二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)
- 格式:docx
- 大小:43.53 KB
- 文档页数:2
考点12.二次函数(精讲)【命题趋势】二次函数作为初中三大函数考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点,年年都会考查,总分值为15-20分。
而对于二次函数图象和性质的考查,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。
题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。
【知识清单】1:二次函数的相关概念(☆☆)1)二次函数的概念:一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2)二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.2:二次函数的图象与性质(☆☆☆)解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2b a ,244ac b a-)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2b a 时,y 最小值=244ac b a-。
当x =–2b a 时,y 最大值=244ac b a-。
最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小(1)二次函数图象的翻折与旋转抛物线y=a (x -h )²+k ,绕顶点旋转180°变为:y =-a (x -h )²+k ;绕原点旋转180°变为:y =-a (x+h )²-k ;沿x 轴翻折变为:y =-a (x-h )²-k ;沿y 轴翻折变为:y =a (x+h )²+k ;(2)二次函数平移遵循“上加下减,左加右减”的原则;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.3:二次函数与各项系数之间的关系(☆☆☆)1)抛物线开口的方向可确定a 的符号:抛物线开口向上,a >0;抛物线开口向下,a <02)对称轴可确定b 的符号(需结合a 的符号):对称轴在x 轴负半轴,则2b x a =-<0,即ab >0;对称轴在x 轴正半轴,则2bx a=->0,即ab <03)与y 轴交点可确定c 的符号:与y 轴交点坐标为(0,c ),交于y 轴负半轴,则c <0;交于y 轴正半轴,则c >04)特殊函数值符号(以x =1的函数值为例):若当x =1时,若对应的函数值y 在x 轴的上方,则a+b+c >0;若对应的函数值y 在x 轴上方,则a+b+c =0;若对应的函数值y 在x 轴的下方,则a+b+c <0;5)其他辅助判定条件:1)顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭;2)若与x 轴交点()1,0A x ,()2,0B x ,则可确定对称轴为:x =122x x +;3)韦达定理:1212b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩具体要考虑哪些量,需要视图形告知的条件而定。
初中数学的二次函数知识点汇总二次函数是初中数学中非常重要的知识点之一,它与实际生活紧密相关,掌握了二次函数的知识,不仅可以解决实际问题,还可以为高中数学的学习打下坚实的基础。
本文将对初中数学中与二次函数相关的知识点进行汇总。
一、基本定义与性质1. 二次函数的定义:二次函数是指由形如y = ax^2 + bx + c (a ≠ 0) 的函数所表示的函数关系,其中a、b、c为实数,a称为二次函数的二次项系数,b称为一次项系数,c称为常数项。
二次函数的图像是一条抛物线。
例如:y = x^2 是一个二次函数。
2. 二次函数的图像特点:二次函数的图像在笛卡尔坐标系中是一个抛物线。
当二次函数的二次项系数a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
3. 顶点坐标:二次函数的图像的顶点坐标为(-b/2a, f(-b/2a)),其中f(x)代表二次函数。
4. 对称轴与对称性:二次函数的图像的对称轴方程为x = -b/2a,对称轴也是图像的抛物线的轴线。
二次函数具有对称性,即对称轴将图像分成两部分,两部分关于对称轴对称。
5. 零点与解:二次函数的零点即为函数与x轴相交的点,也就是方程f(x) = 0的解。
