七-八年级暑期衔接培训二
- 格式:doc
- 大小:187.82 KB
- 文档页数:4
第一讲、三角形总复习基础知识1. 三角形的内角和定理与三角形的外角和定理;2. 三角形中三边之间的关系定理及其推论;3. 全等三角形的性质与判定;4. 特殊三角形的性质与判定(如等腰三角形);5. 直角三角形的性质与判定。
三角形一章在平面几何中占有十分重要的地位。
从知识上来看,许多内容应用十分广泛,可以解决一些简单的实际问题;从证题方法来看,全等三角形的知识,为我们提供了一个及为方便的工具,通过证明全等,解决证明两条线段相等,两个角相等,从而解决平行、垂直等问题。
因此,它揭示了研究封闭图形的一般方法,为以后的学习提供了研究的工具。
因此,在学习中我们应该多总结,多归纳,使知识更加系统化,解题方法更加规范,从而提高我们的解题能力。
例题精讲一、三角形内角和定理的应用【例1】如图1,已知∆A B C 中,∠=︒⊥B A C A D B C 90,于D ,E 是AD 上一点。
求证:∠>∠B E D C二、三角形三边关系的应用【例2】已知:如图,在∆A B C中,AB>AC ,AM 是BC 边的中线。
求证:()A M A B A C >-12。
三、角平分线定理的应用【例3】如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC 。
求证:AM 平分DAB 。
四、全等三角形的应用1、构造全等三角形解决问题【例4】已知如图,△ABC是边长为1的等边三角形,△BDC是顶角(∠BDC)为120°的等腰三角形,以D为顶点作一个60°的角,它的两边分别交AB于M,交AC于N,连结MN。
求证:∆A M N的周长等于2。
2、“全等三角形”在综合题中的应用【例5】如图,已知:点C是∠FAE的平分线AC上一点,CE⊥AE,CF⊥AF,E、F为垂足。
点B在AE的延长线上,点D在AF上。
若AB=21,AD=9,BC=DC=10。
求AC的长。
五、中考点拨【例6】如图,在∆A B C中,已知∠B和∠C的平分线相交于点F,过点F作DE∥BC,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为【】A. 9B. 8C. 7D. 6六、题型展示【例7】已知:如图,∆A B C 中,AB =AC ,∠ACB =90°,D 是AC 上一点,AE 垂直BD 的延长线于E ,AE BD =12。
..精品第十八讲:专题五:全等、等腰三角形综合运用(基础)等腰三角形与角度计算 第一部分【能力提高】1.在△ABC 中,AB=AC ,BD 平分∠ABC ,∠BDC=75°,则∠A=( ). (A )10° (B )20° (C )30° (D )40°2.如图,在△ABC 中,∠C=90°,D 为AC 上一点,AD=BD ,∠DBC=20°,则∠A=( ). 3.等腰三角形一腰上的高与另一腰的夹角为45°,则顶角的度数是( ). (A )45° (B )135° (C )45°或135° (D )67.5° 4.如图,在△ABC 中,AB=AC ,∠BAD=30°,AE=AD ,则∠CDE=( ). (A )7.5° (B )10° (C )15° (D )30°5.如图,△ABC ,AB=AC ,∠A=50°,P 为△ABC 内任意一点,且∠PBC=∠PCA ,则∠BPC=( ). (A )100° (B )115° (C )130° (D )140°6.如图,在△ABC 中,AB=AC ,D 为BC 上一点,且DA=DB ,CA=CD ,则∠BAC=( ).(第2题图) (第4题图) (第5题图) (第6题图)7.如图,在等腰Rt △ABC 中,∠A=90°,D 为BC 的中点,E 、F 分别在AB 、AC 上,且AE=CF ,则∠EDF=( ). 8.如图,在△ABC 中,∠A=70°,D 为BC 上任意一点,CD=CF ,BD=BE ,则∠EDF=( ). 9.如图,在等边△ABC 中,D 为BC 上一点,AD=AE ,∠DAE=80°,∠BAD=15°,则∠CDE=( ). (A )35° (B )25° (C )15° (D )30°10.如图,在△ABC 中,AB=AC ,D 为BC 上一点,BD=CF ,CD=BE ,∠A=50°,则∠EDF=( ).(第7题图) (第8题图) (第9题图) (第10题图) 11.如图,在△ABC 中,AB=AC ,CD 平分∠ACB ,∠ADC=105°,则∠ABC=( ). 12.如图,在R t△ABC 中,∠BAC=90°,BA=BE ,CD=CA ,则∠DAE=( ).13.如图,在△ABC 中,AB=AC ,E 、D 分别在AB 、AC ,BC=BD ,AD=DE=EB ,则∠A=( ). (A )30° (B )45° (C )60° (D )22.5°14.如图,在△ABC 中,AB=AC ,CD ⊥AB ,∠ABC 的平分线交CD 于E 点,则∠BEC=( ).(A )135°-14∠A (B )135°+14∠A (C )90°+12∠A (D )180°-12∠AD CBAED C APAD B AF E CA F E DA EB A FE DCBAD CBA E DCB AEDA EDBA精品(第11题图) (第12题图) (第13题图) (第14题图) 15.如图,在△ABC 中,AB=AC ,AD ⊥BC 于D 点,CE=CA ,AE=BE ,则∠DAE=( ). 16.如图,AB=AC=AD ,∠BAC=70°,则∠BDC=( ). (A )20° (B )30° (C )35° (D )40°17.如图,在△ABC 中,AB=AC ,∠ABM=∠CBN ,MN=BN ,则∠MBC=( ).(第15题图) (第16题图) (第17题图) 18.如图,在钝角△ABC 中,∠A<∠B<∠C ,∠A 、∠C 的外角平分线交对边延长线于D 、E 两点,AD=AC=EC ,则∠BAC=( ).19.如图,在等边△ABC 中,D 、E 分别在BC 、AC 上,BD=CE ,BE 、AD 交于F 点,则∠AFE=( ). 20.如图,AB=BC=CD ,EC=ED=EF ,∠A =25°,则∠FEG=( ). (A )85° (B )80° (C )75° (D )70°(第18题图) (第19题图) (第20题图)第二部分【综合运用】如图,在锐角△ABC 中,∠A=α°,D 为BC 上一点,且DB=DE ,DC=DF ,则∠EDF=( ).E DCBADB AN MCA E D C E FD CB A EF DCB AFED CB A精品【探究一】:点D 在BC 上,∠A=α°,则∠EDF=( ).当∠ABC 为钝角 当∠ACB 为钝角 当∠BAC 为钝角【探究二】:点D 在BC 的延长线上,∠A=α°,则∠EDF=( ).当△ABC 为锐角三角形 当∠ACB 为钝角当∠ABC 为钝角 当∠BAC 为钝角FED CBAF ED CBAFEDCBAFEC B AFED C B A FEDC BAFED CBA精品【探究三】:点D 在BC 的反向延长线上,∠A=α°,则∠EDF=( ).当△ABC 为锐角三角形 当∠ACB 为钝角当∠ABC 为钝角 当∠BAC 为钝角FEDCBAFC AEBDF CAE BD FCAEBD。
第一讲 与三角形有关的线段 【2 】常识点1.三角形的概念☑ 不在一条直线上的三条线段首尾按序相接构成的图形叫做三角形.构成三角形的线段叫做三角形的边,相邻双方所构成的角叫做三角形的内角,简称角,相邻双方的公共端点是三角形的极点. ☑ 三角形的表示办法三角形用符号“△”表示,极点是A,B,C 的三角形,记作“△ABC ” 三角形ABC 用符号表示为△ABC.三角形ABC 的极点C 所对的边AB 可用c 表示,极点B 所对的边AC 可用b 表示,极点A 所对的边BC 可用a表示.常识点2.三角形的三边关系【探讨】随意率性画一个△ABC,假设有一只小虫要从B 点动身,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?☑ 三角形的双方之和大于第三边,可用字母表示为a+b >c,b+c >a,a+c >b拓展:a+b >c,根据不等式的性质得c-b <a,即双方之差小于第三边. 即a-b <c <a+b (三角形的随意率性一边小于另二边和,大于另二边差)【演习1】一个三角形的双方长分离为3cm 和7cm,则此三角形的第三边的长可能是( ) A .3cmB .4cmC .7cmD .11cm【演习2】有下列长度的三条线段可否构成三角形?为什么? (1)3,5,8; (2)5,6,10; (3)5,6,7. (4)5,6,12【辨析】有三条线段a.b.c,a+b >c,扎西以为:这三条线段能构成三角形.你赞成扎西的意见吗?为什么? 【例1】用一条长为18㎝的细绳围成一个等腰三角形. (1)假如腰长是底边的2倍,那么各边的长是若干? (2)能围成有一边长为4㎝的等腰三角形吗?为什么? 【演习】1.三角形三边为3,5,3-4a,则a 的规模是.2.三角形双方长分离为25cm 和10cm,第三条边与个中一边的长相等,则第三边长为.3.等腰三角形的周长为14,个中一边长为3,则腰长为4.一个三角形周长为27cm,三边长比为2∶3∶4,则最长边比最短边长.5.等腰三角形双方为5cm 和12cm,则周长为.6.已知:等腰三角形的底边长为6cm,那么其腰长的规模是________.abc(1)CBA7.已知:一个三角形双方分离为4和7,则第三边上的中线的规模是_________. 8.下列前提中能构成三角形的是( )A.5cm, 7cm, 13cmB.3cm, 5cm, 9cmC.6cm, 9cm, 14cmD.5cm, 6cm, 11cm 9.等腰三角形的周长为16,且边长为整数,则腰与底边分离为( ) A.5,6 B.6,4 C.7,2 D.以上三种情形都有可能 11.一个三角形双方分离为3和7,第三边为偶数,第三边长为( ) A.4,6 B.4,6,8 C.6,8 D.6,8,10 11.△ABC 中,a=6x,b=8x,c=28,则x 的取值规模是( ) A.2<x <14 B.x >2 C.x <14 D.7<x <14 12.指出下列每组线段可否构成三角形图形(1)a=5,b=4,c=3 (2)a=7,b=2,c=4(3)a=6,b=6,c=12 (4)a=5,b=5,c=6 13.