)若实数a ,b ,c ,d 满足ln ,1a b c d =+=,则()()22a c b d -+-的最小值为______.【答案】2 【分析】由ln b a =,1d c =+,故()()22a cb d -+-可理解为曲线ln y x =上一点(),a b 与直线1y x =+上一点(),cd 间的距离的平方,采用数形结合和对函数ln y x =求导可知,函数ln y x =在()1,0处的切线方程10x y --=与直线1y x =+之间的距离的平方为我们要求的()()22a c b d -+-的最小值.【详解】由ln b a =,1d c =+,故()()22a c b d -+-可理解为曲线ln y x =上一点(),a b 与直线1y x =+上一点(),c d 间的距离的平方,对于函数ln y x =,令11y x'==,故可得1x =,即函数ln y x =在()1,0处的切线方程为10x y --=,切线方程与直线1y x =+平行,则函数ln y x =在()1,0处的切线方程与直线1y x =+之间的距离d =()()22a cb d -+-的最小值为22d =.故答案为:2.。
【高考复习】高考数学题型总结之导数题型分析及解题方法高考数学问题类型总结的衍生问题类型分析与解题方法一、考试内容导数的概念、导数的几何意义以及几种常用函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。
二、热门话题分析题型一:利用导数研究函数的极值、最值。
1.间隔中的最大值为22.已知函数处有极大值,则常数c=6;3.函数的最小值为-1,最大值为3题型二:利用导数几何意义求切线方程1.曲线在该点的切线方程为2.若曲线在p点处的切线平行于直线,则p点的坐标为(1,0)3.如果曲线的一条切线与直线垂直,则方程为4.求下列直线的方程:(1)曲线在P(-1,1)处的切线;(2)曲线通过点P(3,5)的切线;解:(1)所以切线方程是(2)显然点p(3,5)不在曲线上,所以可设切点为,则①又函数的导数为,因此,通过点的切线的斜率为,并且切线通过点P(3,5),因此②, 这是从① 和②, 也就是说,当切点为(1,1)时,切线斜率为;当切点为(5,25)时,切线斜率为;有两条切线,方程是题型三:利用导数研究函数的单调性,极值、最值1.已知函数的切线方程为y=3x+1(ⅰ)若函数处有极值,求的表达式;(二)在(I)的条件下,求[-3,1]上函数的最大值;(ⅲ)若函数在区间[-2,1]上单调递增,求实数b的取值范围解决方案:(1)通过过的切线方程为:然后通过故∵③由①②③得a=2,b=-4,c=5(2)当在[-3,1]上,最大值为13。
(3)y=f(x)在[-2,1]上单调递增,又由①知2a+b=0。
根据问题的意思,[-2,1]上总是有0,即①当;② 什么时候③当综上所述,参数B的取值范围为2.已知三次函数在和时取极值,且.(1)找到函数的表达式;(2)求函数的单调区间和极值;(3)如果间隔上的函数值范围为,则尝试找到应满足的条件解:(1),从问题的意义来看,是的,两个。
导数-大题导数在大题中一般作为压轴题出现,其复杂的原因就在于对函数的综合运用:1.求导,特别是复杂函数的求导2.二次函数(求根公式的运用)3.不等式:基本不等式、均值不等式等4.基本初等函数的性质:周期函数、对数函数、三角函数、指数函数5.常用不等式的巧妙技巧:1/2<ln2<1,5/2<e<3导数大题最基本的注意点:自变量的定义域1.存在性问题2.韦达定理的运用3.隐藏零点4.已有结论的运用5.分段讨论6.分类讨论7.常见不等式的应用8.导数与三次函数的利用1. 存在性问题第(1)问有两个未知数,一般来说,双未知数问题要想办法合并成一个未知数来处理合并成一个未知数后利用不等式1.存在性问题(2)问将有且仅有一个交点分成两部分证明,分别证至多存在一个交点与必然存在交点:证明必然存在交点是单纯的找“特殊点”问题高考导数大题中的存在性问题,最后几乎都会变成零点的存在性问题要点由于只关注零点的存在性,因此就没有必要对t(x)求导讨论其单调性,直接使用零点定即可。
(2)问先对要证明的结论进行简单变形:证毕韦达定理的使用(1)问是常规的分类讨论问题隐零点设而不求,代换整体证明对称轴已经在-1右侧,保证有零点且-1处二次函数值大于0两道例题都是比较简单的含参“隐零点”问题,总之就是用零点(极值点)反过来表示参数再进行计算一些比较难的题目,一般问题就会进行一定提示,如利用(2)问提示(3)问,其难点就在于知道要利用已有结论,但无从下手第(1)问分类讨论问题,分离变量做容易导致解题过于复杂(2)问将不等式两边取对数之后思路就很清晰了(1)(2)分别证明两个不等号即可化到已知的结论上()()()()()()()()()()()()''''1101,0,1,0;1,,00,11,110f x x xx f x x f x x f x f x x x x f x f =->=∈>∈+∞<∈∈+∞==为的零点于是在上单调递增,在上单调递减是的极大值点,(3)问需要利用(2)问结论才能比较顺利的证明利用(2)中结论第(1)问是一个比较简单的存在型问题分段)高考导数大题除求导外,隐藏零点、韦达定理、极值点偏移、二,三阶导等技巧,都是附加的技巧,导数的核心,是分类讨论的考察,高考题多数绕不开分类讨论。
山东高考数学导数知识点导数是高中数学中的重要概念之一,也是高考数学中常考的知识点。
了解导数的定义、性质以及应用是解决相关题目的关键。
本文将为您介绍山东高考数学中涉及的导数知识点。
一、导数的定义导数的定义是指函数在某一点处的变化率。
设函数y=f(x),若当自变量x在某一点x₀的附近取得增量Δx时,相应的函数值的增量Δy=f(x₀+Δx)-f(x₀),如果下式极限存在:lim(Δx→0) [f(x₀+Δx)-f(x₀)]/Δx则称函数在点x₀处可导,并称这个极限值为函数f(x)在点x₀处的导数,记作f'(x₀)或dy/dx|x=x₀。
二、导数的计算方法1. 基本导数法则高中数学中我们常用的函数的导数公式有:常数函数导数为0;幂函数导数为幂次乘以系数,即(d/dx)[xⁿ]=n*xⁿ⁻¹;指数函数eˣ的导数为eˣ;对数函数ln(x)的导数为1/x。
2. 利用基本导数法则计算复合函数的导数若y=f[u(x)]是由函数u(x)与函数f(x)复合而成,则y'(x)=f'[u(x)]*u'(x)。
3. 隐函数求导法当函数关系式不能简便地表示成y=f(x)的形式时,即为隐函数。
求隐函数的导数一般使用隐函数求导法。
三、导数的性质1. 导数与函数的连续性相关若函数f(x)在某点x₀处可导,则f(x)在该点处连续;若函数f(x)在某点x₀处连续,则不一定可导。
2. 导数与函数的单调性相关若函数f(x)在某区间内的导数大于0,则f(x)在该区间内单调递增;若函数f(x)在某区间内的导数小于0,则f(x)在该区间内单调递减。
3. 导数与函数的极值相关设函数f(x)在点x₀处可导,若在x₀的左侧有f'(x)>0,在x₀的右侧有f'(x)<0,则f(x)在点x₀处达到极大值;若在x₀的左侧有f'(x)<0,在x₀的右侧有f'(x)>0,则f(x)在点x₀处达到极小值。
1 / 31高考数学复习考点知识与题型专题讲解专题11导数-恒成立问题1.高考对本部分的考查一般有三个层次:(1)主要考查求导公式,求导法则与导数的几何意义; (2)导数的简单应用,包括求函数的单调区间、极值、最值等;(3)综合考查,如零点、证明不等式、恒成立问题、求参数等,包括解决应用问题,将导数内容和传统内容中有关不等式、数列及函数单调性有机结合,设计综合题. 2.恒成立问题的解法(1)若()f x 在区间D 上有最值,则恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<; (2)若能分离常数,即将问题转化为()a f x >(或()a f x <),则 恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.1.已知函数()sin ,[0,],0x f x ae x x x a π=++∈<. (1)证明:当1a =-时,函数()f x 有唯一的极大值; (2)当()21f x x <-恒成立,求实数a 的取值范围.【试题来源】百师联盟2020-2021学年高三下学期开年摸底联考考试卷(全国Ⅰ卷) 【答案】(1)证明见解析;(2)1a <-.【分析】(1)对函数求导,讨论函数的单调区间,进而可证明结果.(2)构造函数()e sin 10=+-+<x h x a x x ,只需函数最大值小于0即可得出结果.【解析】(1)证明:()e cos 1x f x a x '=++, 因为[]0,x π∈,所以1cos 0x +≥, 当1a =-时,()cos 1x f x e x '=-++, 令()e cos 1,()e sin 0x x g x x g x x '=-++=--<,()g x 在区间[]0,π上单调递减;(0)121,()e 0g g ππ=-+==-<, 存在()00,π∈x ,使得()00f x '=,所以函数()f x 递增区间是[]00,x ,递减区间是[]0,x π. 所以函数()f x 存在唯一的极大值()0f x . (2)由()21f x x <-,即令()e sin 10,0,()e cos 10'=+-+<<∴=+-<x x h x a x x a h x a x ,()h x ∴在区间[]0,π上单调减函数,()(0)1≤=+h x h a ,只要10a +<即可,即1a <-.2.已知函数()()2112f x x alnx a x =-+-. (1)讨论函数()f x 的单调性;(2)若()22a f x >恒成立,求正实数a 的取值范围、【试题来源】吉林省长春市2021届高三质量监测(二)【答案】(1)当0a ≤时,()f x 在定义域(0,)+∞上单调递增;当0a >时,()f x 在()0,a 上单调递减,在(,)a +∞上单调递增;(2)01a <<. 【分析】(1)求出导函数()()()1x x a f x x+-'=,讨论0a ≤或0a >,利用函数的单调性与导数之间的关系即可求解.(2)令()()2 2a g x f x =-,结合(1)不等式等价于()0g a >,只需10lna a +-<,令()1h x lnx x =+-,根据函数为增函数即可求解.3 / 31【解析】()1定义域为()0,-∞, ()()()()2111x a x a x x a af x x a x x x+--+-'=-+-==当0a ≤时,在(0,)+∞上()0,f x '≥所以()f x 在定义域(0,)+∞上单调递增; 当0a >时,令()'0f x >有,x a >令()'0f x <有0,x a << 所以()f x 在()0,a 上单调递减,在(,)a +∞上单调递增.()2令()()2 2a g x f x =-,由()1及a 为正数知,()()22ag x f x =-在x a =处取最小值,所以()22a f x >恒成立等价于()0g a >,即()10alna a a -+->,整理得10lna a +-<,令()1h x lnx x =+-, 易知()h x 为增函数,且()10,h =所以10lna a +-<的a 的取值范围是01a <<.3.已知函数1()ln ()f x a x a R x=+∈.(1)讨论函数()f x 在区间[1,2]上的最小值;(2)当1a =时,求证:对任意(0,)x ∈+∞,恒有cos ()x e xf x x+<成立.【试题来源】河北省张家口市2021届高三一模 【答案】(1)答案见解析;(2)证明见解析. 【解析】(1)函数1()ln =+f x a x x的定义域是(0,)+∞, 2211()a ax f x x x x-'=-=.当0a 时,2110,0ax ax x --<<,则()0f x '<,则函数()f x 在(0,)+∞上单调递减,即函数()f x 在区间[1,2]上单调递减, 故函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+. 