求解二次方程可以使用配方法、因式分解法、求根公式等方法。
二、二次函数的图像与方程的关系1. 基本图像的平移:对于一般形式的二次函数y = ax^2 + bx + c,改变a、b、c 的值会对图像产生相应的平移效果。
例如,当x轴正方向平移h个单位,y轴正方向平移k个单位,则y = a(x - h)^2 + k 表示二次函数的图像向右平移h个单位,向上平移k个单位。
2. 图像的缩放与翻折:改变a的值可以控制抛物线的开口情况,当a > 1时,开口变宽,当0 < a < 1时,开口变窄,当a < 0时,抛物线翻折。
3. 图像的对称性:对称轴将图像分成两部分,两部分关于对称轴对称,因此,可以通过掌握对称轴、顶点坐标与开口方向的关系来快速绘制二次函数的图像。
二次函数定义高中摘要:一、二次函数的定义1.一般形式2.顶点式3.交点式二、二次函数的性质1.开口方向2.顶点坐标3.函数的最值4.函数图象与系数的关系三、二次函数的应用1.求解交点2.估算最值3.实际问题中的应用正文:二次函数是高中数学中的一个重要概念,它在许多领域都有广泛的应用。
本文将详细介绍二次函数的定义、性质以及应用。
一、二次函数的定义二次函数是指形如f(x) = ax^2 + bx + c 的函数,其中a、b、c 是常数,且a≠0。
它有三种常见的表示形式:一般形式、顶点式和交点式。
1.一般形式:二次函数的通用形式为f(x) = ax^2 + bx + c,其中a、b、c 是常数,且a≠0。
2.顶点式:二次函数的顶点式为f(x) = a(x - h)^2 + k,其中(h, k) 是顶点坐标,a 是抛物线开口方向的参数。
3.交点式:二次函数的交点式为f(x) = (x - x1)(x - x2),其中(x1, y1) 和(x2, y2) 是函数与x 轴的交点。
二、二次函数的性质二次函数具有许多重要的性质,这些性质有助于我们更好地理解和把握二次函数的特点。
1.开口方向:二次函数的开口方向由参数a 的正负性决定。
当a > 0 时,开口向上;当a < 0 时,开口向下。
2.顶点坐标:二次函数的顶点坐标为(h, k),其中h = -b/2a,k = f(h)。
3.函数的最值:二次函数的最值即为顶点的y 坐标。
当a > 0 时,函数有最小值;当a < 0 时,函数有最大值。
4.函数图象与系数的关系:二次函数的图象与系数a、b、c 有密切关系。
当a > 0 时,函数图象向上开口;当a < 0 时,函数图象向下开口。
函数图象与x 轴的交点个数与b^2 - 4ac 的正负性有关。
三、二次函数的应用二次函数在实际问题中有着广泛的应用,以下列举了几个典型的应用场景。
1.求解交点:二次函数在解析几何中常用来表示抛物线,求解抛物线与x 轴的交点有助于解决实际问题,例如求解方程ax^2 + bx + c = 0。
二次函数知识点总结及经典习题一、二次函数概念:1.二次函数的概念:一般地,形如y =ax2 +bx +c (a ,b,c是常数,a ≠ 0 )的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a ≠ 0 ,而b ,c 可以为零.二次函数的定义域是全体实数.2. 二次函数y =ax2 +bx +c 的结构特征:⑴等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a ,b ,c 是常数, a 是二次项系数, b 是一次项系数, c 是常数项.二、二次函数的基本形式1.二次函数基本形式:y =ax2 的性质:a 的绝对值越大,抛物线的开口越小。
a 的符号开口方向顶点坐标对称轴性质a > 0向上(0,0)y 轴x > 0 时,y 随x 的增大而增大;x < 0 时,y 随x 的增大而减小;x = 0 时,y 有最小值0 .a < 0向下(0,0)y 轴x > 0 时,y 随x 的增大而减小;x < 0 时,y 随x 的增大而增大;x = 0 时,y 有最大值0 .2.y =ax2 +c 的性质:上加下减。
a 的符号开口方向顶点坐标对称轴性质a > 0向上(0,c)y 轴x > 0 时,y 随x 的增大而增大;x < 0 时,y 随x 的增大而减小;x = 0 时,y 有最小值c .a < 0向下(0,c)y 轴x > 0 时,y 随x 的增大而减小;x < 0 时,y 随x 的增大而增大;x = 0 时,y 有最大值c .3.y = a (x - h )2的性质:左加右减。