已知等腰三角形的双方长分离为11cm 和5cm,求它的周长.14.已知等腰三角形的底边长为8cm,一腰的中线把三角形的周长分为两部分,个中一部分比另一部分长2cm,求这个三角形的腰长.15.已知等腰三角形一边长为24cm,腰长是底边的2倍.求这个三角形的周长.16.如图,求证:AB+BC+CD+DA>AC+BD常识点3 三角形的三条主要线段三角形的高(1)界说:从三角形的一个极点向它的对边地点的直线画垂线,极点和垂足间的线段叫做三角形的高(简称三角形的高) (2)高的论述办法 ①AD 是△ABC 的高 ②AD ⊥BC,垂足为D③点D 在BC 上,且∠BDA=∠CDA=90度 【演习】画出①.②.③三个△ABC 各边的高,并解释是哪条边的高.①②③AB 边上的高是线段____ AB 边上的高是线段____ AB 边上的高是线段____ BC 边上的高是_________ BC边上的高是_________ BC 边上的高是_________ AB C A B CB ACABCDAC 边上的高是_________ AC 边上的高是_________ AC 边上的高是_________ [辨析] 高与垂线有差别吗?_____________________________________________[探讨] 画出图1中三角形ABC 三条边上的高,看看有什么发明?假如△ABC 是直角三角形.钝角三角形,上面的结论还成立吗?试着画一画【结论】________________________________________ ☑ 三角形的中线(1)界说:在三角形中,衔接一个极点和它对边中点的线段叫做三角形的中线. 三角形三条中线的交点叫做三角形的重心.【探讨2】如图,AD 为三角形ABC 的中线,△ABD 和△ACD 的面积比拟有何干系?【例2】如图,已知△ABC 的周长为16厘米,AD 是BC 边上的中线,AD=45AB,AD=4厘米,△ABD 的周长是12厘米,求△ABC 各边的长. ☑ 三角形的角等分线(1)界说:三角形的一个角的等分线与这个角的对边订交,这个角的极点和交点之间的线段叫做三角形的角等分线.[辨析]三角形的角等分线与角的等分线是一样的吗? 画出△ABC 各角的角等分线,并解释是哪角的角等分线.[探讨]不雅察画出的三条角平线,你有什么发明?_______________________________ [自我检测]如图,AD.AE.CF 分离是△ABC 的中线.角等分线和高,则: (1)BD=______=12________;(2)BC=2_______=2_______;(3)∠BAE=_______=12_______;(4)∠BAC=2_______=2_______;(5)_______=________=90常识点4 三角形的稳固性三角形的三边长一旦肯定,三角形的外形就独一肯定,这共性质叫做三角形的稳固性.四边形则不具有稳固性. 钢架桥.屋顶钢架和起重机都是应用三角形的稳固性,伸缩门则是应用四边形的不稳固性.你还能举出一些例子吗?A B C BA C FEDCBA【试一试】1.如图,AD 是△ABC 的中线,已知△ABD 比△ACD 的周长大6cm,则AB 与AC 的差为_______2.如图,D 为△ABC 中AC 边上一点,AD=1,DC=2,AB=4,E 是AB 上一点,且△ABC 的面积等于△DEC 面积的2倍,则BE 的长为( )3.若点P 是△ABC 内一点,试解释AB+AC >PB+PC【课后功课】1.AD 是△ABC 的高,可表示为,AE 是△ABC 的角等分线,可表示为,BF 是△ABC的中线,可表示为.2.如图2,AD 是△ABC 的角等分线,则∠=∠=12∠;E 在AC 上,且AE=CE,则BE 是△ABC 的;CF 是△ABC 的高,则∠=∠=900,CFAB.3.如图3,AD 是△ABC 的中线,AE 是△ABC 的角等分线,若BD=2cm,则BC=;若∠BAC=600,则∠CAE=. 4.如图4,以AD 为高的三角形共有.5.三角形的一条高是一条……………………………( )A.直线B.垂线C.垂线段D.射线6.下列说法中,精确的是………………………………( ) A.三角形的角等分线是射线B.三角形的高总在三角形的内部C.三角形的高.中线.角等分线必定是三条不同的线段D.三角形的中线在三角形的内部 7.下列图形具有稳固性的是………………………………( )A.正方形B.梯形C.三角形D.平行四边形 8.如图8,AD ⊥BC 于D,CE ⊥AB 于E,AD.CE 交于点O,OF ⊥CE,则下列说法中精确的是………………………………………………………( ) A.OE 为△ABD 中AB 边上的高 B.OD 为△BCE 中BC 边上的高 C.AE 为△AOC 中OC 边上的高 D.OF 为△AOC 中AC 边上的高9. 如图,BD 是△ABC 的角等分线,DE ∥BC,交AB 于点E,∠A=45°,∠BDC=60°,求∠BED 的度数.CA B DEF图2 AB D EC 图3 A B ED C 图410.已知BD 是△ABC 的中线,AC 长为5cm,△ABD 与△BDC 的周长差为3cm.AB 长为3cm,求BC 的长. 11.如图11,在△ABC 中,∠ACB=900,CD 是AB 边上的高,AB=5cm,BC=4cm,AC=3cm,求(1) △ABC 的面积;(2)CD 的长.12.如图12,D 是△ABC 中BC 边上一点,DE ∥AC 交AB 于点E,若∠EDA=∠EAD,试解释,AD 是△ABC 的角等分线.第二讲 与三角形有关的角 常识点1.三角形的内角和定理:三角形的内角和等于1800.【导入】我们在小学就知道三角形内角和等于1800,这个结论是经由过程试验得到的,这个命题是不是真命题还须要证实,如何证实呢?回想我们小学做过的试验,你是如何操作的?把一个三角形的两个角剪下拼在第三个角的极点处,用量角度量出∠BCD 的度数,可得到∠A+∠B+∠ACB=1800.想一想,还可以如何拼?①剪下∠A ,按图(2)拼在一路,可得到∠A+∠B+∠ACB=1800.图2②把B ∠和C ∠剪下按图(3)拼在一路,可得到∠A+∠B+∠ACB=1800.假如把上面移动的角在图长进行转移,由图1你能想到证实三角形内角和等于1800的办法吗? 证实:已知△ABC,求证:∠A+∠B+∠C=1800..【例1】如图,C 岛在A 岛的北偏东30°偏向,B 岛在A 岛的北偏东100°偏向,C 岛在B岛的北偏西55°偏向,从C 岛看A.B 两岛的视角∠ACB 是若干度?【评论辩论】直角三角形的两锐角之和是若干度?A AA A图11A EB DC图12结论: 直角三角形的两个锐角互余.直角三角形可以用符号“Rt △”表示,直角三角形ABC 可以写成Rt △ABC. 由三角形内角和定理可得:有两个角互余的三角形是直角三角形.常识点2.三角形的外角界说:三角形的一边与另一边的延长线构成的角,叫做三角形的外角. [自我探讨] 画出图中三角形ABC 的外角1.断定图中∠1是不是△ABC 的外角:_______________2.如图,(1)∠1.∠2都是△ABC 的外角吗?________________ (2)△ABC 共有若干个外角?___________________请在图中标出△ABC 的其它外角.3.探讨题:如图,这是我们证实三角形内角和定理时画的帮助线,你能就此图解释∠ACD 与∠A.∠B 的关系吗?∵C E ∥AB, ∴∠A=_____,_____=∠2 又∠ACD=_______+________ ∴∠ACD=_______+________结论1___三角形的一个外角等于与它不相邻的两个内角的和;结论2__三角形的一个外角大于任何一个与它不相邻的内角(外角两性质)【小结】三角形每个极点处有两个外角,便在盘算三角形外角和时,每个极点处只算一个外角,外角和就是三个外角的和.外角的感化:1.已知外角和与它不相邻的两个内角中的一个,求另一个2.可证一个角等于另两个角的和3.证实两个角不相等的关系 [课后演习]1.填空:求出下列各图中∠1的度数.(1)如图,∠1=______;(2)如图,∠1=______;(3)如图,∠1=______;(1)1B AC D (3)1AB C D(4)AB C D 1(5)E AB C D 1(6)E AB CD12ABC1(2)1A B C D A(1)三角形的一个外角等于两个内角的和. ( )(2)三角形的一个外角减去它的一个不相邻的内角,等于它的另一个不相邻的内角. ( ) (3)三角形的一个外角大于与它不相邻的一个内角. ( ) 2.已知:如图,∠1=30°,∠2=50°,∠3=45°, 则(1)∠4=______°;(2)∠5=______°.3.已知:如图∠1=40°,∠2=∠3,则 (1)∠4=______°;(2)∠2=______°.4.如图,AB ∥CD,∠B=55°,∠C=40°,则 (1)∠D=______°;(2)∠1=______°.5. 如图,∠BAE,∠CBF,∠ACD 是△ABC 的三个外角,它们的和是若干? 解:因为∠BAE=∠__+∠____, ∠CBF=∠__+∠___,∠ACD=__________, 所以∠BAE+∠CBF+∠ACD=(∠__+∠___)+(________)+(___________) =2(∠1+_________)=2×180°=360°. 6.已知:如图,在△ABC 中,AD 是BC 边上的高, ∠BAC=80°,∠C=40°,则∠BAD=________°. 7.已知:如图,BD 是△ABC 的角等分线, ∠A=100°,∠C=30°,则∠ADB=________°. 8.*如图,AD.BE 分离是△ABC 的高和角等分线,∠BAC=100°,∠C=30°,则∠1=________°. 9.如图所示,D,E 分离AC,AB 边上的点,DB,EC 相 交于点F,则∠A+∠B+∠C+∠EFB=_________10.△ABC 中,∠B=∠A+100,∠C=∠B+200,求△ABC 各内角的度数11.如图所示,已知∠1=∠2,∠BAC=70度,求∠DEF 的度数.12.如图所示,在△ABC 中,∠A=70°,BO,CO 分离等分∠ABC 和∠ACB,求∠BOC 的度数.第2题图54321第4题图DCBA1第3题图4321123DE FB AC第5题图DABCABDC1E ABDC第6题第7题第9题第8题OCBA13.如图所示,在△AB C 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°, 求∠DAC 的度数.4321D CB A第三讲 多边形及其内角和一、 常识点总结11180223601332n n n n n ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎧⎨⎩⎧⎨⎩⎧⎪︒-⎪︒⎨⎪⎪-⎩由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。