当0a >时,令()0f x '<,得10x a <<;令()0f x '>,得1x a>;故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.当11a,即1a 时,函数()f x 在区间[1,2]上单调递增, 故函数()f x 在区间[1,2]上的最小值为(1)1f =; 当12a,即102a <时,函数()f x 在区间[1,2]上单调递减,故函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+; 当112a <<,即112a <<时,函数()f x 在11,a ⎡⎫⎪⎢⎣⎭上单调递减,在1,2a ⎛⎤ ⎥⎝⎦上单调递增, 此时函数()f x 在区间[1,2]上的最小值为11ln f a a a a ⎛⎫=+ ⎪⎝⎭.综上,当12a时,函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+;当112a <<时,函数()f x 在区间[1,2]上的最小值为11ln f a a a a ⎛⎫=+ ⎪⎝⎭;当1a 时,函数()f x 在区间[1,2]上的最小值为(1)1f =. (2)当1a =时,1()ln f x x x=+, 要证cos ()x e x f x x +<,即证1cos ln x e xx x x++<,因为0x >,所以两边同时乘x ,得ln 1cos x x x e x +<+, 即证ln cos 1x x x e x <+-.当01x <时,ln 0x x ,而cos 11cos11cos10x e x +->+-=>,所以ln cos 1xx x e x <+-成立,即cos ()x e xf x x+<成立.当1x >时,令()cos ln 1(1)x h x e x x x x =+-->, 则()sin ln 1x h x e x x '=---.5 / 31设()sin ln 1(1)xg x e x x x =--->,,则因为1()cos x g x e x x'=--.因为1x >,所以1()cos 110xg x e x e x'=-->-->,所以当1x >时,()g x 单调递增,所以()sin110g x e >-->,即()0h x '>,所以()h x 在(1,)+∞上单调递增,所以()cos110h x e >+->,即cos ()x e xf x x +<成立.综上,对任意(0,)x ∈+∞,恒有cos ()x e xf x x+<成立.【名师点睛】此题考查导数的应用,利用导数求函数的最值,考查分类讨论的数学思想,第2问解题的关键是把cos ()x e x f x x+<等价转化为ln cos 1x x x e x <+-,然后构造函数,利用导数证明即可,属于中档题 4.已知函数f (x )=ax -ln x -1. (1)若f (x )≥0恒成立,求a 的最小值;(2)求证:xe x-+x +ln x -1≥0;(3)已知k (x e -+x 2)≥x -x ln x 恒成立,求k 的取值范围. 【试题来源】2021年高考二轮复习讲练测(浙江专用) 【答案】(1)1;(2)证明见解析;(3)[1,+∞).【解析】(1)f (x )≥0等价于a ≥ln 1x x+. 令g (x )=ln 1x x+ (x >0),则g ′(x )=2ln xx -,所以当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0,则g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以g (x )max =g (1)=1,则a ≥1, 所以a 的最小值为1.(2)证明:当a =1时,由(1)得x ≥ln x +1,即t ≥ln t +1(t >0).令x e x -=t ,则-x -ln x =ln t ,所以x e x -≥-x -ln x +1,即x e x -+x +ln x -1≥0.(3)因为k (xe -+x 2)≥x -x ln x 恒成立,即k x e x x -⎛⎫+ ⎪⎝⎭≥1-ln x 恒成立, 所以k ≥1ln xx e x x--+=-ln 1xx e x x x e x x--++-++1,由(2)知x e x-+x +ln x -1≥0恒成立,所以-+ln 1x x ex x x ex x--+-++1≤1,所以k ≥1.故k 的取值范围为[1,+∞).【名师点睛】不等式证明问题是近年高考命题的热点,利用导数证明不等主要方法有两个,一是比较简单的不等式证明,不等式两边作差构造函数,利用导数研究函数的单调性,求出函数的最值即可;二是较为综合的不等式证明,要观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简或者进一步利用导数证明. 5.已知函数()()1ln 2f x x mx m R =-∈,()()0ag x x a x=->. (1)求函数()f x 的单调区间. (2)若212m e=,对2122,2,x x e ⎡⎤∀∈⎣⎦都有()()12g x f x ≥成立,求实数a 的取值范围. 【试题来源】2021年高考数学二轮复习讲练测 【答案】(1)答案见解析;(2)(]0,3.【分析】(1)函数的定义域为()0,∞+,求导得()1'2f x m x=-,再分0m ≤和0m >两种情况讨论求解即可;(2)根据题意,问题转化为对2122,2,x x e ⎡⎤∀∈⎣⎦都满足()()min max g x f x ≥,再根据导数研究函数的最值即可. 【解析】(1)()()1ln ,02f x x mx m R x =-∈>,所以()1'2f x m x=-, 当0m ≤时,()0f x >′,()f x 在()0,∞+上单调递增.7 / 31当0m >时,由()0f x '=得12x m=; 由()'00f x x ⎧>⎨>⎩得102x m <<;由()'00f x x ⎧<⎨>⎩得12x m >.综上所述,当0m ≤时,()f x 的单调递增区间为()0,∞+;当0m >时,()f x 的单调递增区间为10,2m ⎛⎫ ⎪⎝⎭,单调递减区间为1,2m ⎛⎫+∞⎪⎝⎭. (2)若212m e =,则()211ln 22f x x x e =-. 对2122,2,x x e ⎡⎤∀∈⎣⎦都有()()12g x f x ≥成立,等价于对2122,2,x x e ⎡⎤∀∈⎣⎦都()()min max g x f x ≥,由(1)知在22,e ⎡⎤⎣⎦上单调递增,在22,2e e ⎡⎤⎣⎦上单调递减,所以()f x 的最大值为()212f e =, ()()2'100a g x a x=+>>,22,2x e ⎡⎤∈⎣⎦, 函数()g x 在22,2e ⎡⎤⎣⎦上是增函数,()()222mina g x g -==, 所以1222a -≥,解得3a ≤,又0a >,所以(]0,3a ∈.所以实数a 的取值范围是(]0,3.【名师点睛】本题考查利用导数研究函数单调区间,不等式恒成立问题,考查运算求解能力,回归转化思想,分类讨论思想,是中档题.本题第二问解题的关键在于根据已知将问题转化为对2122,2,x x e ⎡⎤∀∈⎣⎦都满足()()min max g x f x ≥,再研究函数的最值求解.6.已知函数()axf x e x =-.(1)若曲线()y f x =在点()()0,0f 处切线的斜率为1,求()f x 的单调区间;(2)若不等式()2ln ax f x e x ax ≥-对(]0,x e ∈恒成立,求a 的取值范围.【试题来源】云南西南名校2021届高三下学期联考【答案】(1)单调递减区间为ln 2,2⎛⎫-∞- ⎪⎝⎭,单调递增区间为ln 2,2⎛⎫-+∞ ⎪⎝⎭;(2)1,e ⎡⎫+∞⎪⎢⎣⎭.【分析】(1)由题设()1axf x ae '=-,根据导数的几何意义有()01f '=,可求a ,即()221x f x e '=-,进而可求()f x 的单调区间;(2)由题意,函数不等式恒成立可转化为(]0,x e ∈上ln 1ln 1ax ax xe e x --≥恒成立,构造函数()ln 1x g x x -=,应用导数研究其单调性可得ln x a x ≥在(]0,x e ∈上恒成立,即在(]0,x e ∈上max ln ()xa x≥即可求a 的取值范围. 【解析】(1)()1axf x ae '=-,则()011f a '=-=,即2a =. 所以()221xf x e '=-,令0fx ,得ln 22x =-. 当ln 22x <-时,0f x ;当ln 22x >-时,0f x .故()f x 的单调递减区间为ln 2,2⎛⎫-∞- ⎪⎝⎭,单调递增区间为ln 2,2⎛⎫-+∞ ⎪⎝⎭.(2)由()2ln ax f x e x ax ≥-,即()2ln 1ax ax x e x -≥-,有1ln 1ax a x e x x --≥,故仅需ln 1ln 1ax axxe e x --≥即可. 设函数()ln 1x g x x -=,则ln 1ln 1ax axxe e x --≥等价于()()axg e g x ≥. 因为()22ln x g x x -'=, 所以当(]0,x e ∈时,0g x ,则()g x 在(]0,e 上单调递增,所以当(]0,x e ∈时,()()axg e g x ≥等价于当(]0,x e ∈时,()()ax g e g x ≥,ax e x ≥,即ln xa x≥恒成立. 设函数()ln x h x x =,(]0,x e ∈,则()21ln 0xh x x -'=≥, 即()h x 在(]0,x e ∈递增,所以()()max 1h x h e e==,则1a e ≥即可,所以a 的取值范围为1,e ⎡⎫+∞⎪⎢⎣⎭.【名师点睛】(1)应用导数的几何意义求参数值,进而讨论对应函数的单调性确定单调9 / 31区间;(2)构造函数()ln 1x g x x-=,将不等式恒成立问题转化为利用函数()g x 单调性得ax e x ≥,应用参变分离判断(]0,x e ∈上max ln ()xa x≥,确定参数范围. 7.设函数()1()x xa a f x e -=+>. (1)求证:()f x 有极值点;(2)设()f x 的极值点为0x ,若对任意正整数a 都有()0,x m n ∈,其中,m n Z ∈,求n m -的最小值.【试题来源】江苏省盐城市、南京市2021届高三下学期第一次模拟考试 【答案】(1)证明见解析;(2)2.【解析】(1)由题意得()ln x xf x a a e -'=-,所以()()2ln 0x x f x a a e -''=+>,所以函数()f x '单调递增,由()0f x '=,得()()ln 1,1ln xxae a ae a==. 因为1a >,所以1ln 0a>,所以1log ln ae x a =.当1log ln aex a >时,()()0,f x f x '>单调递增; 当1log ln ae x a<时,()()0,f x f x '<单调递减.因此,当1log ln ae x a=时函数()f x 有极值.(2)由(1)知,函数()f x 的极值点0x (即函数()f x '的零点)唯一, 因为ln (1)af e a'-=-.令()ln a g a a =,则()21ln 0a a g a '-==,得a e =. 当a e >时,()()0,g a g a '<单调递减;当0a e <<时,()()0,g a g a '>单调递增, 所以()()1g a g e e ≤=,所以()ln 10af ae '-=-<. 而()0ln 1f a '=-,当2a =时,()00f '<,当3a ≥时,()00f '>.又()1ln 1a ef a '=-.因为a 为正整数且2a ≥时,所以ln 2ln 121a a e≥>>. 当2a ≥时,()10f '>.即对任意正整数1a >,都有()10f '-<,()10f '>,所以()01,1x ∈-恒成立, 且存在2a =,使()00,1x ∈,也存在3a =,使()01,0x ∈-. 所以n m -的最小值为2.