风力发电--双馈发电机控制原理
- 格式:ppt
- 大小:3.19 MB
- 文档页数:33
探讨无刷双馈风力发电机的设计分析与控制无刷双馈风力发电机(Brushless Double-fed Wind Power Generator,BDWG)由于其具有高效、稳定、可靠的特点,在风电发电产业的快速发展中得到了广泛应用。
其核心部件是无刷双馈电机(Brushless Double-fed Induction Machine,BDFIM),由于其内外转子之间通过转子侧电容连接,使其具有一定的电磁转矩特性。
因此,在BDWG中基于实时控制的电压源逆变器的功率控制策略中,可以通过控制转子的电压和电流使得BDFIM适应风机不同的转速变化(也即风速的变化)现象,从而在风力发电过程中实现良好的功率控制性能。
本文旨在对BDWG的设计原理和控制策略进行分析和探讨,主要从以下几个方面进行讨论。
1. BDWG的设计分析(1)结构和工作原理BDWG由涉及双馈电机转子部分(即有刷子组合,转子侧电容器等)和无刷直流电机(一般用于调节转子电容器电压的空间矢量调制控制)经由转子上的能量转换器进行变换,在输出端带有无功功率控制的PWM逆变器进行功率输出。
BDFIM相较于一般异步电机,其内部转子电流被划分为主磁通和次磁通两个部分,转子上的电容器则通过变压器与电网连接。
在风机转速发生变化时,由于双馈电机的特殊结构,主磁通和次磁通之间会产生一定的漏电感,从而使得转子上的电流产生相应的变化。
(2)参数设计和优化在BDWG的设计上,关键的参数设计主要包括了转子电容器的容量、变压比等。
为了实现风能的最大利用效率,需要在保证性能的前提下尽可能减小转子电容器的容量,同时在变压器的设计上注重其高效、轻便的特性。
以上两者则需要依据技术手段来进行有效的优化设计。
2. BDWG的控制策略(1)转子电压交换控制BDWG的控制策略之一是通过转子侧的能量转换器实现交换控制,从而在转速变化的情况下实现电极磁势的平衡控制。
该控制策略主要由节拍控制和逆变控制两个部分组成,其中节拍控制主要通过时序触发器和计数器实现;逆变控制则主要通过高功率开关管实现,其控制基础是PWM控制。
简述双馈式异步风力发电机基本工作原理
双馈式异步风力发电机是一种新型的风力发电技术,它具有高效率、高可靠性、低成本等优点。
双馈式异步风力发电机是一种结构简单、可靠性高、控制方便的风力发电机,它采用异步电动机作为发电机,以及双馈控制系统。
双馈式异步风力发电机的工作原理是:当风力发电机受到风力的驱动时,发电机的转子会受到风力的驱动,从而产生电流。
双馈控制系统会根据转子的转速和转矩来控制发电机的输出功率,从而有效地提高发电机的效率。
此外,双馈式异步风力发电机还可以通过控制系统的调节来实现自动调节输出功率,从而达到节能的目的。
双馈式异步风力发电机是一种高效、可靠、低成本的风力发电技术,它可以有效地提高发电机的效率,并可以实现自动调节输出功率,从而节能。
无刷双馈发电机的控制无刷双馈电机具有很多应用上的优点,但由于其复杂的定转子磁场关系,其作为电动机或发电机的控制策略的难度也要远远高于普通异步电机。
目前对无刷双馈电机控制的研究大多集中在电动机调速控制策略方面,另外对无刷双馈发电机并网发电的控制策略也有一定研究。
20世纪80年代末到90年代初,Alan K、Wallace Rene Spee、Ruqi Li等人推导出笼型无刷双馈电机动态数学模型和两轴数学模型,为BDFM的动态仿真和控制性能的优化提供了坚实的基础。
随后各种方法如标量控制、磁场定向控制、直接转矩控制、模型参数自适应控制等都被广泛应用于无刷双馈电机控制。
一、作为发电机运行时的控制策略BDFM作为发电机运行其控制策略与电动机运行有一定差别,由于无刷双馈电机应用于风力、小水力变速恒频发电的优越性能,使得BDFM发电运行控制策略也是目前的研究热点。
关于无刷双馈风力发电机的控制技术,国内外学者所研究的热点问题之一是如何实现最大功率跟踪,以实现最大风能捕获、提高发电效率。
为达到这一目标,目前主要采用磁场定向的矢量变换控制技术对无刷双馈发电机的有功功率和无功功率进行解耦,通过独立控制有功功率和无功功率来实现最大功率跟踪。
但这种基于矢量控制的方法需要进行坐标变换,计算量大,且易受发电机参数变化的影响,大大降低了系统的鲁棒性。
在风力发电领域中,直接转矩控制技术及其变频器产品主要应用于永磁同步发电机系统和有刷双馈发电机系统,下面对此作一简要介绍。