第一讲勾股定理[情景引入]【知识要点】1、勾股定理是:直角三角形两直角边的平方和等于斜边的平方,即:222cba=+2、勾股定理逆定理:如果三角形的三边长a、b、c满足222a b c+=那么这个三角形是直角三角形。
【典型习题】例1、如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A. 2cmB. 3cmC. 4cmD. 5cm例2、求下列各图字母中所代表的正方形的面积。
=AS=BS=CS=DS例3、如图,一次“台风”过后,一根旗杆被台风从离地面8.2米处吹断,倒下的旗杆的顶端落在离旗杆底部6.9米处,那么这根旗杆被吹断裂前至少有多高?例4、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A,B,C,D的面积之和为___________cm2.8米9.6米例5、在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。
例6、为丰富少年儿童的业余文化生活,某社区要在如图所示的AB 所在的直线上建一图书阅览室,该社区有两所学校,所在的位置分别在点C 和点D 处。
CA ⊥AB 于A ,DB ⊥AB 于B ,已知AB=25km ,CA=15km,DB=10km,试问:阅览室E 建在距A 点多远时,才能使它到C 、D 两所学校的距离相等?例 7、如图所示,MN 表示一条铁路,A 、B 是两个城市,它们到铁路的所在直线MN 的垂直距离分别AA1=20km,BB1=40km ,A1B1=80km.现要在铁路A1,B1=80km 。
现要在铁路A1,B1之间设一个中转站P ,使两个城市到中转站的距离之和最短。
请你设计一种方案确定P 点的位置,并求这个最短距离。
例8、“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方30米B 处,过了2秒后,测得小汽车C 与车速检测仪A 间距离为50米,这辆小汽车超速了吗?例9、如图是一个三级台阶,它的每一级的长宽和高分别为20分米、3分米、2分米,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短的路程是多少?AEBDC11图2—5—4例10、直角三角形的周长为24,斜边长为10,则其面积为_______例11、如图,一个长为10米的梯子斜靠在墙上, 梯子的顶端距地面的垂直高度为8米,梯子的顶端下滑2米后,底端也水平滑动2米吗?试说明理由。
第二讲平方根与立方根[教学内容]《动态数学思维》暑期衔接版,七升八年级第二讲“平方根与立方根”.[教学目标]知识技能1. 了解算术平方根的概念,会求正数的算术平方根并会用符号表示.2. 会用计算器求算术平方根.3. 了解无限不循环小数的特点.数学思考1. 通过学习算术平方根,体会数域的扩充,培养学生的数感和符号感.2. 通过估算的大小,培养估算意识,了解从两个方向无限逼近的数学思想.问题解决1. 初步学会在具体的情境中从数学的角度发现和提出问题,并综合运用相关数学知识解决问题,增强应用意识,提高实践能力.2. 经历从不同角度寻求分析问题和解决问题方法的过程,掌握分析问题和解决问题的一些基本方法.情感态度1. 通过学习算术平方根,认识数学与人类生活的密切联系.2. 通过探究活动,锻炼克服困难的意志,建立自信心,提高学习热情.[教学重点和难点]:教学重点:能够区别算术平方根、平方根的概念,初步感受无理数.教学难点:探究无理数的来源.[教学准备]:动画多媒体课件计算器第一课时教学过程:第二课时教学过程:本讲教材及练习册答案:类似性问题1. B2. 03. ±25.解:设截下的8个小正方体的棱长为x cm ,则1000-83x =488,解得3x =64,解得x =4. 答:截下的每个小正方体的棱长为4 cm.6.解:∵a 是算术平方根等于本身的正数,b 的平方根,∴a =1,b =.当a =1,b +1;当a =1,b -1.拓展性问题的答案 1. C 2. B 3. A 4. A5.45,7, 0. 6. a +b =2+(-3)=-1. 7.±6 8.4949. 5, -0.2, . 10. -1或0或111.(1)4,-8;(2)3,-1. 12. 解:(1)原式=0.5-74 +18=-98.(2)原式=14×.13. 解:设小明的身高是h 米.266h=27,266h 27=,∴h ≈1.56答:小明的身高约为1.56米.14. 123454321, 22,333,7777777. 解:从题目中三个式子可以发现规律:111112=123454321;;=333;; 那么{n n n L 个.。
[学大教育甘肃兰州市七里河区初一初二语文英语衔接寒暑假同步辅导]学大课程为中小学生提供了小学辅导课程、初中辅导课程、高中辅导课程信息,课程包括:语文、数学、英语、物理、化学,学大教育个性化1对1辅导,精心善教,精品课程希望您的到来。
(学大课程)高中课程高中语文数学英语物理化学生物历史地理政治高一语文数学英语物理化学生物历史地理政治高二语文数学英语物理化学生物历史地理政治高三语文数学英语物理化学生物历史地理政治高考语文数学英语物理化学生物历史地理政治初中课程初中语文数学英语物理化学生物历史地理政治初一语文数学英语物理化学生物历史地理政治初二语文数学英语物理化学生物历史地理政治初三语文数学英语物理化学生物历史地理政治中考语文数学英语物理化学生物历史地理政治小学课程小学语文数学英语一年级语文数学英语二年级语文数学英语三年级语文数学英语四年级语文数学英语五年级语文数学英语六年级语文数学英语小升初语文数学英语留学课程留学A-LevelAPSSATIGCSESAT-ACTIB托福雅思同步巩固课•适用学生•基础薄弱、跟不上课的初一至高三学生。
•课程特色•共有暑、寒、春、夏四个部分,包括语文、数学、英语等9个学科,春、秋季课程与在校学习成互补,暑、寒假课程可查缺补漏。
主要帮助学生打牢基础、构建知识体系、稳健进步。
专项强化课•适用学生•偏科、语文写作弱、英语听说差、理化生实验弱等小学至高中学生。
•课程特色•用“诊断+治疗+对症下药”的教学思想,进行针对性训练,实现点对点的突破,帮助学生认清学习问题,专项补齐短板,打破弱项瓶颈。
潜能特色课•适用学生•学习时间短、文化课基础薄的艺考生。
•课程特色•由具有多年艺考教学经验的一线教师研发,遵循个性化教育理念,针对艺考生学习时间短、文化课基础薄现状,进行因材施教、因时制宜,有针对性的帮助艺考生辅导文化课知识。
冲刺突破课•适用学生•考前需要集中强化、梳理知识、快速进步的一年级至高三学生。
初一暑假衔接班课程设计一、课程目标知识目标:1. 巩固和深化学生在六年级学到的核心知识,包括语文、数学、英语等基础学科的理论知识。
2. 引导学生掌握初一年级的关键知识点,如古诗文鉴赏、分数和小数的深入运用、英语时态和语态的基础运用。
3. 帮助学生建立系统的学习框架,对初一年级的学科知识体系有初步了解。
技能目标:1. 提升学生的问题分析能力和解决能力,通过练习,使学生在数理学科中能够灵活运用公式和定理。
2. 加强学生的语言表达能力,通过讨论和小组活动,让学生在语文和英语学科中能自信地表达个人观点。
3. 培养学生的自主学习能力,通过布置预习和复习任务,让学生学会规划学习时间和进度。
情感态度价值观目标:1. 培养学生对学科知识的热爱和探究欲,激发学生的学习兴趣。
2. 强化学生的团队合作意识,通过小组活动培养学生的集体荣誉感和责任感。
3. 引导学生树立正确的学习态度,认识到学习的重要性,培养终身学习的理念。
本课程设计针对初一学生暑假期间的衔接需求,注重基础知识的巩固与拓展,强调学习兴趣的激发和学习能力的培养,旨在为学生进入初一年级的系统学习打下坚实的基础。
二、教学内容1. 语文:- 古诗文阅读与鉴赏:选取初中阶段经典古诗文进行深入学习,理解诗意,体会作者情感,提高文学素养。
- 现代文阅读与写作:通过分析优秀范文,学习文章结构,锻炼写作技巧,提升表达能力。
2. 数学:- 分数与小数的深入运用:对分数与小数的四则运算进行巩固,学习分数与小数的实际应用问题。
- 初步认识方程与不等式:引入方程与不等式的概念,通过实例学习解方程和解不等式的基本方法。
3. 英语:- 词汇与语法:复习和拓展初中阶段的基础词汇,学习一般现在时、一般过去时和一般将来时等基础时态。
- 阅读与写作:通过阅读不同类型的文章,提高阅读理解能力,学习写作技巧,完成短文写作。
4. 科学与社会:- 自然科学基础:介绍初一年级的自然科学知识,如生物、物理、化学等,激发学生对科学的兴趣。