【名师点睛】本题考查导数的应用,解题的关键是利用导数结合零点存在性定理得出()10f '-<,()10f '>,得出,m n 的可能值. 8.已知函数2()2ln 43()f x x ax ax a a =+-+∈R . (1)讨论函数()f x 的单调性;(2)对(1,)x ∈+∞,都有()0f x >成立,求实数a 的取值范围. 【试题来源】山西省晋中市2021届高三下学期二模 【答案】(1)答案见解析;(2)01a .【分析】(1)求出函数的导数,令2()21(0)g x ax ax x =-+>,分段讨论a 的值,判断()g x 的正负情况可得出单调性;(2)可得当01a 时,()f x 在(1,)+∞上单调递增,所以()(1)0f x f >=成立;当0a <时,可得存在x ,使得()(1)0f x f <=,即可得出结论.【解析】(1)()22212()24(0)ax ax f x ax a x x x'-+=+-=>,令2()21(0)g x ax ax x =-+>, ①当0a =时,()10g x =>,在(0,)+∞上,()0f x '>,所以()f x 单调递增.②当0a <时,2444(1)0a a a a ∆=-=->,令()0g x =,得12x x ==,且120x x >>,11 / 31所以当()10,x x ∈时,()0f x '>,所以()f x 单调递增; 当()1,x x ∈+∞时,()0f x '<,所以()f x 单调递减. ③当0a >时,4(1)a a ∆=-, 当01a <时,4(1)0a a ∆=-,在(0,)+∞上,()0f x '>,所以()f x 单调递增. 当1a >时,2444(1)0a a a a ∆=-=->,令()0g x =,得12a a x x a a==,且120x x <<, 所以当()10,x x ∈或()2,x x ∈+∞时,()0f x '>,所以()f x 单调递增; 当()12,x x x ∈时,()0f x '<,所以()f x 单调递减.综上可得当0a <时,()f x 在()10,x 上单调递增,在()1,x +∞上单调递减; 当01a 时,()f x 在(0,)+∞上单调递增;当1a >时,()f x 在()()120,,,x x +∞上单调递增,在()12,x x 上单调递减.(2)因为(1)0f =,根据(1)的讨论可知,当01a 时,()f x 在(0,)+∞上单调递增,所以()f x 在(1,)+∞上单调递增,所以()(1)0f x f >=成立. 当0a <时,()f x 在()1,x +∞上单调递减,x →+∞时,()f x →-∞, 所以存在()1,x x ∈+∞使得()0f x <,故此时不成立.当1a >时,()f x 在()()120,,,x x +∞上单调递增;在()12,x x 上单调递减,而121x x =<<=,所以当()21,x x ∈时,()f x 单调递减,此时()(1)0f x f <=,不合题意.综上可得01a .【名师点睛】本题考查利用导数讨论含参函数的单调性问题,解题的关键是根据导数情况观察参数,对参数进行分段讨论,便于得出导数正负. 9.已知函数()e ln ax f x x x =-,其中e 是自然对数的底数,0a >.(1)若曲线()y f x =在点(1,(1))f 处的切线斜率为21e -,求a 的值; (2)对于给定的常数a ,若()1f x bx ≥+对(0,)x ∈+∞恒成立,求证:b a ≤. 【试题来源】江苏省苏州市2021届高三下学期期初 【答案】(1)1a =;(2)证明见解析.【分析】(1)求出()'f x ,根据导数的几何意义可得(1)21k f e '==-建立方程,求解方程即可得到答案.(2)不等式()1f x bx ≥+对(0,)x ∈+∞恒成立,即ln 1ln 1ax axx xe x b e x x x--≤--=对(0,)x ∈+∞恒成立,先证明1t e t ≥+恒成立,由此结论可得ln ln 1ln 1ax ax x xe x e x a x x+----=≥,从而可证明.【解析】(1)因为1()(1)axf x ax e x'=+-,所以切线斜率为(1)(1)121a k f a e e '==+-=-,即(1)20a a e e +-=.设()(1)2x h x x e e =+-, 由于()(2)0xh x x e '=+>,所以()h x 在(0,)+∞上单调递增,又(1)0h =,由(1)()02a a e h a e +-==可得1a =. (2)设()1t u t e t =--,则()1t u t e '=-, 当0t >时,()0u t '>,当0t <时,()0u t '<,所以()u t 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 所以min()(0)0u t u ==,即()0u t ≥,所以1(*)t e t ≥+.若()1f x bx ≥+对(0,)x ∈+∞恒成立,即ln 1ax xe x bx --≥对(0,)x ∈+∞恒成立,即ln 1ln 1ax axx xe x b e x x x--≤--=对(0,)x ∈+∞恒成立.13 / 31设ln 1()ax xe x g x x--=,由(*)可知ln ln 1ln 1ln 1ln 1()ax ax x xe x e x ax x x g x a x x x+----++--==≥=,当且仅当()ln 0x ax x ϕ=+=时等号成立. 由()1()00x a x xϕ'=+>>,所以()ϕx 在()0+∞,上单调递增, 又()()1aaa eaea a e ϕ---=-=-,由0a >,所以10a e --<,即()0a e ϕ-<()10a ϕ=>,则存在唯一()0,1a x e -∈使得0()=0x ϕ即方程()ln 0x ax x ϕ=+=有唯一解()0,1ax e -∈,即()g x a ≥(对于给定的常数a ,当0x x =,()0,1ax e -∈时取等号)由ln 1ln 1ax axx xe x b e x x x--≤--=对(0,)x ∈+∞恒成立, 所以b a ≤.【名师点睛】本题考查根据切线的斜率求参数和利用导数证明不等式,解答本题的关键是先证明辅助不等式1te t ≥+,然后将问题转化为由ln 1ln 1ax axx xe x b e x x x--≤--=对(0,)x ∈+∞恒成立,由辅助不等式可得ln ln 1ln 1ln 1ln 1ax ax x xe x e x ax x x a x x x+----++--=≥=,从而使得问题得证,属于难题.10.已知函数3()2x f x e x mx =+++.(1)若x 轴为曲线()y f x =的切线,试求实数m 的值;(2)已知()()xg x f x e =-,若对任意实数x ,均有()1e ()x g g x +,求m 的取值范围.【试题来源】福建省名校联盟优质校2021届高三大联考 【答案】(1)e 3m =--;(2)[1,)m ∈-+∞ 【解析】(1)由2()e 3x f x x m '=++,设曲线()y f x =与x 轴相切于()0,0P x ,则()00f x =,()00f x '=.所以0030020e 20e 30x x x mx x m ⎧+++=⎪⎨++=⎪⎩,代入整理得()()020001e 210x x x x ⎡⎤-+++=⎣⎦, 由0e 0x >,22000131024x x x ⎛⎫++=++> ⎪⎝⎭,所以01x =,此时e 3m =--.经检验,当e 3m =--时,x 轴为曲线()y f x =的切线.(2)由3()()e 2x g x f x x mx =-=++,记1()e x h x x +=-,1()e 1x h x +'=-(,1)x ∈-∞-时,()0h x '<;(1,)x ∈-+∞时,()0h x '>,故()y h x =在(,1)-∞-上单调递减,在(1,)-+∞上单调递增. 所以()(1)2h x h ≥-=,不妨设1e x x t +-=(2t ≥),则()1e ()()()x g g x g x t g x +-=+-()33()()22x t m x t x mx ⎡⎤=++++-++⎣⎦221324t t x t m ⎡⎤⎛⎫=+++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦因为[2,)t ∈+∞时,要满足()()g x t g x +≥恒成立,则2222121331212424t x t ⎛⎫⎛⎫++≥⨯-++⨯= ⎪ ⎪⎝⎭⎝⎭(2t =时,1x =-,能同时取等号).即10m +≥即可,解得[1,)m ∈-+∞. 综上,[1,)m ∈-+∞时符合题意.【名师点睛】本题考查根据曲线的切线方程求参数值及根据不等式恒成立求参数的取值范围问题,难度较大,解答的主要思路如下:(1)当已知曲线的切线方程时,可先设切点的坐标为()00,x y ,然后格据导数的几何意义使()0f x '与所给切线的斜率相等,使点()00,x y 在所给切线上,列出方程组求解即可;(2)当已知不等式恒成立求解参数的取值范围时,可直接构造函数,利用导数分析函数的最值,使其最值符合条件即可;也可以15 / 31采用参数分离法,将问题转化为讨论不含参函数的最值问题求解. 11.已知实数0a ≠,设函数()e ax f x ax =-. (1)当1a =时,求函数()f x 的极值; (2)当12a >时,若对任意的[1,)x ∈-+∞,均有()2()12a f x x ≥+,求a 的取值范围. 【试题来源】广西桂林、崇左市2021届高三联合调研考试(二模) 【答案】(1)极小值(0)1f =,无极大值;(2)122a <≤. 【分析】(1)由1a =,求导()1x f x e =-',再利用极值的定义求解; (2)将()2()12a f x x ≥+,转化为2(1)2axa e x ≥+,易知0x =,1x =-时,a 的范围,当(1,)x ∈-+∞时,两边取对数,转化为2ln(1)ln 2aax x ≥++恒成立,令()2ln(1)ln 2aF x x ax =+-+,用导数法由()0F x ≤在(1,)-+∞内恒成立求解即可.【解析】(1)当1a =时,由()10x f x e '=-=,解得0x =. 当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞内单调递增; 当(,0)x ∈-∞时,()0f x '<,故()f x 在(,0)-∞内单调递减.∴函数()f x 在0x =取得极小值(0)1f =,无极大值. (2)由()2()12a f x x ≥+,则有2(1)2axa e x ≥+. 令0x =,得11,222a a ≥<≤.当1x =-时,不等式2(1)2ax a e x ≥+显然成立,当(1,)x ∈-+∞时,两边取对数,即2ln(1)ln 2aax x ≥++恒成立. 令函数()2ln(1)ln2a F x x ax =+-+, 即()0F x ≤在(1,)-+∞内恒成立.由22(1)()011a x F x a x x '-+=-==++,得211x a =->-.故当21,1x a ⎛⎫∈-- ⎪⎝⎭时,()0,()F x F x '>单调递增;当21,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0,()F x F x '<单调递减.因此22()12ln 2ln 2ln 22a a F x F a a a a ⎛⎫≤-=-++=-- ⎪⎝⎭.令函数()2ln 2ag a a =--,其中122a <≤, 则11()10a g a a a='-=-=,得1a =, 故当1,12a ⎛⎫∈ ⎪⎝⎭时,()0,()g a g a '<单调递减;当(1,2]a ∈时,()0,()g a g a '>单调递增.又13ln 40,(2)022g g ⎛⎫=-<= ⎪⎝⎭,故当122a <≤时,()0g a ≤恒成立,因此()0F x ≤恒成立, 即当122a <≤时,对任意的[1,)x ∈-+∞,均有()2()12a f x x ≥+成立. 12.