无刷双馈发电机的电磁转矩方程可表示为式中pp 、pc——功率绕组和控制绕组的极对数;L p 、Lc——功率绕组和控制绕组的自感;ψp 、ψc——功率绕组和控制绕组的磁链矢量;Mpc——两套定子绕组之间的互感;θ——磁链矢量ψp和ψc之间的夹角。
功率绕组的磁链方程为式中up——功率绕组的电压矢量;ip——功率绕组的电流矢量;Rp——功率绕组的电阻。
由于功率绕组电阻压降Rp ip对功率绕组电压的影响很小,可忽略不计,而功率绕组作为电能输出端,要求其输出为恒频恒压,即电压up的幅值和频率保持不变,因此可以认为功率绕组磁链ψp的幅值和旋转速度基本恒定。
双馈式风力发电机【摘要】随着地球能源的日益紧缺,环境污染的日益加重,风能作为可再生绿色能源越来越被人们重视,风力发电技术成为世界各国研究的重点。
变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。
通过调节发电机转子电流的大小、频率和相位,从而实现转速的调节。
而其中双馈发电机构成的风力发电系统已经成为目前国际上风力发电的必然趋势。
关键词:风能风力发电变速恒频双馈式发电机一、风力发电风能作为一种清洁的可再生能源,越来越受到世界各国的重视。
风力发电:把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。
风力发电在芬兰、丹麦等国家很流行;中国也在西部地区大力提倡。
我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。
在这些地区,发展风力发电是很有前途的。
风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。
风力发电的原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。
依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。
风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。
然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。
风力发电所需要的装置,称作风力发电机组。
这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。
风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。
当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。
桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。
(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)由于风轮的转速比较低,而且风力的大小和方向经常变化着,这又使转速不稳定;所以,在带动发电机之前,还必须附加一个把转速提高到发电机额定转速的齿轮变速箱,再加一个调速机构使转速保持稳定,然后再联接到发电机上。
现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动质量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并人电网。
如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。
用于变速恒频一步双馈风力发电机组,定转子都是线圈,简单说转子有电流后产生的磁场切割定子线圈,定子就发电了,转子是直流时,相当于永磁发电机,转子转速过快的话,就给转子反向的交流电使实际的旋转磁场低于转子机械转速,达到变频,转子过慢的话,就给转子正向交流电,使旋转磁场转速大于实际机械转速,达到变频目的,通过以上方案,定子侧就能实现发电的恒频。
在风力发电机组中多选用绕线转子感应异步发电机,这种发电机在结构上与绕线式异步电机相似,由绕线转子异步发电机和在转子电路上带交流励磁器组成,定子、转子均为三相对称绕组,转子绕组电流由滑环导入,这种带滑环的双馈式电机被称之为有刷双馈发电机。
双馈式电机的定子接入电网,通过PWM(脉宽调制)AC-DC-AC变频器向发电机的转子绕组提供励磁电流,为了获得较好的输出电压电流波形,输出频率一般不超过输入频率的1/3。
其容量一般不超过发电机额定功率的30%,通常只需配置一台1/4功率的变频器。
其原理图如图1所示。