期七升八衔接班讲DA第一讲:相交线与平行线一、知识框架二、典型例题1.下列说确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角; ④若两个角不是对顶角,则这两个角不相等.FEDCBAA.1个B.2个C.3个D.4个 2.如图所示,下列说法不正确的是( )A.点B 到AC 的垂线段是线段AB;B.点C 到AB 的垂线段是线段ACC.线段AD 是点D 到BC 的垂线段;D.线段BD 是点B 到AD 的垂线段 3.下列说确的有( )①在平面,过直线上一点有且只有一条直线垂直于已知直线; ②在平面,过直线外一点有且只有一条直线垂直于已知直线; ③在平面,过一点可以任意画一条直线垂直于已知直线; ④在平面,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个 4.一学员驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同, 这两次拐弯的角度可能是( )A. 第一次向左拐30°第二次向右拐30°B. 第一次向右拐50°第二次向左拐130°C. 第一次向右拐50°第二次向右拐130°D. 第一次向左拐50°第二次向左拐130°5.如图,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG•平分∠BEF,若∠1=72°,则∠2=_________.6.如图,AB ∥EF ∥CD,EG ∥BD,则图中与∠1相等的角(∠1除外)共有( ) •A.6个 B.5个 C.4个 D.3个l 3l 2l 1 O7.如图,直线l 1、l 2、l 3交于O 点,图中出现了几对对顶角,若n 条直线相交呢?8. 如图,直线AB 、CD 、EF 交于点O ,∠AOE =2∠AOC ,∠COF =3∠AOE , 求∠BOE 的度数9. 如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与∠A,∠C 的关系,•请你证明所得的四个关系.PD CBA PDC BAP DCB APDCB A(1) (2) (3) (4)AB CDE FA B1 EF 2 CPD10.如图,若AB//EF ,∠C= 90°,求x+y-z 度数.11.已知:如图,∠+∠=∠=∠BAP APD 18012ο,求证:∠=∠E F12.已知:如图,CD//EF,∠1+∠2=∠ABC,求证:AB//GF321O D C BAODC BA三、当堂练习:1、如图,直线AB 与CD 交于O 点,∠AOC =25°,则∠BOD = °,∠BOC = °2、如图,直线AB 与CD 交于O 点,∠2-∠1=20°,则∠1= °,∠2= °3、如图,直线AB 与直线CD 交于点O ,OE 平分∠AOD ,∠AOE =65°, 则∠AOD 的对顶角是 ;∠AOD 的邻补角 ; ∠BOD = °4题图DCBAO 5题图EOD CBA3题图1题图2题图4、如图,作出(1)点C到AB的垂线段CD;(2)点B到AC的垂线段BE;5、如图,点O为直线CD上一点,OA ⊥OB,∠AOD=55°,则∠BOC=°,∠AOC=°6、如图,直线AB、CD、EF交于点O,AB⊥CD,∠AOG=∠EOG,∠FOD=20°,求∠AOG7、如图,AB//CD,AE平分∠BAD,CD与AE相交于F, ∠CFE=∠E。
第19讲作文:一线串珠法1、上次内容回顾:文章的思想感情从几个角度分析呢?2、专题导入:仔细观察,思考以下几幅图有什么相似性?【知识梳理】常见线索类型方法技巧点拨例1:那些卑微的母亲晚上,和朋友一起去吃烧烤,刚坐下,就见一个老妇人提着一个竹篮挤过来。
她头发枯黄,身材瘦小而单薄,衣衫暗淡,但十分干净。
她弓着身,表情谦卑地问:“五香花生要吗?”彼时,朋友们正在说笑,没人理会她的问询。
她将身体弓得更低,脸上的谦卑又多了几分:“五香花生要吗?……”她一连问了几遍,却都被朋友的说笑声遮住。
她只好尴尬地站在一旁,失望和忧愁爬满了脸庞。
我问:“是新花生吗?怎么卖呀?”她急慌慌地拿出一包,又急慌慌地说“新花生,三块钱一包,五块钱两包……”我掏了五块钱,她迅速把两包花生放在桌子上,慢慢退回去,奔向下一桌。
每一次去逛超市,都会看到那个做保洁的女人。
有五十多岁了吧,头发灰白,晒得黑红的脸膛上布满细密的汗珠,有几缕头发湿湿地贴在脸上。
她总是手脚不停地忙碌,在卫生间,她们有一个共同的名字——母亲!思考:本文的成功之处在什么地方?现了老妇人多次问话之后没人回答的难为情,“爬满”一词表现了老妇人“失望和忧伤”的程度之深。
第二位母亲“两只手捏着衣角局促不安地绞来绞去”这一动作可以看出她做错事之后内心的惶恐与不安。
而她语无伦次的哀求更能体现她生活的艰辛与对儿子的无比关爱。
第三位母亲“猛地冲过去,几步跳到马路中间,探手捡起那个瓶子,迅速塞进身后的蛇皮袋里”连用几个动词,准确生动。
三、善于从平常生活中选材。
作者有一双善于发现的眼睛,对生活的观察很仔细,能从平常的生活中找到写作的素材,通过叙写发生在普通人身上的寻常小事,赞美那些卑微母亲的高尚与伟大。
源于生活,才能感人至深。
学生佳作:那些未曾走远的温暖肚子隐隐疼了大半节课,晚自习结束,我独自前往校医那里去看。
结果冷冰冰的铁锁把门,我顿时慌了,只觉肚子像有几把刀乱砍,疼得我冷汗直冒。
我捂着肚子顺着墙角慢慢往宿舍挨,眼里慢慢浸润了水珠。
2024年暑期初升高数学衔接教材-专项训练现有初高中数学知识存在以下“脱节”1.立方和与差的公式初中已删去不讲,而高中的运算还在用。
2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。
3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。
4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。
配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。
5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。
6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。
7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。
方程、不等式、函数的综合考查常成为高考综合题。
8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。
另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。
目录1.1数与式的运算1.1.1绝对值1.1.2乘法公式1.1.3二次根式1.1.4分式1.2分解因式2.1一元二次方程2.1.1根的判别式2.1.2根与系数的关系(韦达定理)2.2二次函数2.2.1二次函数y=ax2+bx+c的图像和性质2.2.2二次函数的三种表示方式2.2.3二次函数的简单应用2.3方程与不等式2.3.1二元二次方程组解法2.3.2一元二次不等式解法3.1相似形3.1.1.平行线分线段成比例定理3.1.2相似形3.2三角形3.2.1三角形的“四心”3.2.2几种特殊的三角形3.3圆3.3.1直线与圆,圆与圆的位置关系3.3.2点的轨迹1.1数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.例1解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =;①若1<x ,不等式可变为(1)(3)4x x ---->,即24x -+>4,解得x <0,又x <1,∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->,即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->,即24x ->4,解得x >4.又x ≥3,\点B 之间的距离|PB |,即|PB |=|x -3|.所以,不等式‘由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧.x <0,或x >4.练习1.填空:(1)若5=x ,则x =_________;若4-=x ,则x =_________.(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________.2.选择题:下列叙述正确的是()(A )若a b =,则a b =(B )若a b >,则a b >(C )若a b <,则a b <(D )若a b =,则a b =±3.化简:|x -5|-|2x -13|(x >5).1.1.2.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式22()()a b a b a b +-=-;(2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()a b a ab b a b +-+=+;(2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++;(4)两数和立方公式33223()33a b a a b ab b +=+++;(5)两数差立方公式33223()33a b a a b ab b -=-+-.对上面列出的五个公式,有兴趣的同学可以自己去证明.例1计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +-=61x -.例2已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.解:2222()2()8a b c a b c ab bc ac ++=++-++=.练习1.填空:(1)221111()9423a b b a -=+();(2)(4m +22)164(m m =++);(3)2222(2)4(a b c a b c +-=+++).2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于()(A )2m (B )214m (C )213m(D )2116m (2)不论a ,b 为何实数,22248a b a b +--+的值()(A )总是正数(B )总是负数(C )可以是零(D )可以是正数也可以是负数1.1.3.二次根式0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如32a b +等是无理式,212x ++,22x y ++等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,,-等等.一般地,,+与-,b +与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2的意义a ==,0,,0.a a a a ≥⎧⎨-<⎩例1将下列式子化为最简二次根式:(1(20)a ≥;(30)x <.解:(1=(20)aa ==≥;(3220)x x x ==-<.例2(3-.解法一:(3=393+-=1)6+=12+.解法二:(3÷==12+.