已知函数()2()2ln 1f x x x =--,()()21g x k x =-.(1)当1k =时,求函数()()()F x f x g x =-的极值;(2)若存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立,求实数k 的取值范围. 【试题来源】云南省昆明市第一中学2021届高三第六次复习检测 【答案】(1)()0F x =极大值,()F x 无极小值;(2)(),1-∞. 【分析】(1)2()2ln 1F x x x =-+,求导得22(1)(1)()2x x F x x x x-+-'=-=,显然()0,1x ∈时,()F x 为增函数,()1,x ∈+∞时,()F x 为减函数,所以()F x 在1x =处取得极大值,无极小值,然后计算()1F 即可;(2)()()f x g x >恒成立即()()0f x g x ->恒成立,也即()0F x >恒成立,结合(1)的结论对k 分类讨论,当1k 时,不存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立;当1k <时,22(1)1()x k x F x x⎡⎤-+--⎣⎦'=,令()0F x '=,得211(1)40k k x ---+=<,17 /3121x =>,可证得函数()F x 在()21,x 上是增函数,所以存在021x x <≤,使得当()01,x x ∈时,()()10F x F >=.【解析】(1)当1k =时,22()2ln (1)2(1)2ln 1F x x x x x x =----=-+,()F x 的定义域为()0,∞+,22(1)(1)()2x x F x x x x-+-'=-=, 当()0,1x ∈时,()0F x '>,()F x 为增函数, 当()1,x ∈+∞时,()0F x '<,()F x 为减函数, 所以()()10F x F ==极大值,()F x 无极小值;(2)由(1)可知,若1k =,则当1x >时,()()10F x F <=,即()()f x g x <, 所以不存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立,若1k >,则当1x >时,22()2ln (1)2(1)2ln (1)2(1)0F x x x k x x x x =----<----<, 即不存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立; 若1k <,2()2ln (1)2(1)F x x x k x =----,22(1)12()222x k x F x x k x x⎡⎤-+--⎣⎦'=-+-=, 令()0F x '=,得10x =<,21x =>,所以当()20,x x ∈时,()0F x '>,()F x 为增函数, 即函数()F x 在()21,x 上是增函数,所以存在021x x <≤,使得当()01,x x ∈时,()()10F x F >=, 即()()f x g x >成立,综上,所以实数k 的取值范围是(),1-∞.13.已知函数()ln a ef x x x-=+,其中e 是自然对数的底数. (1)设直线22y x e=-是曲线()()1y f x x =>的一条切线,求a 的值;(2)若a R ∃∈,使得()0f x ma +≥对()0x ∀∈+∞,恒成立,求实数m 的取值范围. 【试题来源】备战2021年高考数学全真模拟卷(山东高考专用)【答案】(1)0a =;(2)1m e≥-.【分析】(1)设切点坐标为()()00,x f x ,根据题意只需满足()02f x e'=,()00002ln 2a e f x x x x e-=+=-,然后求解方程组得出a 的值及0x 的值; (2)记()()ln a eg x f x ma x ma x-=+=++,求导讨论函数()g x 的单调性,确定最值,使()min 0g x ≥成立,得到关于参数m 的不等式,然后利用参数分离法求解参数m 的取值范围.【解析】(1)设切点为()()00,x f x ,其中01x >, 有()020012a e f x x x e -'=-=,且()00002ln 2a e f x x x x e-=+=- 得0021x a e x e -=-,所以004ln 30x x e+-=,易解得0x e =,则0a =; (2)记()()ln a e g x f x ma x ma x -=+=++,有()2x a eg x x -+'=, 当a e ≤,()20x a eg x x -+'=>恒成立,则函数()g x 在()0,∞+上递增,无最小值,不符合题意;当a e >时,当(),x a e ∈-+∞时,()0g x '>,当()0,x a e ∈-时,()0g x '<,所以函数()g x 在()0,a e -上递减,在(),a e -+∞上递增,所以()g x 在x a e =-处取得最小值,()()()min ln 10g x g a e a e ma =-=-++≥, 则有()1ln a e m a +--≤,记()()()1ln a e h a a e a+-=>,19 / 31有()()2ln ea e a e h a a ---'=, 易知()h a 在(),2e e 单调递增,在()2,e +∞单调递减,则()()max 12h a h e e ==,所以1m e-≤,得1m e ≥-.【名师点睛】本题考查导数的几何意义,考查根据不等式恒成立问题求参数的取值范围,求解的一般方法如下:(1)直接构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;(2)采用参数分离法,然后构造函数,直接将问题转化为函数最值的求解即可.14.已知函数()()2ln 21f x x mx m x =+++,其中0m <.(1)若()f x 在区间()2,+∞上单调递减,求m 的取值范围; (2)若不等式()f x n ≤对0x >恒成立,证明:30n m ->.【试题来源】“超级全能生”2021届高三全国卷地区1月联考试题(丙卷)【答案】(1)14m ≤-;(2)证明见解析.【分析】(1)对函数求导,求出单调减区间,列不等式,即可的出结果.(2)求出函数求导,求出单调减区间,求出函数的最大值,列不等式12f n m ⎛⎫-≤ ⎪⎝⎭,211111ln 222222⎛⎫⎛⎫⇒-≥--+-+ ⎪ ⎪⎝⎭⎝⎭n m m m m m ,记102t m=->,构造函数()21ln 2g t t t t t =+-, 求出()g t 最小值()200012=--g t t t ,()0 2n g t m -≥,()()0312g t g >=-,即可得出结果. 【解析】(1)函数()()2ln 21f x x mx m x =+++,其中0m <,0x >,()()()211122?1mx x f x mx m x x++'=+++=. 令()0f x '<得12x m>-.令122m -≤,解得14m ≤-. (2)函数()()2ln 21f x x mx m x =+++,其中0m <,0x >,()()()121x mx f x x++'=.令()0f x '=得12x m=-, 当102x m<<-时,()0f x '>,()f x 是增函数: 当12x m>-时,()0f x '<,()f x 是减函数,. 所以当12x m=-时,()f x 既是极大值也是最大值,11121ln 2242m f m m m m +⎛⎫⎛⎫-=-+- ⎪ ⎪⎝⎭⎝⎭11ln 124m m⎛⎫=--- ⎪⎝⎭. 令12f n m ⎛⎫-≤ ⎪⎝⎭,所以211111ln 222222n m m m m m⎛⎫⎛⎫-≥--+-+ ⎪ ⎪⎝⎭⎝⎭成立. 记102t m=->,()21ln 2g t t t t t =+-,()ln g t t t '=+,当0t >时,()g t '是增函数,1110g e e ⎛⎫'=-+< ⎪⎝⎭,()110g '=>,所以存在()00,1t ∈使000()ln 0g t t t '=+=. 当00t t <<时,()0g t '<,()g t 是减函数: 当0t t >时,()0g t '>,()g t 是增函数,所以当t t =0时,()g t 既是极小值也是最小值,()000001ln 2g t t t t t =+-. 又00ln t t =-,所以()200012=--g t t t ,则()0 2ng t m-≥成立, 当001t <<时,()0g t 是减函数, 所以()()0312g t g >=-,则322n m ->-,所以30n m ->. 【名师点睛】12f n m ⎛⎫-≤ ⎪⎝⎭211111ln 222222⎛⎫⎛⎫⇒-≥--+-+ ⎪ ⎪⎝⎭⎝⎭n m m m m m ,记102t m=->,构造函数()21ln 2g t t t t t =+-是解题的关键.本题考查了运算求解能力和逻辑推理能力,属于难题.15.已知函数()()()2(ln ,)xf x x kx k Rg x x e =-∈=-.(1)若()f x 有唯一零点,求k 的取值范围;21 / 31(2)若()()1g x f x -≥恒成立,求k 的取值范围. 【试题来源】山东省菏泽市2021届高三下学期3月一模【答案】(1)1k e=或0k ≤;(2)1k .【分析】(1)转化为ln x k x =有唯一实根,构造函数()ln x h x x=,利用导数研究函数的性质,得到函数的图象,根据图象可得结果;(2)转化为1ln 2xx k e x+≥-+恒成立,构造函数()1ln 2x xx e xϕ+=-+,利用导数求出其最大值,利用最大值可得解. 【解析】(1)由()ln f x x kx =-有唯一零点,可得方程ln 0x kx -=,即ln xk x=有唯一实根, 令()ln x h x x =,则()21ln ,xh x x -'=由()0h x '>,得0,x e <<由()0h x '<,得,x e >()h x ∴在()0,e 上单调递增,在(,)e +∞上单调递减.()()1h x h e e∴≤=, 又()10,h =所以当01x <<时,()0h x <; 又当x e >时,()ln 0,xh x x=>由()ln x h x x =得图象可知,1k e=或0k ≤. (2)()2ln 1()xx e x kx ---≥恒成立,且0x >,1ln 2xx k e x+∴≥-+恒成立, 令()1ln 2xx x e xϕ+=-+,则()22221(l l n n 1)x x x x e x x x e x x ϕ--'⋅==-+-,令()2ln x x x x e μ=--,则211()(2)(2)0x x xx xe x e xe x x xμ'=--+=--+<(0)x >,()x μ∴在(0,)+∞单调递减,又()12110,10e e e e μμ-⎛⎫=->=-< ⎪⎝⎭,由零点存在性定理知,存在唯一零点01,1x e ⎛⎫∈ ⎪⎝⎭,使()0,o x μ=即0200ln xx x e -=,两边取对数可得()000ln ln 2ln ,x x x -=+即()()0000ln ln ln ln ,x x x x -+-=+ 由函数ln y x x =+为单调增函数,可得00ln x x =-,所以当00x x <<时,()0x μ>,()0x ϕ'>,当0x x >时,()0x μ<,()0x ϕ'<, 所以()x ϕ在()00,x 上单调递增,在0(,)x +∞上单调递减,()()00000001ln 11221x x x x x e x x x ϕϕ+-∴≤=-+=-+=, 所以()1,o k x ϕ≥=即k 的取值范围为1k .16.已知函数f (x )=2e x +a ln(x +1)-2.(1)当a =-2时,讨论f (x )的单调性;(2)当x ∈[0,π]时,f (x )≥sin x 恒成立,求a 的取值范围.