双馈式异步发电机向电网输出的功率由两部分组成,即直接从定子输出的功率和通过变频器从转子输出的功率。
风力机的机械速度是允许随着风速而变化的。
通过对发电机的控制使风力机运行在最佳叶尖速比,从而使整个运行速度的范围内均有最佳功率系数。
双馈式异步发电机的变速运行是建立在异步电机基础上的,众所周知异步电机既可作为电动机运行,也可作为发电机运行。
我们将转子转速n与同步转速ns的差值定义为转差,转差与同步转速之比的百分值定义为转差率。
在作电动机运行时,异步电动机转子的转速只能是略低于同步转速,此时产生的电磁转矩与转向相同,转差率>0。
而作发电机运行时,转速总是略高于同步转速,其电磁转矩的方向与旋转方向相反,转差率<0,发电机的功率随该负转差率绝对值的增大而提高。
双馈、直驱、半驱风力发电机工作原理双馈风力发电机、直驱风力发电机和半驱风力发电机是目前常见的风力发电机类型。
它们分别采用不同的工作原理,以实现风能的高效转化为电能。
双馈风力发电机是一种常用的风力发电机类型。
它由风轮、发电机和变频器组成。
风轮通过叶片将风能转化为机械能,驱动发电机旋转。
发电机是双馈结构,即具有两个馈线圈:一个是固定转子上的主馈线圈,另一个是转子上的副馈线圈。
主馈线圈与电网相连,副馈线圈通过变频器与电网相连。
当风力发电机转速变化时,电网电压和频率不变,主馈线圈的电流也保持不变。
副馈线圈的电流则通过变频器调节,以使发电机输出的电流和电网电压保持同步,实现电能的高效输送和稳定输出。
直驱风力发电机则是将风轮直接连接到发电机上,取消了传统的传动装置。
风轮通过叶片将风能转化为机械能,直接驱动发电机旋转。
直驱风力发电机通常采用永磁同步发电机作为发电机,它具有结构简单、高效率等优点。
此外,直驱风力发电机还可以在变速范围内实现高效的风能转化,适应不同风速下的发电需求。
半驱风力发电机是双馈风力发电机和直驱风力发电机的结合。
它采用了一种带有齿轮箱的直驱发电机,以实现风能的高效转化。
风轮通过叶片将风能转化为机械能,经过齿轮箱的变速作用后,驱动发电机旋转。
半驱风力发电机既兼具了直驱风力发电机的高效率特点,又克服了直驱风力发电机在变速范围内的限制。
通过合理设计齿轮箱的传动比,可以使发电机在不同风速下都能实现高效的发电。
总结起来,双馈风力发电机、直驱风力发电机和半驱风力发电机都是通过将风能转化为机械能,再将机械能转化为电能的方式实现风力发电。
它们分别采用了不同的工作原理,以实现风能的高效转化和稳定输出。
在不同的应用场景中,可以根据具体需求选择合适的风力发电机类型,以实现风能的最大利用和经济效益的最大化。
双馈风力发电机运行原理与发电控制技术探讨摘要:全球化工业发展使化石燃料贮存量急剧减少,因此利用可再生能源开展电力生产是目前解决我国能源不足问题的重要途经。
双馈风力发电机在风力发电过程中应用比较普遍,强化其运行原理和发电控制技术研究是提升其工作效能的主要方式,但是显然目前我们普遍对双馈风力发电机运行原理以及发电控制技术认识不足,需要结合国内外研究理论继续深化探讨,才能够进一步满足我国的风力发电需求。
本文尝试从双馈式风力发电机角度分析了其运行原理及发电控制技术,希望研究内容可以对相关行业工作者的实践工作起到一定积极作用。
关键词:双馈式风力发电机;运行原理;发电控制技术引言:据调查,世界各国在风力发电中每年投人的资金总额已接近一千亿美元。
全球范围内,已开始进行研究和采用风力发电技术的国家约有一百个。
由此可见,在化石燃料日渐减少的现状下,风力发电技术极有可能与其它可再生能源(比如太阳能、水力等)发电技术一同取代火力发电。
投入风力发电机运行原理和控制技术研究显然已经成为我们发展经济的关键路径,结合双馈风力发电机的广泛应用,本研究主要开展如下研究。
1双馈风力发电机的结构分析顾名思义,“双馈”指的就是电机的定子与转子均可完成电力供应过程。
一般来说,双馈式发电机的主要部件有定、转子及其接线盒,传动机构、滑环系统与冷却设备等。
其中,转子结构主要存在成型绕组、矩形半线圈、散嵌绕组等形式;滑环系统主要包括碳刷、刷架、滑环、滑环风扇、滑环座、滑环维护罩等部分,而滑环又分为热套式和环氧浇注式两种类型;冷却设备主要分为风冷式、水冷式等多种形式。
在性质归属上双馈发电机属于异步式发电机,但这类发电机又拥有与同步式发电机相似的激磁绕组来调控励磁过程及功率因数。
因此,这种发电机兼有同步和异步式发电机的优点。
其本身具有很大应用优势,如设备体积小、应用成本低、支持无功率调节,具备抗电磁干扰功能。
且该发电机在励磁的过程中受供电网络干扰不明显,能够直接由转子所处电路完成。