例3试比较下列各组数的大小:(1;(2解:(1)∵1==,1==,>,∴-.(2)∵1==又4>22,∴6+4>6+22,<.例4化简:20042005+⋅-.解:20042005+⋅-=20042004+⋅-⋅=2004⎡⎤+⋅⋅⎣⎦=20041⋅-=-.例5化简:(1;(21)x <<.解:(1)原式===2=2=-.(2)原式1x x=-,∵01x <<,∴11x x>>,所以,原式=1x x-.例6已知x y ==22353x xy y -+的值.解:∵2210x y +=+=,1xy =,∴22223533()1131011289x xy y x y xy -+=+-=⨯-=.练习1.填空:(1)=_____;(2(x =-x 的取值范围是_____;(3)-_____;(4)若2x =+=________.2.选择题:=()(A )2x ≠(B )0x >(C )2x >(D )02x <<3.若1b a =+,求a b +的值.4.比较大小:2-35-4(填“>”,或“<”).1.1.4.分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB具有下列性质:A A M B B M⨯=⨯;A A MB B M÷=÷.上述性质被称为分式的基本性质.2.繁分式像ab c d+,2m n pm n p +++这样,分子或分母中又含有分式的分式叫做繁分式.例1若54(2)2x A Bx x x x +=+++,求常数,A B 的值.解:∵(2)()2542(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++,∴5,24,A B A +=⎧⎨=⎩解得2,3A B ==.例2(1)试证:111(1)1n n n n =-++(其中n 是正整数);(2)计算:1111223910+++⨯⨯⨯;(3)证明:对任意大于1的正整数n ,有11112334(1)2n n +++<⨯⨯+.(1)证明:∵11(1)11(1)(1)n n n n n n n n +--==+++,∴111(1)1n n n n =-++(其中n 是正整数)成立.(2)解:由(1)可知1111223910+++⨯⨯⨯11111(1()()223910=-+-++-1110=-=910.(3)证明:∵1112334(1)n n +++⨯⨯+=111111(()()23341n n -+-++-+=1121n -+,又n ≥2,且n 是正整数,∴1n +1一定为正数,∴1112334(1)n n +++⨯⨯+<12.例3设ce a=,且e >1,2c 2-5ac +2a 2=0,求e 的值.解:在2c 2-5ac +2a 2=0两边同除以a 2,得2e 2-5e +2=0,∴(2e -1)(e -2)=0,∴e =12<1,舍去;或e =2.∴e =2.练习1.填空题:对任意的正整数n ,1(2)n n =+(112n n -+);2.选择题:若223x y x y -=+,则xy=()(A )1(B )54(C )45(D )653.正数,x y 满足222x y xy -=,求x yx y-+的值.4.计算1111 (12233499100)++++⨯⨯⨯⨯.习题1.1A 组1.解不等式:(1)13x ->;(2)327x x ++-<;(3)116x x -++>.2.已知1x y +=,求333x y xy ++的值.3.填空:(1)1819(2(2+-=________;(22,则a 的取值范围是________;(3________.B组1.填空:(1)12a =,13b =,则2223352a aba ab b -=+-________;(2)若2220x xy y +-=,则22223x xy y x y++=+____;2.已知:11,23x y ==的值.C组1(1=,则()(A )a b <(B )a b >(C )0a b <<(D )0b a <<(2)计算等于()(A )(B )(C )(D )2.解方程2212(3()10x x x x +-+-=.3.计算:1111132435911++++⨯⨯⨯⨯.4.试证:对任意的正整数n ,有111123234(1)(2)n n n +++⨯⨯⨯⨯++<14.1.1.1.绝对值1.(1)5±;4±(2)4±;1-或32.D 3.3x -181.1.2.乘法公式1.(1)1132a b -(2)11,24(3)424ab ac bc--2.(1)D(2)A1.1.3.二次根式1.(12-(2)35x ≤≤(3)-(42.C 3.14.> 1.1.4.分式1.122.B3.1-4.99100习题1.1A 组1.(1)2x <-或4x >2)-4<x <3(3)x 3,或x >32.13.(1)2-(2)11a -≤≤(31-B 组1.(1)37(2)52,或-152.4.C 组1.(1)C(2)C2.121,22x x ==3.36554.提示:1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++1.2分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1分解因式:(1)x 2-3x +2;(2)x 2+4x -12;(3)22()x a b xy aby -++;(4)1xy x y -+-.解:(1)如图1.2-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x 用1来表示(如图1.2-2所示).(2)由图1.2-3,得x 2+4x -12=(x -2)(x +6).(3)由图1.2-4,得22()x a b xy aby -++=()()x ay x by --(4)1xy x y -+-=xy +(x -y )-1=(x -1)(y+1)(如图1.2-5所示).2.提取公因式法与分组分解法例2分解因式:(1)32933x x x +++;(2)222456x xy y x y +--+-.解:(1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+=2(3)(3)x x ++.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.3.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例3把下列关于x 的二次多项式分解因式:(1)221x x +-;(2)2244x xy y +-.解:(1)令221x x +-=0,则解得11x =-+21x =--,-1-2x x图1.2-1-1-211图1.2-2-2611图1.2-3-ay -byx x图1.2-4-11x y图1.2-5∴221x x +-=(1(1x x ⎡⎤⎡⎤--+---⎣⎦⎣⎦=(11x x +-++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y +++.练习1.选择题:多项式22215x xy y --的一个因式为()(A )25x y -(B )3x y-(C )3x y+(D )5x y-2.分解因式:(1)x 2+6x +8;(2)8a 3-b 3;(3)x 2-2x -1;(4)4(1)(2)x y y y x -++-.习题1.21.分解因式:(1)31a +;(2)424139x x -+;(3)22222b c ab ac bc ++++;(4)2235294x xy y x y +-++-.2.在实数范围内因式分解:(1)253x x -+;(2)23x --;(3)2234x xy y +-;(4)222(2)7(2)12x x x x ---+.3.ABC ∆三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ∆的形状.4.分解因式:x 2+x -(a 2-a ).1.2分解因式1.B2.(1)(x +2)(x +4)(2)22(2)(42)a b a ab b -++(3)(11x x --+(4)(2)(22)y x y --+.习题1.21.(1)()()211a a a +-+(2)()()()()232311x x x x +-+-(3)()()2b c b c a +++(4)()()3421y y x y -++-2.(1)5522x x ⎛⎫⎛+--- ⎪ ⎪⎪⎝⎭⎝⎭;(2)(x x ---;(3)2727333x y x y ⎛⎫⎛⎫-+++ ⎪⎪ ⎪⎪⎝⎭⎝⎭;(4)()3(1)(11x x x x -+---+.3.等边三角形4.(1)()x a x a -++ 2.1一元二次方程2.1.1根的判别式我们知道,对于一元二次方程ax 2+bx +c =0(a ≠0),用配方法可以将其变形为2224(24b b acx a a -+=.①因为a ≠0,所以,4a 2>0.于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2=2b a-±;(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根x 1=x 2=-2b a;(3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有(1)当Δ>0时,方程有两个不相等的实数根x 1,2=42b a-±;(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a;(3)当Δ<0时,方程没有实数根.例1判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根.(1)x 2-3x +3=0;(2)x 2-ax -1=0;(3)x 2-ax +(a -1)=0;(4)x 2-2x +a =0.解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根.(2)该方程的根的判别式Δ=a 2-4×1×(-1)=a 2+4>0,所以方程一定有两个不等的实数根12a x +=,22a x -=.