【试题来源】2021年高考数学二轮复习热点题型精选精练(新高考地区专用) 【答案】(1)函数()f x 在(-1,0)单调递减,在()0,∞+单调递增;(2)[)1,-+∞. 【分析】(1)将2a =-代入,求出导函数,利用导数与函数单调性之间的关系即可求解.(2)令()()()[]sin 2ln 12sin ,0,xg x f x x e a x x x π=-=++--∈,等价于()()00g x g ≥=恒成立,求出()g x ',讨论0a ≥或0a <,判断函数的单调性,其中0a <时,可得()0211g a a '=+-=+,讨论10a +≥或10+<a ,证明函数的单调性即可证明.【解析】(1)当2a =-时()(),22ln 12,1x f x e x x =-+->-.23 / 31()()22,1x f x e f x x '+'=-在()1,-+∞单调递增,且()00.f '= 当()1,0x ∈-时,()0f x '<;当()0,x ∈+∞时(),0f x '>. 所以函数()f x 在(-1,0)单调递减,在()0,∞+单调递增.(2)令()()()[]sin 2ln 12sin ,0,xg x f x x e a x x x π=-=++--∈当[]0,x π∈时,()sin f x x ≥恒成立等价于()()00g x g ≥=恒成立.由于()()[]cos 2cos ,0,1xag x f x x e x x x π=-=+-∈+'', 所以(1)当0a ≥时,()210,xg x e '≥->函数()y g x =在[]0,π单调递增,所以()()00g x g ≥=,在区间[]0,π恒成立,符合题意.(2)当0a <时,()2cos 1xag x e x x =+-+'在[]0,π单调递增,()0211g a a '=+-=+. ①当10a +即10a -≤<时,()()010,g x g a ≥=+≥''函数()y g x =在[]0,π单调递增,所以()()00g x g =在[]0,π恒成立,符合题意.②当10+<a 即1a <-时()(),010,211ag a g e πππ=+<=++'+', 若()0g π'≤,即()()121a e ππ≤-++时(),g x '在()0,π恒小于0则()g x 在()0,π单调递减,()()00g x g <=,不符合题意.若()0,g π'>即()()1211e a ππ-++<<-时,存在()00,x π∈使得()00.g x '=所以当()00,x x ∈时,()0,g x '<则()g x 在()00,x 单调递减,()()00,g x g <=不符合题意. 综上所述,a 的取值范围是[)1,.∞-+【名师点睛】本题考查了利用导数研究函数的单调性,利用导数研究不等式恒成立,解题的关键是构造函数()()[]2ln 12sin ,0,xg x e a x x x π=++--∈,不等式等价转化为()()00g x g ≥=恒成立,考查了分析能力、计算能力以及分类讨论的思想. 17.设()()ln a f x ax x =+,()11ln xg x b e x x-=⋅+,其中,a b ∈R ,且0a ≠.(1)试讨论()f x 的单调性;(2)当1a =时,()()ln f x xg x x -≥恒成立,求实数b 的取值范围. 【试题来源】广西玉林市2021届高三下学期第一次适应性测试 【答案】(1)答案见解析;(2)(],e -∞.【分析】(1)分别在0a <和0a >两种情况下,结合定义域,根据导函数的正负可确定原函数的单调性;(2)将不等式化为11ln xbxex x-≤-,利用导数和复合函数单调性可确定min 11ln 1x x ⎛⎫-= ⎪⎝⎭,进而转化为x e b x≤,利用导数可求得()x em x x =的最小值,由()min b m x ≤可得结果.【解析】(1)()221a x af x x x x'-=-=, ①当0a <时,由0ax >得0x <,即()f x 定义域为(),0-∞;∴当(),x a ∈-∞时,()0f x '<;当(),0x a ∈时,()0f x '>;()f x ∴在(),a -∞上单调递减,在(),0a 上单调递增; ②当0a >时,由0ax >得0x >,即()f x 定义域为()0,∞+;∴当()0,x a ∈时,()0f x '<;当(),x a ∈+∞时,()0f x '>;()f x ∴在()0,a 上单调递减,在(),a +∞上单调递增;综上所述:当0a <时,()f x 在(),a -∞上单调递减,在(),0a 上单调递增;当0a >时,()f x 在()0,a 上单调递减,在(),a +∞上单调递增.(2)由()()ln f x xg x x -≥得11ln ln ln x x bxe x x x -+--≥,即11ln x bxe x x -≤-, 设()ln h t t t =-,则()111t h t t t-'=-=,∴当()0,1t ∈时,()0h t '>;当()1,t ∈+∞时,()0h t '<;()h t ∴在()0,1上单调递增,在()1,+∞上单调递减;25 / 31又1t x=在()0,∞+上单调递减, 11ln y x x ∴=-在()0,1上单调递减,在()1,+∞上单调递增,min 11ln 1ln11xx ⎛⎫∴-=-= ⎪⎝⎭;1xbxe -∴≤在()0,∞+上恒成立,xe b x ∴≤;设()xe m x x =,则()()21x e x m x x-'=, ∴当()0,1x ∈时,()0m x '<;当()1,x ∈+∞时,()0m x '>;()m x ∴在()0,1上单调递减,在()1,+∞上单调递增, ()()min 1m x m e ∴==,b e ∴≤, 即实数b 的取值范围为(],e -∞.【名师点睛】本题考查恒成立问题的求解,解题关键是能够通过分离变量的方式,将问题转化为函数最值的求解问题,进而利用导数求解函数最值得到结果.18.已知函数()()1ln x af x x e x -=--.(1)当1a =时,求()f x 的最小值;(2)证明:当01a <≤时,()ln f x a ≥恒成立.【试题来源】湖北省武汉市2021届高三下学期3月质量检测 【答案】(1)0;(2)证明见解析. 【分析】(1)1a =时,1()(1)ln x f x x ex -=--,求导1)1(x xe xf x -'=-,利用导函数研究函数的单调区间,从而求出函数的最小值;(2)要证当01a <≤时,()ln f x a ≥恒成立,即证(1)ln ln 0x a x e x a ----≥,构造函数()(1)ln ln x a h a x e x a -=---,即证()0h a ≥恒成立,研究该函数在(0,)+∞上单调区间,求函数()0h a ≥.【解析】(1)1a =时,1()(1)ln x f x x e x -=--,定义域为(0,)+∞,求导1)1(x xe x f x -'=-,设()()g x f x '=, 121(1)0()x g x x e x-+=+'>,()f x '∴在(0,)+∞单调递增.又()10f '=,故当01x <<时,()0f x '<,()f x ∴单调递减; 当1x >时,'()0f x >,()f x 单调递增. 故()f x 在1x =处取得最小值()10f =. (2)设()(1)ln ln x a h a x e x a -=---,求导()(1)11(1)x a xaa x e e x e e a e h a a '⎡⎤-=-=--⎢⎥⎣⎦. 设()()1xs x x e =-,()xe t x x=,()0x s x xe '=-<,所以0x >时,()s x 单调递减,()()01s x s <=.21()xx t x e x-'=,令()0t x '=,得1x =, 当01x <<时,()0t x '<,()t x 单调递减;当1x >时,()0t x '>,()t x 单调递增,()()1t x t e ∴≥=,故0a >,0x >时,()11axe x e e a-<<≤.即()0h a '<,()h a ∴在(0,)+∞上单调递减, 则01a <≤时,()()()111ln x h a h x e x -≥=--.由(1)知,()11ln 0x x e x ---≥,故01a <≤时,()0h a ≥.即()1ln ln x ax ex a ---≥恒成立.【名师点睛】本题考查利用导数研究函数的最小值及利用导数证明不等式,利用导数证明不等式的方法:证明()()),,(f x g x x a b <∈,可以构造函数()()()F x f x g x =-,如果()0F x '<,则()F x 在(,)a b 上是减函数,同时若()0F a ≤,由减函数的定义可知,(,)x a b ∈时,有()0F x <,即证明了()()f x g x <.19.已知函数()()22x f x xe ax ax a =--∈R .27 / 31(1)当0a >时,讨论()f x 的单调性;(2)若关于x 的不等式()()f x f x ≥--在(),-∞+∞上恒成立,求实数a 的取值范围. 【试题来源】2021年高考二轮复习讲练测(浙江专用) 【答案】(1)答案见解析;(2)(],1-∞【分析】(1)先求出()f x ',令()0f x '=,比较两根大小,结合二次函数图象,即可判断()f x 的单调性;(2)将()f x 代入化简得到()220x x x e e ax ---≥,对x 进行分类讨论,易知0x =,a R ∈,0x ≠,令x e t =,根据()()0,1g t t ≥≠恒成立,对a 进行分类讨论即可求解. 【解析】(1)()()22x f x xe ax ax a =--∈R ,()()()2212x x x f x e xe ax a x e a '∴=+--=+-,x ∈R ,当0a >时,令()0f x '=,解得ln 2x a =或1x =-, 当ln 21a <-,即102a e<<, 则当(),ln 2x a ∈-∞时,()0f x '>,()f x 单调递增; 当()ln 2,1x a ∈-时,()0f x '<,()f x 单调递减; 当()1,x ∈-+∞时,()0f x '>,()f x 单调递增; 当ln 21a =-,即12a e=, 则()0f x '≥,等号不恒成立,()f x 在R 上单调递增; 当ln 21a >-,即12a e>, 则当(),1x ∈-∞-时,()0f x '>,()f x 单调递增; 当()1,ln 2x a ∈-时,()0f x '<,()f x 单调递减; 当()ln 2,x a ∈+∞时,()0f x '>,()f x 单调递增. 综上所述:当102a e<<时,()f x 在(),ln2a -∞上单调递增,在()ln 2,1a -上单调递减,在()1,-+∞上单调递增;当12a e=时,()f x 在R 上单调递增; 当12a e>时,()f x 在(),1-∞-上单调递增,在()1,ln 2a -上单调递减,在()ln2,a +∞上单调递增;(2)()()f x f x ≥--,即()2222x x xe ax ax xe a x ax -⎡⎤--≥----+⎣⎦, 即()220x x x e e ax ---≥,即()22x x x e e ax --≥①, 当0x =时,①式恒成立,a ∈R ; 当0x >时,x x e e ->,()0x x x e e -->, 当0x <时,x x e e -<,()0x x x e e -->, 故当0a ≤时,①式恒成立,;以下求当0x ≠时,不等式20x x e e ax ---≥恒成立时正数a 的取值范围, 令x e t =,则()()0,11,t ∈+∞,()12ln g t t a t t=--, 则()22212211a t at g t t t t -+'=+-=,令()221h t t at =-+,则244a ∆=-,当01a <≤时,0∆≤,()2210h t t at =-+≥,()0g t '≥,等号不恒成立,故()g t 在()0,∞+上单调递增,又()10g =,故1t >,()()10g t g >=,01t <<时,()()10g t g <=, 即当01a <≤时,①式恒成立;当1a >时,0∆>,()010h =>,()1220h a =-<, 故()h t 的两个零点,即()g t '的两个零点()10,1t ∈和()21,t ∈+∞,在区间()12,t t 上,()0h t <,()0g t '<,()g t 是减函数,。
导数压轴大题7个题型梳理归纳题型一:含参分类讨论 类型一:主导函数为一次型例1:已知函数()ln f x ax a x =--,且()0f x ≥.求a 的值 解:()1ax f x x-'=.当0a ≤时,()0f x '<,即()f x 在()0,+∞上单调递减,所以当01x ∀>时,()()010f x f <=,与()0f x ≥恒成立矛盾.当0a >时,因为10x a <<时()0f x '<,当1x a>时()0f x '>,所以()min 1f x f a ⎛⎫= ⎪⎝⎭,又因为()1ln10f a a =--=,所以11a =,解得1a =类型二:主导函数为二次型例2: 已知函数()()320f x x kx x k =-+<.讨论()f x 在[],k k -上的单调性. 解:()f x 的定义域为R ,()()23210f x x kx k '=-+<,其开口向上,对称轴3k x =,且过()0,1,故03kk k <<<-,明显不能分解因式,得2412k ∆=-.(1)当24120k ∆=-≤时,即0k ≤<时,()0f x '≥,所以()f x 在[],k k -上单调递增;(2)当24120k ∆=->时,即k <令()23210f x x kx '=-+=,解得:12x x ==,因为()()210,010f k k f ''=+>=>,所以两根均在[],0k 上.因此,结合()f x '图像可得:()f x 在,,33k k k k ⎡⎡⎤+-⎢⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦上单调递增,在⎢⎥⎣⎦上单调递减.类型三:主导函数为超越型例3:已知函数()cos xf x e x x =-.求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值. 解:定义域0,2π⎡⎤⎢⎥⎣⎦,()()cos sin 1x f x e x x '=--,令()()cos sin 1xh x e x x =--,则()()cos sin sin cos 2sin .xx h x e x x x x e x '=---=-当0,2x π⎡⎤∈⎢⎥⎣⎦,可得()0h x '≤,即()h x 在0,2π⎡⎤⎢⎥⎣⎦递减,可得()()()000h x h f '≤==,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦递减,所以()()()max01,.22f x f f x f ππ⎛⎫====- ⎪⎝⎭类型四:复杂含参分类讨论例4:已知函数()()33f x x x a a R =+-∈.若()f x 在[]1,1-上的最大值和最小值分别记为()(),M a m a ,求()()M a m a -.解:()33333,333,x x a x a f x x x a x x a x a ⎧+-≥⎪=+-=⎨-+<⎪⎩,()2233,33,x x af x x x a⎧+≥⎪'=⎨-<⎪⎩ ①当1a ≤-时,有x a ≥,故()333f x x x a =+-,所以()f x 在()1,1-上是增函数,()()()()143,143M a f a m a f a ==-=-=--,故()()8M a m a -=.②当11a -<<时,若()()3,1,33x a f x x x a ∈=+-,在(),1a 上是增函数;若()1,x a ∈-,()333f x x x a =-+,在()1,a -上是减函数,()()(){}()()3max 1,1,M a f f m a f a a =-==,由于()()1162f f a --=-+因此当113a -<≤时,()()334M a m a a a -=--+;当113a <<时,()()332M a m a a a -=-++.③当1a ≥时,有x a ≤,故()333f x x x a =-+,此时()f x 在()1,1-上是减函数,因此()()()()123,123M a f a m a f a =-=+==-+,故()()4M a m a -=.题型二:利用参变分离法解决的恒成立问题类型一:参变分离后分母跨0例5:已知函数()()()242,22xf x x xg x e x =++=+,若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:由题意()24221xx x ke x ++≤+,对于任意的2x ≥-恒成立.当1x =-,上式恒成立,故k R ∈;当1x >-,上式化为()24221x x x k e x ++≥+,令()()()2421,21x x x h x x e x ++=>-+ ()()()22+221x xxe x h x e x -'=+,所以()h x 在0x =处取得最大值,()01k h ≥= 当21x -≤<-时,上式化为()24221x x x k e x ++≤+,()h x 单调递增,故()h x 在2x =-处取得最小值,()22k h e ≤-=.综上,k 的取值范围为21,e ⎡⎤⎣⎦.类型二:参变分离后需多次求导例6:已知函数()()()()212ln ,f x a x x a R =---∈对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立,求a 的最小值.解:即对12ln 0,,221xx a x ⎛⎫∈>-⎪-⎝⎭恒成立. 令()2ln 12,0,12x l x x x ⎛⎫=-∈ ⎪-⎝⎭,则()()()()222212ln 2ln 211x x x x x l x x x --+-'=-=-- 再令()()()222121122ln 2,0,,02x m x x x m x x x x x --⎛⎫'=+-∈=-+=< ⎪⎝⎭()m x 在10,2⎛⎫ ⎪⎝⎭上为减函数,于是()122ln 202m x m ⎛⎫>=->⎪⎝⎭,从而,()0l x '>,于是()l x 在10,2⎛⎫ ⎪⎝⎭上为增函数,()124ln 22l x l ⎛⎫<=- ⎪⎝⎭,故要2ln 21xa x >--恒成立,只要[)24ln 2,a ∈-+∞,即a 的最小值24ln 2-. 变式1:已知函数()()1ln ,0x f x x a R a ax -=+∈≠,()()()11x g x b x xe b R x=---∈(1)讨论()f x 的单调性;(2)当1a =时,若关于x 的不等式()()2f x g x +≤-恒成立,求b 取值范围.类型三:参变分离后零点设而不求例7:已知函数()ln f x x x x =+,若k Z ∈,且()1f x k x <-对于任意1x >恒成立,求k 的最大值.解:恒成立不等式()minln ln ,111f x x x x x x x k k x x x ++⎛⎫<=< ⎪---⎝⎭,令()ln 1x x x g x x +=-,则()()2ln 21x x g x x --'=-,考虑分子()ln 2,h x x x =-- ()110h x x'=->,()h x 在()1,+∞单调递增.()()31ln 30,42ln 20h h =-<=->由零点存在定理,()3,4b ∃∈,使得()0h b =.所以()1,x b ∈,()()00h x g x '<⇒<,同理()(),,0x b g x '∈+∞>,所以()g x 在 ()1,b 单调递减,在(),b +∞单调递增.()()min ln 1b b bg x g b b +==-,因为()0h b =即ln 20ln 2b b b b --=⇒=-,()()()23,4,1b b b g b b b +-==∈-所以,k b <得max 3k =变式1:(理)已知函数().x ln x eaxx f x +-=(2)当0>x 时,()e x f -≤,求a 的取值范围.题型三:无法参变分离的恒成立问题类型一:切线法例8:若[)20,,10x x e ax x ∈+∞---≥,求a 的取值范围.类型二:赋值法例9:已知实数0a ≠,设函数()ln 1,0f x a x x x =++>.(1)当34a =-时,求函数()f x 的单调区间; (2)对于任意21,e ⎡⎫+∞⎪⎢⎣⎭均有()2x f x a ≤,求a 的取值范围. 解析:(1)当34a =-时,3()ln 1,04f x x x x =-++>. 3(12)(21()42141x x f 'x x x x x++=-=++ 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得0a <≤当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-=.故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x . 因此1()10g t g x ⎛+=>⎝.由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a.综上所述,所求a 的取值范围是⎛ ⎝⎦题型四:零点问题类型一:利用单调性与零点存在定理讨论零点个数 例10:已知函数()()31+ln .4f x x axg x x =+=-,(2)用{}min ,m n 表示,m n 中最小值,设函数()()(){}()min ,0h x f x g x x =>讨论()h x 零点个数.解:(2)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =<≤,∴()h x 在(1,)+∞无零点.当x =1时,若54a -≥,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===, 故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a -≤或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a -≤时,()f x 在(0,1)有一个零点; 当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+, 所以当5344a -<<-时,()f x 在(0,1)有两个零点; 当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.类型二:±∞方向上的函数值分析例11:已知函数()()22.x xf x ae a e x =+--若()f x 有两个零点,求a 取值范围.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>+⎪⎝⎭,则()()000032ln 10n nf n e ae n f a ⎛⎫⎛⎫>-->+> ⎪ ⎪⎝⎭⎝⎭, 因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).总结:若()01,ln 0a f a <<-<,要证明()f x 有两个零点,结合零点存在定理,分别在a 的左右两侧,这两个点的函数值()f x 都大于0,这时候需要我们对函数进行适当地放缩,化简,以便取值.先分析当x →-∞,2,x x ae ae 虽然为正,但是对式子影响不大,因此可以大胆的舍掉,得出()2xf x x e >--,显然我们对于右侧这个式子观察,就容易得出一个足够小的x (如1x =-),使得式子大于0了.再分析当x →+∞,我们可以把x ae 这个虽然是正数,但贡献比较小的项舍掉来简化运算,得到()()2xxf x eaex >--,显然当x 足够大,就可以使()2x ae -大于任何正数.