(3)由于该方程的根的判别式为Δ=a 2-4×1×(a -1)=a 2-4a +4=(a -2)2,所以,①当a =2时,Δ=0,所以方程有两个相等的实数根x 1=x 2=1;②当a ≠2时,Δ>0,所以方程有两个不相等的实数根x 1=1,x 2=a -1.(3)由于该方程的根的判别式为Δ=22-4×1×a =4-4a =4(1-a ),所以①当Δ>0,即4(1-a )>0,即a <1时,方程有两个不相等的实数根11x =21x =-;②当Δ=0,即a=1时,方程有两个相等的实数根x1=x2=1;③当Δ<0,即a>1时,方程没有实数根.说明:在第3,4小题中,方程的根的判别式的符号随着a的取值的变化而变化,于是,在解题过程中,需要对a的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.2.1.2根与系数的关系(韦达定理)若一元二次方程ax2+bx+c=0(a≠0)有两个实数根.所以,一元二次方程的根与系数之间存在下列关系:如果ax2+bx+c=0(a≠0)的两根分别是x1,x2,那么x1+x2=ba ,x1·x2=ca.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x2+px+q=0,若x1,x2是其两根,由韦达定理可知x1+x2=-p,x1·x2=q,即p=-(x1+x2),q=x1·x2,所以,方程x2+px+q=0可化为x2-(x1+x2)程x2+px+q=0的两根,出k的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k的值.解法一:∵2是方程的一个根,∴5×22+k×2-6=0,∴k=-7.所以,方程就为5x2-7x-6=0,解得x1=2,x2=-3 5.所以,方程的另的平方和比两个根的积大21得到关于m的方程,从而解得m的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.解:设x1,x2是方程的两根,由韦达定理,得x1+x2=-2(m-2),x1·x2=m2+4.∵x12+x22-x1·x2=21,∴(x1+x2)2-3x1·x2=21,即[-2(m-2)]2-3(m2+4)=21,化简,得m2-16m-17=0,解得m=-1,或m=17.当m=-1时,方程为x2+6x+5=0,Δ>0,满足题意;当m=17时,方程为x2+30x+293=0,Δ=302-4×1×293<0,不合题意,舍去.综上,m=17.说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m的值,取满足条件的m的值即可.(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元大方向个数分别为x,y,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数分别是x,y,则x+y=4,①xy=-12.②由①,得y=4-x,代入②,得x(4-x)=-12,即x2-4x-12=0,∴x 1=-2,x 2=6.∴112,6,x y =-⎧⎨=⎩或226,2.x y =⎧⎨=-⎩因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程x 2-4x -12=0的两个根.解这个方程,得x 1=-2,x 2=6.所以,这两个数是-2和6.说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷.例5若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根.(1)求|x 1-x 2|的值;(2)求221211x x +的值;(3)x 13+x 23.解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根,∴1252x x +=-,1232x x =-)22221212122222221212125325()2()3()2113722439()9(24x x x x x x x x x x x x --⨯-+++-+=====⋅-.(3)x 13+x 23=(x 1+x 2)(x 12-x 1x 2+x 22)=(x 1+x 2)[(x 1+x 2)2-3x 1x 2]=(-52)×[(-52)2-3×(32-)]=-2158.说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x 1和x 2ax 2+bx +c =0(a ≠0),则,22b x a--=,∴|x 1-x 2|=4||||a a ==.于是有下面的结论:若x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则|x 1-x 2|=||a (其中Δ=b 2-4ac ).今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.例6若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围.解:设x 1,x 2是方程的两根,则x 1x 2=a -4<0,①且Δ=(-1)2-4(a -4)>0.②由①得a <4,由②得a <174.∴a 的取值范围是a <4.练习1.选择题:(1)方程2230x k -+=的习题2.1A 组1.选择题:(1)已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是()(A )-3(B )3(C )-2(D )2(2)下列四个说法:①方程x 2+2x -7=0的两根之和为-2,两根之积为-7;②方程x 2-2x +7=0的两根之和为-2,两根之积为7;③方程3x 2-7=0的两根之和为0,两根之积为73-;④方程3x 2+2x =0的两根之和为-2,两根之积为0.其中正确说法的个数是()(A )1个(B )2个(C )3个(D )4个(3)关于x 的一元二次方程ax 2-5x +a 2+a =0的一个根是0,则a 的值是()(A )0(B )1(C )-1(D )0,或-12.填空:(1)方程kx 2+4x -1=0的两根之和为-2,则k =.(2)方程2x 2-x -4=0的两根为α,β,则α2+β2=.(3)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是.(4)方程2x 2+2x -1=0的两根为x 1和x 2,则|x 1-x 2|=.3.试判定当m 取何值时,关于x 的一元二次方程m 2x 2-(2m +1)x +1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.B组1.选择题:若关于x 的方程x 2+(k 2-1)x +k +1=0的两根互为相反数,则k 的值为()(A )1,或-1(B )1(C )-1(D )02.填空:(1)若m ,n 是方程x 2+2005x -1=0的两个实数根,则m 2n +mn 2-mn 的值等于.(2)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是.3.已知关于x 的方程x 2-kx -2=0.4.-1提示:(x 1-3)(x 2-3)=x 1x 2-3(x 1+x 2)+9习题2.12.(1)2006提示:∵m +n =-2005,mn =-1,∴m 2n +mn 2-mn =mn (m +n -1)=-1×(-2005-1)=2006.(2)-3提示;∵a +b =-1,ab =-1,∴a 3+a 2b +ab 2+b 3=a 2(a +b )+b 2(a +b )=(a +b )(a 2+b 2)=(a +b )[(a +b )2-2ab ]=(-1)×[(-1)2-2×(-1)]=-3.3.(1)∵Δ=(-k )2-4×1×(-2)=k 2+8>0,∴方程一定有两个不相等的实数根.(2)∵x 1+x 22,∴2k >-2,即k >-1.4.(1)|x 1-x 2|=||a ,122x x +=2b a -;(2)x 13+x 23=333abc b a -.5.∵|x 1-x 2|2==,∴m =3.把m =3代入方程,Δ>0,满足题意,∴m =3.C 组1.(1)B(2)A(3)C提整数的实数k 的整数值为-2,-3和-5.(3)当k =-2时,x 1+x 2=1,①x 1x 2=18,②①2÷②,得1221x x x x ++2=8,即16λλ+=,∴2610λλ-+=,∴3λ=±4.(1)Δ=22(1)20m -+>;(2)∵x 1x 2=-24m ≤0,∴x 1≤0,x 2≥0,或x 1≥0,x 2≤0.①若x 1≤0,x 2x 2=-,∴x 1+x 2=2,∴m -2=2,∴m =4.此时,方程为x 2-2x -4=0,∴11x =+,21x =-②若x 1≥0,x 2≤0,则-x 2=x 1+2,∴x 1+x 2=-2,∴m -2=-2,∴m =0.此时,方程为x 2+2=0,∴x 1=0,x 2=-2.5.设方程的两根为x 1,x 2,则x 1+x 2=-1,x 1x 2=a ,由一根大于1、另一根小于1,得(x 1-1)(x 2-1)2.2.1二次函数y =ax 2+bx +c 的图像和性质问题1函数y =ax 2与y =x 2的图象之间存在怎样的关?为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系.先画出函数y =x 2,y =2x 2的图象.先列表:x …-3-2-10123…x 2…9410149…2x 2…18822818从表中不难看出,要得到2x 2的值,只要把相应的x 2的值扩大两倍就可以了.再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.同学们也可以象之间的关系.通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.