那么把它放缩成多少才可以使得x e 的倍数大于x 呢?由常用的不等式1x e x x ≥+>,因此只需要使得21x ae ->即3ln x a >(如3ln 1x a=+)就可以了.题型五:极值点偏移类型一:标准极值点偏移例13:已知函数()()()221x f x x e a x =-+-有两个零点1,2x x ,证明12 2.x x +<解: 不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,又()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x e a x --=-+-, 而22222()(2)(1)0xf x x e a x =-+-=,所以222222(2)(2)x x f x x ex e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<.类型二:推广极值点偏移例14:已知()()()12ln ,f x x x f x f x ==,求证121x x +<. 解:我们可以发现12,x x 不一定恒在12x =两侧,因此需要分类讨论: (1)若12102x x <<<,则1211122x x +<+=,该不等式显然成立; (2)若121012x x <<<<,令()()()()()1ln 1ln 1g x f x f x x x x x =--=---102x <<,故()()()()12ln ln 12,01x g x x x g x x x -'''=+-+=>-,()g x '在10,2⎛⎫ ⎪⎝⎭上单调递增,当0x →时,()1;22ln 202g x g ⎛⎫''→-∞=-> ⎪⎝⎭.010,2x ⎛⎫∃∈ ⎪⎝⎭使()00g x '=即()g x 在()00,x 上单调递减,在01,2x ⎛⎫ ⎪⎝⎭上单调递增,又0x →时,()0g x →,且102g ⎛⎫=⎪⎝⎭,故()0g x <,即()()1f x f x <-对10,2x ⎛⎫∈ ⎪⎝⎭成立,得证.题型六:双变量问题类型一:齐次划转单变量例15:已知函数()()1ln 1a x f x x x -=-+()2a ≤.设,m n R +∈,且m n ≠,求证ln ln 2m n m nm n -+<-. 解:设m n >,证明原不等式成立等价于证明()2ln m n mm n n-<+成立,即证明21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+成立.令m t n =,1t >,即证()()21ln 01t g t t t -=->+.由(1)得,()g t 在()0,+∞上单调递增,故()()10g t g >=,得证.变式1:对数函数()x f 过定点⎪⎭⎫ ⎝⎛21,e P ,函数()()()为常数m ,n x f m n x g '-=,()()的导函数为其中x f x f '.(1)讨论()x g 的单调性;(2)若对于()+∞∈∀,x 0有()m n x g -≤恒成立,且()()n x x g x h -+=2在()2121x x x ,x x ≠=处的导数相等,求证:()()22721ln x h x h ->+.解:(2)因为()1g n m =-,而()0,x ∀∈+∞有()()1g x n m g ≤-=恒成立,知()g x 当1x =时有最大值()1g ,有(1)知必有1m =.∴()()()11ln ,22ln ,g x n x h x g x x n x x x x=--=+-=-- 依题意设()()211122221120,1120k x x h x h x k k x x ⎧-+-=⎪⎪''==⎨⎪-+-=⎪⎩∴12111x x +=121212+=4x x x x x x ⇒≥>∴()()()()121212*********+ln ln 21ln h x h x x x x x x x x x x x ⎛⎫+=-+-+=-- ⎪⎝⎭令()124,21ln t x x t t t ϕ=>=--,()()1204t t tϕ'=->> ∴()t ϕ在4t >单调递增,∴()()472ln 2t ϕϕ>=-类型二:构造相同表达式转变单变量例16:已知,m n 是正整数,且1m n <<,证明()()11.nmm n +>+解:两边同时取对数,证明不等式成立等价于证明()()ln 1ln 1n m m n +>+,即证明()()ln 1ln 1m n m n ++>,构造函数()()ln 1x f x x+=,()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x =-++,()()()22110111x g x x x x -'=-=<+++,故()()00g x g <=,故()0f x '<,结合1,m n <<知()()f m f n >类型三:方程消元转单变量例17:已知()ln xf x x=与()g x ax b =+,两交点的横坐标分别为1,2x x ,12x x ≠,求证:()()12122x x g x x ++>解:依题意11211112222222ln ln ln ln x ax b x x ax bx x x ax bx ax b x ⎧=+⎪⎧=+⎪⎪⇒⎨⎨=+⎪⎪⎩=+⎪⎩,相减得: ()()()12121212ln ln x x a x x x x b x x -=+-+-,化简得()()121212lnx x a x x b x x ++=-,()()()()()()112121121212121122221ln ln 1x x x x x x x x g x x x x a x x b x x x x x x ++++=+++==⎡⎤⎣⎦-- 设12x x >,令121x t x =>,()()()12122112ln 2ln 011t t x x g x x t t t t -+++>⇔>⇔->-+ 再求导分析单调性即可.变式1:已知函数()1++=ax x ln x f 有两个零点21x ,x .()10a -<<(2)记()x f 的极值点为0x ,求证:()0212x ef x x >+.变式2:设函数()()3211232xf x ex kx kx =--+. 若()f x 存在三个极值点123,,x x x ,且123x x x <<,求k 范围,证明1322x x x +>.变式3:已知函数()122ln 21x ef x a x x x-⎛⎫=++-- ⎪⎝⎭在定义域()0,2内有两个极值点.(1)求实数a 的取值范围;(2)设12,x x 是()f x 两个极值点,求证12ln ln ln 0x x a ++>.类型四:利用韦达定理转单变量例18:已知()()21ln 02f x x x a x a =-+>,若()f x 存在两极值点1,2x x , 求证:()()1232ln 24f x f x --+>.解:()21,a x x af x x x x-+'=-+=由韦达定理12121,x x x x a +==1140,4a a ∆=->< ()()()()()212121212121+2ln 2f x f x x x x x x x a x x ⎡⎤=+--++⎣⎦ ()11121ln ln 22a a a a a a =--+=--令()()11ln ,0,ln 024g a a a a a g a a '=--<<=<,()g a 在10,4⎛⎫⎪⎝⎭上单调递减,故()132ln 244g a g --⎛⎫>=⎪⎝⎭. 变式1:已知函数().R a ,x ax x ln x f ∈-+=22(2)若n ,m 是函数()x f 的两个极值点,且n m <,求证:.mn 1>方法二:变式2:已知函数()213ln 222f x x ax x =+-+()0a ≥. (1)讨论函数()f x 的极值点个数;(2)若()f x 有两个极值点12,x x ,证明()()110f x f x +<.题型六:不等式问题类型一:直接构造函数解决不等式问题例19:当()0,1x ∈时,证明:()()221ln 1x x x ++<.解:令()()()221ln 1f x x x x =++-,则()00f =,而()()()()2ln 1ln 12,00f x x x x f ''=+++-=,当()0,1x ∈时,有()ln 1x x +<,故()()()ln 12222ln 10111x f x x x x x x+''=+-=+-<⎡⎤⎣⎦+++, ()f x '在()0,1上递减,即()()00f x f ''<=,从而()f x 在()0,1递减,()()00f x f ≤=,原不等式得证.变式1:已知函数()()()R a ex x ln x a x f ∈+-=1.(1)求函数()x f 在点1=x 处的切线方程;(2)若不等式()0≤-x e x f 对任意的[)+∞∈,x 1恒成立,求实数a 的取值范围解:(2)令()()()()1ln 1,x xg x f x e a x x ex e x =-=-+->()1ln 1xg x a x e e x ⎛⎫'=+-+- ⎪⎝⎭, ①若0a ≤,则()g x '在[)1,+∞上单调递减,又()10g '=.即()0g x '≤恒成立,所以()g x 在[)1,+∞上单调递减,又()10g =,所以()0g x ≤恒成立.②0a >,令()()1ln 1,x h x g x a x e e x ⎛⎫'==+-+- ⎪⎝⎭所以()211xh x a e x x ⎛⎫'=+-⎪⎝⎭,易知211x x +与x -e 在[)1,+∞上单调递减,所以()h x '在[)1,+∞上单调递减,()12h a e '=-. 当20a e -≤,即02ea <≤时,()0h x '≤在[)1,+∞上恒成立,则()h x 在[)1,+∞上单调递减,即()g x '在[)1,+∞上单调递减,又()10g '=,()0g x '≤恒成立,()g x 在[)1,+∞上单调递减,又()10g =,()0g x ≤恒成立.当20a e ->时,即2ea >时,()01,x ∃∈+∞使()00h x '=,所以()h x 在()01,x 上单调递增,此时()()10h x h >=,所以()0g x '>所以()g x 在()01,x 递增,得()()10g x g >=,不符合题意. 综上,实数a 的取值范围是2e a ≤. 变式2:(文)已知函数()()()().R a ,x a x g ,x ln x x f ∈-=+=11(1)求直线()x g y =与曲线()x f y =相切时,切点T 的坐标. (2)当()10,x ∈时,()()x f x g >恒成立,求a 的取值范围.解:(1)设切点坐标为()00x y ,,()1ln 1f x x x'=++,则()()000001ln 11ln 1x a x x x a x ⎧++=⎪⎨⎪+=-⎩,∴00012ln 0x x x -+=.令()12ln h x x x x=-+,∴()22210x x h x x -+'=-≤,∴()h x 在()0+∞,上单调递减, ∴()0h x =最多有一根.又∵()10h =,∴01x =,此时00y =,T 的坐标为(1,0).(2)当()0 1x ∈,时,()()g x f x >恒成立,等价于()1ln 01a x x x --<+对()0 1x ∈,恒成立. 令()()1ln 1a x h x x x -=-+,则()()()()2222111211x a x ah x x x x x +-+'=-=++,()10h =. ①当2a ≤,()1x ∈0,时,()22211210x a x x x +-+≥-+>, ∴()0h x '>,()h x 在()0 1x ∈,上单调递增,因此()0h x <. ②当2a >时,令()0h x '=得1211x a x a =-=-由21x >与121x x =得,101x <<.∴当()1 1x x ∈,时,()0h x '<,()h x 单调递减, ∴当()1 1x x ∈,时,()()10h x h >=,不符合题意; 综上所述得,a 的取值范围是(] 2-∞,.变式3:(文)已知函数().x x x ln x f 12---=(2)若存在实数m ,对于任意()∞+∈0x ,不等式()()()0212≤+-+x x m x f 恒成立,求实数m 的最小整数值.解:(2)法一:参变分离+二次局部求导+虚设零点变式4:(理)已知函数()()()R a x a eae x f xx∈-++=-22.(1)讨论()x f 的单调性;(2)当0≥x 时,()(),x cos a x f 2+≥求实数a 的取值范围.变式5:已知()1ln ,mf x x m x m R x-=+-∈. (1)当202e m <≤时,证明()21x e x xf x m >-+-.类型二:利用min max f g >证明不等式问题例20:设函数()1ln x xbe f x ae x x-=+曲线()y f x =在点()()1,1f 的切线方程为()12y e x =-+.(1)求,a b 值; (2)证明:()1f x >【解析】(1)函数()f x 的定义域为(0,)+∞,112()ln xx x x a b b f x ae x e e e x x x--=+-+. 由题意可得(1)2f =,(1)f e '=.1, 2.a b ==故(2)由(1)知12()ln xx f x e x e x -=+,从而()1f x >等价于2ln x x x xe e->-. 设函数()1g x x nx =,则'()1g x nx =.所以当1(0,)x e ∈时,()0g x '<;当1(,)x e ∈+∞时,()0g x '>.故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增,从而()g x 在(0,)+∞的最小值为11()g e e=-. 设函数2()xh x xee-=-,则'()(1)x h x e x -=-. 所以当(0,1)x ∈时()0h x '>;当(1,)x ∈+∞时,()0h x '<故()h x 在(0,1)单调递增, 在(1,)+∞单调递减,从而()h x 在(0,)+∞的最大值为1(1)h e=-.变式1. 已知函数()x ln a bx x f +=2的图像在点()()11f ,处的切线斜率为2+a .(1)讨论()x f 的单调性; (2)当20e a ≤<时,证明:()222-+<x e xx x f 解:(2)要证()222x f x x e x -<+,需证明22ln 2x a x e x x-<.令()ln 02a x e g x a x ⎛⎫=<≤ ⎪⎝⎭,则()()21ln a x g x x -'=, 当()0g x '>时,得0x e <<;当()0,g x '<得x e >. 所以()()max ag x g e e==. 令()()2220x e h x x x -=>,则()()2322x e x h x x--'=. 当()0h x '>时,得2x >;当()0h x '<时,得02x <<. 所以()()min 122h x h ==.因为02e a <≤,所以()max 12a g x e ==. 又2e ≠,所以22ln 2x a x e x x-<,即()222x f x x e x -<+得证.变式2:(理)已知函数()().ax ln axx f -=(1)求()x f 的极值;(2)若()012≤+-++m x e mx x ln e x x ,求正实数m 的取值范围.变式3:已知()1ln ,mf x x m x m R x-=+-∈. (2)当202e m <≤时,证明()21x e x xf x m >-+-.类型三:利用赋值法不等式问题例21:已知函数()2x xf x e e x -=--.(1)讨论()f x 的单调性;(2)设()()()24g x f x bf x =-,当0x >,()0g x >,求b 的最大值. (3)估计ln 2(精确小数点后三位).解:因为()()()()()2224484xx x x g x f x bf x e e b e e b x --=-=---+-所以()()()()()2222422222xx x x x x x xg x ee b e e b e e e e b ----⎡⎤'=+-++-=+-+-+⎣⎦①当2b ≤时,()0,g x '≥等号仅当0x =时成立,所以()g x 在R 上单调递增,而()00g =,所以对于任意()0,0x g x >>.②当2b >,若x 满足222x x e e b -<+<-,即(20ln 12x b b b <<-+-时,()0g x '<,而()00g =,因此当(20ln 12x b b b <≤--时,()0g x <,综上最大为2.(3)由(2)知,(()3221ln 22g b =-+-,当2b =时,(36ln 20,ln 20.69282g =->>>;当14b =+时,(ln 1b -+=(()32ln 202g =--<,18ln 20.69328+<<,所以近似值为0.693类型四:利用放缩法构造中间不等式例22:若0x >,证明:()ln 1.1x x xx e +>- 解:转化成整式()()2ln 11xx e x +->.令()()()2ln 11xf x x e x =+--,则()()1ln 121x xe f x e x x x -'=++-+()()()21ln 1211x x x e x e f x e x x x +''=+++-++.由()+1ln 11x x e x x x ≥+≥+,, 得()()()()3222112120,11x x x x f x x x x +++''≥++-=>++()()00,f x f ''≥=故()()00f x f ≥=,得证.变式1:(2020河南鹤壁市高三期末)已知函数()21xf x e kx =--,()()()2ln 1g x k x x k R =+-∈.(2)若不等式()()0f x g x +≥对任意0x ≥恒成立,求实数k 范围.变式2:(2020年河南六市联考)已知函数()()2ln 1sin 1f x x x =+++,()1ln g x ax b x =-- 证明:当1,x >-()()2sin 22xf x x x e<++类型五:与数列相关的不等式例23:设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值.解:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.变式1:(理)已知函数()()()021>+-+=a ax xx ln x f .(1)若不等式()0≥x f 对于任意的0≥x 恒成立,求实数a 的取值范围;(2)证明:().N n ln ln ln ln n n n *-∈⎪⎭⎫⎝⎛->⎪⎪⎭⎫ ⎝⎛-++⋅⋅⋅+++1212121279353变式1:(2020河南开封二模)已知函数()1xf x e x =--.(1)证明()0f x >;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 求m 的最小值.类型六:与切、割线相关的不等式例24:已知函数()()2901xf x a ax =>+ (1)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值;(2)若直线2y x a =-+为曲线()y f x =的切线,求实数的值;(3)当2a =时,设12141,,22x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,且121414x x x +⋅⋅⋅+=,若不等式()()()1214f x f x f x λ+⋅⋅⋅+≤恒成立,求实数λ的最小值.解:证明()29412xf x x x=≤-++,即32281040x x x -+-+≥, 令()3228104F x x x x =-+-+,()261610F x x x '=-+-,所以()F x在1,12⎛⎫⎪⎝⎭,5,23⎛⎫ ⎪⎝⎭递减,在51,3⎛⎫ ⎪⎝⎭递增.而()50,203F F ⎛⎫>> ⎪⎝⎭,表明不等式()29412xf x x x =≤-++成立.所以()()()12141244+442n f x f x f x x x x ++⋅⋅⋅+≤-+-+⋅⋅⋅-+=, 等号在全部为1时成立,所以λ最小值为42。
高考数学导数压轴题7大题型总结
北京八中
高考数学导数压轴题7大题型总结
高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。
导数解答题是高考数学必考题目,今天就总结导数7大题型,让你在高考数学中多拿一分,平时基础好的同学逆袭140也不是问题
01导数单调性、极值、最值的直接应用
02交点与根的分布
03不等式证明
(一)做差证明不等式
(二)变形构造函数证明不等式
(三)替换构造不等式证明不等式
04不等式恒成立求字母范围(一)恒成立之最值的直接应用
(二)恒成立之分离参数
(三)恒成立之讨论字母范围
05函数与导数性质的综合运用
06导数应用题
07导数结合三角函数。
数学高考知识点导数题型
在高考数学中,导数是一个非常重要的知识点。导数的概念不仅仅
只是数学的一种计算方法,更是一种思维方式。在许多问题中,我们
常常需要通过导数的求解来得到问题的解答。因此,熟练掌握导数的
题型,对于高考取得好成绩是非常重要的。接下来,我们将通过对导
数的不同题型进行讨论和解析,帮助大家更好地理解和掌握导数的应
用。
首先,我们来介绍一下导数的定义。导数,简单来说就是函数在某
一点的切线斜率。在数学中常用f(x)表示一个函数,假设函数在点x处
的导数为f'(x),那么可以用以下的公式来计算:
f'(x) = lim(h->0) [f(x+h)-f(x)]/h
当我们求导数的时候,我们首先需要确定函数的表达式,然后使用
导数的定义将其应用到特定的问题中。接下来,我们将通过不同的题
型来学习导数的应用。
第一种题型是求函数的导函数。在这种题型中,我们需要根据函数
的表达式来计算其导函数。例如,如果函数f(x) = x^2,我们需要求出
它的导数f'(x)。根据导数的定义,我们可以计算出:
f'(x) = lim(h->0) [(x+h)^2 - x^2]/h
= lim(h->0) [x^2 + 2xh + h^2 - x^2]/h
= lim(h->0) [2xh + h^2]/h
= lim(h->0) 2x + h
= 2x
由此可见,对函数f(x) = x^2求导后得到的导函数是f'(x) = 2x。通
过这个例子,我们可以发现,求导的过程实际上就是求函数在某一点
的切线斜率,而对于二次函数来说,导函数的斜率恒为2。这也是为什
么二次函数的图像是一个拱形的原因。
第二种题型是求函数的极值。在这种题型中,我们需要找到函数的
最大值或最小值。根据数学定理,函数的极值点对应于导函数为零的
点或导数不存在的点。我们可以使用导数的求解方法来找到这些点。
例如,如果我们要求函数f(x) = x^3的极值点,我们首先需要计算出它
的导数f'(x) = 3x^2。由于导数是一个代表切线斜率的值,所以当导数
为零时,函数的切线斜率为零,也就是函数存在极值点。
解方程3x^2 = 0,我们可以得到x = 0。这意味着函数f(x) = x^3存
在一个极小值点或极大值点,而这个点就是x = 0。我们可以通过这种
方法来求解其他函数的极值点。
第三种题型是求函数的导数的应用问题。在这种题型中,我们需要
利用导数的概念和性质来解决实际问题。例如,我们可以利用导数来
求解函数的增减性和最值问题。通过分析导数的变化情况,我们可以
判断函数在某个区间上是增加还是减少,从而解决各种实际问题。
总结一下,高考数学中的导数题型分为三个方面:求函数的导函数、
求函数的极值和求解应用问题。在解决这些问题的过程中,我们需要
掌握好导数的计算方法和应用技巧。通过不断练习和思考,我们可以
提高我们的导数水平,为高考取得好成绩打下坚实的基础。希望以上
内容对广大考生有所帮助,祝大家都能在高考中取得优异的成绩!