问题2函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系.yy =2x 2y =2(x +1)2y =2(x +1)2+1y =x 2y =2x2图2.2-1x O y通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+bx a+224b a )+c -24b a 224()24b b aca x a a-=++,所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2b a-时,函数取最小值y =244ac b a-.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x=-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2b a-时,函数取最大值y =244ac b a-.上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题.例1求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.解:∵y =-3x 2-6x +1=-3(x +1)2+4,∴函数图象的开口向例2某种产品的成本是120元/件,试销阶段每件产品的售价x (元)与产品的日销售量y (件)之间关系如下表所示:x /元130150165y /件705035若日销售量y 是销售价x 的一次函数,那么,要使每天所获得最大的利润,每件产品的销售价应定为多少元?此时每天的销售利润是多少?分析:由于每天的利润=日销售量y ×(销售价x -120),日销售量y 又是销售价x 的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x 之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最大值.解:由于设每天的利润为z (元),则z =(-x +200)(x -120)=-x 2+320x -24000=-(x -160)2+1600,∴当x =160时,z 取最大值1600.答:当售价为160元/件时,每天的利润最大,为1600元.例3把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,求b ,c 的值.解法一:y =x 2+bx +c =(x +2b )224bc +-,把它的图像向上平移2个单位,再向左平移4个单位,得到22(4)224b b y x c =+++-+的图像,也就是函数y =x 2的图像,所以,240,220,4bb c ⎧--=⎪⎪⎨⎪-+=⎪⎩解得b =-8,c =14.解法二:把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,等价于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =x 2+bx +c 的图像.由于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =(x -4)2+2的图b =-8,c =都是x =a 时,函数取=0时,函数取最小值y =0①②③说明:在本例中,利用了分类讨论的方法,对a的所有可能情形进行讨论.此外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题.练习1.选择题:(1)下列函数图象中,顶点不在坐标轴上的是()(A)y=2x2(B)y=2x2-4x+2(C)y=2x2-1(D)y=2x2-4x(2)函数y=2(x-1)2+2是将函数y=2x2()(A)向左平移1个单位、再向上平移2个单位得到的(B)向右平移2个单位、再向上平移1个单位得到的(C)向下平移2个单位、再向右平移1个单位得到的(D)向上平移2个单位、再向右平移1个单位得到的2.填空题(1)二次函数y=2x2-mx+n图象的顶点坐标为(1,-2),则m=,n=.(2)已知二次函数y=x2+(m-2)x-2m,当m=时,函数图象的顶点在y轴上;当m=时,函数图象的顶点在x轴上;当m=时,函数图象经过原点.(3)函数y=-3(x+2)2+5的图象的开口向,对称轴为,顶点坐标为;当x=时,函数取最值y=;当x时,y随着x的增大而减小.3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象.(1)y=x2-2x-3;(2)y=1+6x-x2.4.已知函数y=-x2-2x+3,当自变量x在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x的值:(1)x≤-2;(2)x≤2;(3)-2≤x≤1;(4)0≤x≤3.2.2.2二次函数的三种表示方式通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式:1.一般式:y=ax2+bx+c(a≠0);2.顶点式:y=a(x+h)2+k(a≠0),其中顶点坐标是(-h,k).除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数.当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.①并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac存在下列关系:(1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立.(2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立.(3)当Δ<0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴没有交点;反过来,若抛物线y =ax 2+bx +c (a ≠0)与x 轴没有交点,则Δ<0也成立.于是,若抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点A (x 1,0),B (x 2,0),则x 1,x 2是方程ax 2+bx +c =0的两根,所以x 1+x 2=b a -,x 1x 2=ca,即b a =-(x 1+x 2),ca=x 1x 2.所以,y =ax 2+bx +c =a (2b c x x a a++)=a [x 2-(x 1+x 2)x +x 1x 2]=a (x -x 1)(x -x 2).由上面的推导过程可以得到下面结论:若抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (x 1,0),B (x 2,0)两点,则其函数关系式可以表示为y =a (x -x 1)(x -x 2)(a ≠0).这样,也就得到了表示二次函数的第三种方法:3.交点式:y =a (x -x 1)(x -x 2)(a ≠0),其中x 1,x 2是二次函数图象与x 轴交点的横坐标.今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.例1已知某二次函数的最大值为2,图像的顶点在直线y =x +1上,并且图象经过点(3,-1),求二次函数的解析式.分析:在解本例时,要充分利用题目中所给出的条件——最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a .解:∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,∴顶点的纵坐标为2.又顶点在直线y =x +1上,所以,2=x +1,∴x =1.∴顶点坐标是(1,2).设该二次函数的解析式为2(2)1(0)y a x a =-+<,∵二次函数的图像经过点(3,-1),∴21(32)1a -=-+,解得a =-2.∴二次函数的解析式为22(2)1y x =--+,即y =-2x 2+8x -7.说明:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题.因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题.例2已知二次函数的图象过点(-3,0),(1,0),且顶点到x 轴的距离等于2,求此二次函数的表达式.分析一:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x 轴的交点坐标,于是可以将函数的表达式设成交点式.解法一:∵二次函数的图象过点(-3,0),(1,0),∴可设二次函数为y =a (x +3)(x -1)(a ≠0),展开,得y =ax 2+2ax -3a ,顶点的纵坐标为2212444a a a a--=-,由于二次函数图象的顶点到x 轴的距离2,∴|-4a |=2,即a =12±.所以,二次函数的表达式为y =21322x x +-,或y =-21322x x -+.分析二:由于二次函数的图象过点(-3,0),(1,0),所以,对称轴为直线x =-1,又由顶点到x 轴的距离为2,可知顶点的纵坐标为2,或-2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点(-3,0),或(1,0),就可以求得函数的表达式.解法二:∵二次函数的图象过点(-3,0),(1,0),∴对称轴为直线x =-1.又顶点到x 轴的距离为2,∴顶点的纵坐标为2,或-2.于是可设二次函数为y =a (x +1)2+2,或y =a (x +1)2-2,由于函数图象过点(1,0),∴0=a (1+1)2+2,或0=a (1+1)2-2.∴a =-12,或a =12.所以,所求的二次函数为y =-12(x +1)2+2,或y =12(x +1)2-2.说明:上述两种解法分别从与x 轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来解题,在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题.例3已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式.解:设该二次函数为y =ax 2+bx +c (a ≠0).由函数图象过点(-1,-22),(0,-8),(2,8),可得22,8,842,a b c c a b c -=-+⎧⎪-=⎨⎪=++⎩解得a =-2,b =12,c =-8.所以,所求的二次函数为y =-2x 2+12x -8.通过上面的几道例题,同学们能否归纳出:在什么情况下,分别利用函数的一般式、顶点式、交点式来求二次函数的表达式?练习1.选择题:(1)函数y =-x 2+x -1图象与x 轴的交点个数是()(A )0个(B )1个(C )2个(D )无法确定(2)函数y =-12(x +1)2+2的顶点坐标是()(A )(1,2)(B )(1,-2)(C )(-1,2)(D )(-1,-2)2.填空:(1)已知二次函数的图象经过与x 轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为y =a(a ≠0).(2)二次函数y =-x 2+23x +1的函数图象与x 轴两交点之间的距离为.3.根据下列条件,求二次函数的解析式.(1)图象经过点(1,-2),(0,-3),(-1,-6);(2)当x =3时,函数有最小值5,且经过点(1,11);(3)函数图象与x 轴交于两点(1-2,0)和(1+2,0),并与y 轴交于(0,-2).2.2.3二次函数的简单应用一、函数图象的平移变换与对称变换1.平移变换问题1在把二次函数的图象进行平移时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移?我们不难发现:在对二次函数的图象进行平移时,具有这样的特点——只改变函数图象的位置、不改变其形状,因此,在研究二次函数的图象平移问题时,只需利用二次函数图象的顶点式研究其顶点的位置即可.例1求把二次函数y =x 2-4x +3的图象经过下列平移变换后得到的图象所对应的函数解析式:(1)向右平移2个单位,向下平移1个单位;(2)向上平移3个单位,向左平移2个单位.分析:由于平移变换只改变函数图象的位置而不改变其形状(即不改变二次项系数),所以只改变二次函数图象的顶点位置(即只改变一次项和常数项),所以,首先将二次函数的解析式变形为顶点式,然后,再依据平移变换后的二次函数图象的顶点位置求出平移后函数图像所对应的解析式.解:二次函数y =2x 2-4x -3的解析式可变为y =2(x -1)2-1,其顶点坐标为(1,-1).(1)把函数y =2(x -1)2-1的图象向右平移2个单位,向下平移1个单位后,其函数图象的顶点坐标是(3,-2),所以,平移后所得到的函数图象对应的函数表达式就为y =2(x -3)2-2.(2)把函数y =2(x -1)2-1的图象向上平移3个单位,向左平移2个单位后,其函数图象的顶点坐标是(-1,2),所以,平移后所得到的函数图象对应的函数表达式就为y =2(x +1)2+2.2.对称变换问题2在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移?我们不难发现:在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,具有这样的特点——只改变函数图象的位置或开口方向、不改变其形状,因此,在研究二次函数图象的对称变换问题时,关键是要抓住二次函数的顶点位置和开口方向来解决问题.例2求把二次函数y =2x 2-4x +1的图象关于下列直线对称后所得到图象对应的函数解析式:(1)直线x =-1;(2)直线y =1.解:(1)如图2.2-7,把二次函数y =2x 2-4x +1的图象关于直线x =-1作对称变换后,只改变图象的顶点位置,不改变其形状.由于y =2x 2-4x +1=2(x -1)2-1,可知,函数y =2x 2-4x +1图象的顶点为A (1,-1),所以,对称后所得到图象的顶点为A 1(-3,1),所以,二次函数y =2x 2-4x +1的图象关于直线x =-1对称后所得到图象的函数解析式为y =2(x +3)2-1,即y =2x 2+12x +17.(2)如图2.2-8,把二次函数y =2x 2-4x +1的图象关于直线x =-1作对称变换后,只改变图象的顶点位置和开口方向,不改变其形状.由于y =2x 2-4x +1=2(x -1)2-1,可知,函数y =2x 2-4x +1图象的顶点为A (1,-1),所以,对称后所得到图象的顶点为B (1,3),且开口向下,所以,二次函数y =2x 2-4x +1的图象关于直线y =1对称后所得到图象的函数解析式为y =-2(x-1)2+3,即y =-2x 2+4x +1.二、分段函数一般地,如果自变量在不同取值范围内时,函数由不同的解析式给出,这种函数,叫作分段函数.例3在国内投递外埠平信,每封信不超过20g 付邮资80分,超过20g 不超过40g 付邮资160分,超过40g 不超过60g 付邮资240分,依此类推,每封x g(0<x ≤100)的信应付多少邮资(单位:分)?写出函数表达式,作出函数图象.分析:由于当自变量x 在各个不同的范围内时,应付邮资的数量是不同的.所xyOx =-1A (1,-1)A 1(-3,-1)图2.2-7xyOy =1A (1,-1)B (1,3)图2.2-8。
整式的乘法
一、单项式×单项式
【例1】(1)55(410)(510)⨯⋅⨯; (2)23(2)(3)a b a -⋅-; (3)2352231()()()343
a bc c a
b
c -⋅-⋅.
【变式】计算:223(3)(2)(4)a b ab a b +-- .
【例2】若()3
915,n m a bab a b =则mn 的值_______. 【变式】如果单项式43133
a b a b x x y -+-与是同类项,那么这两个单项式的积是_______. 【例3】计算:223673(2)()(3)(2)(3)m n n m n x y x y xy x y x y -⋅-⋅-+-⋅.
【变式】化简:232216()()3
a b x y ab y x -⋅-⋅⋅-.
【例4】长方体的长是22.210cm ⨯,宽是21.510cm ⨯,高是2410cm ⨯,求它的体积.
【变式】 计算图中阴影部分面积,当E 在AD 上运动时,阴影部分面积有什么变化?
【例5】化简求值:3
213()()[2()()],2a b a b a b a b ⎡⎤-+⋅-⋅-+⋅-⎢⎥⎣⎦其中435,477a b ==.
【变式】有理数a 、b 、c 满足:│a -1│+│a +b │+│a +b +c -2│=0,则(-3ab )(-a 2c )6ab 2的值为_______. 二、单项式×多项式
【例6】计算:(1)2(32)m m n --; 221
(2)()(468)2x x x -+-.
【变式】计算:2(1)5(234)a a a -+; 21(2)(4)(2)n n ab a b --+.
【例7】有一个长方形,它的长为3acm ,宽为(7a +2b )cm ,求它的面积.
【变式】如图,求阴影部分的面积:
【例8】若23()3265x x a x b x x -+-=-+成立,则a =________;b =_______.
【变式】若13(5)314,n n x x x ++=-则x 的值为_______.
【例9】化简求值:22(3)(2)1x x x x x -+-+,其中3x =.
【变式】化简求值,当1x =-时,求:232(1)(1);n n n n n n n x x x x x x x -+-+++
m 25n w z y x c b a m n 3【课后练习】
1、当n 为偶数时,()()m n A a b b a =-⋅-,)m n B b a +=-(,
则A 与B 的关系是_____________. 2、234560a b c d e <若,则下列等式正确的是( )
A .abcde >0
B .abcde <0
C .bd >0 D.bd <0
3、已知3030,n a a a <-⋅>,若则n 的值只能是( )
A .奇数
B .偶数
C .正整数
D .整数
4、若62(810)(510)(210)10a M ⨯⨯⨯=⨯,则M 、a 的值可为( )
A .M =8,a =8
B .M =2,a =9
C .M =8,a =10
D .M =5,a =10
5、下列算式中,不正确的是( )
A .11(21)(2)242n n n n x x xy x y x y xy -+-+⋅-=-+-
B .121()n n n x x --=
C .2221()n n n n n x x x y x x x y --++-=+-
D .当n 为任意自然数时,224)n n a a -=(
6、若162(810)(510)(210)10,a M ⨯⨯⨯=⨯则,M a 的值可为( )
A .M =8,a =8
B .M =2,a =9
C .M =8,a =10
D .M =5,a =10
7、一个长方体的长,宽,高分别为34,2,x x x -,它的体积为________.
8、要使23(1)(8)x ax x ++-的展开式中不含4x 项,则a =________.
9、若3(25)2(13)52,k k k k -+-=则k =_______.
10、若n 为正整数,且2()3n x =,则3222(3)6()n n x x -的值是_________.
11、计算:()()()233321221x x x x x ⎡⎤---⎣⎦; ()()
212231n n n x x x ---+;
(3)2232312()()()()2a bc a bc abc abc --⋅--⋅-; (4)532110(910)3⎛⎫⨯⨯⨯ ⎪⎝⎭
.
12、若 表示3abc ; 表示4y z x w -,则 ⨯ =____________.
13、试判断:①1999200020001999-的末位数字,②2003200327+的末位数字.
14、已知:2x ·(x n +2)=2x n+1-4,求x 的值.
15、若a 3(3a n -2a m +4a k )=3a 9-2a 6+4a 4,求-3k 2(n 3mk +2km 2)的值.
16、已知:2|3|(1)|1|0,a b b c --+++-=求22(3)(6)ab a c b c -⋅-的值.
17、已知:26ab =-,求()()
b ab b a ab ---342的值.
18、已知:A =987654321⨯123456789,B =987654322⨯123456788,试比较A 与B 的大小.。