a 的符号开口方向顶点坐标对称轴性质a > 0向上(h ,0)X=hx > h 时, y 随 x 的增大而增大; x < h 时, y 随x 的增大而减小; x = h 时, y 有最小值0 .a < 0向下(h ,0)X=hx > h 时, y 随 x 的增大而减小; x < h 时, y 随x 的增大而增大; x = h 时, y 有最大值0 .4.y = a (x - h )2+ k 的性质:a 的符号开口方向顶点坐标对称轴性质a > 0向上(h ,k )X=h x > h 时, y 随 x 的增大而增大;x < h 时, y 随x 的增大而减小; x = h 时, y 有最小值 k .a < 0向下(h ,k )X=hx > h 时, y 随 x 的增大而减小;x < h 时, y 随x 的增大而增大; x = h 时, y 有最大值 k .三、二次函数图象的平移1.平移步骤:⑴ 将抛物线解析式转化成顶点式 y = a (x - h )2+ k ,确定其顶点坐标(h ,k );⑵ 保持抛物线 y = ax 2 的形状不变,将其顶点平移到(h ,k )处,具体平移方法如下:2.平移规律在原有函数的基础上“ h 值正右移,负左移; k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.四、二次函数 y = a (x - h )2+ k 与 y = ax 2 + bx + c 的比较从解析式上看, y = a (x - h )2+ k 与 y = ax 2 + bx + c 是两种不同的表达形式,后者通过配方可以得到前者,即 y = a +,其中h= - ,k=(b2a )24ac - b 24ab2a 4ac - b 24a 五、二次函数 y = ax 2 + bx + c 的性质当 a > 0 时,抛物线开口向上,对称轴为,顶点坐标为.b2a (‒b 2a ,4ac ‒ b 24a)当x < - 时,y 随x 的增大而减小;b2a当x > - 时,y 随x 的增大而增大;b2a 当x =- 时,y 有最小值 .b 2a 4ac ‒ b 24a 2. 当α<0时,抛物线开口向下,对称轴为x =- , 顶点坐标为.当b2a(‒b 2a ,4ac ‒ b 24a)x < -时, y 随 x 的大而增大y;当随 x > - 时,y 随 x 的增大而减小;当x =- 时 , y 有最大值.b2ab 2a b 2a 4ac ‒ b 24a六、二次函数解析式的表示方法1.一般式: y = ax 2 + bx + c ( a , b , c 为常数, a ≠ 0 );2.顶点式: y = a (x - h )2 + k ( a , h , k 为常数, a ≠ 0 );3.两根式(交点式): y = a (x - x 1 )(x - x 2 ) ( a ≠ 0 , x 1 , x 2 是抛物线与 x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式, 只有抛物线与 x 轴有交点,即b 2 - 4ac ≥ 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1.二次项系数 a ⑴ 当 a > 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越大;⑵ 当 a < 0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,开口越大.2.一次项系数b 在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴.(同左异右b 为 0 对称轴为 y 轴)3.常数项c⑴ 当c > 0 时,抛物线与 y 轴的交点在 x 轴上方,即抛物线与 y 轴交点的纵坐标为正;⑵ 当c = 0 时,抛物线与 y 轴的交点为坐标原点,即抛物线与 y 轴交点的纵坐标为0 ;⑶ 当c < 0 时,抛物线与 y 轴的交点在 x 轴下方,即抛物线与 y 轴交点的纵坐标为负. 总结起来, c 决定了抛物线与 y 轴交点的位置.八、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与 x 轴交点情况):一元二次方程 ax 2 + bx + c = 0 是二次函数 y = ax 2 + bx + c 当函数值 y = 0 时的特殊情况. 图象与 x 轴的交点个数:① 当 ∆ = b 2 - 4ac > 0 时,图象与 x 轴交于两点 A (x 1 ,0),B (x 2 ,0 ) (x 1 ≠ x 2 ) ,其中的 x 1 ,x 2是一元二次方程 ax 2 + bx + c = 0(a ≠ 0)的两根.②当∆= 0 时,图象与x 轴只有一个交点;③当∆< 0 时,图象与x 轴没有交点.1' 当a > 0 时,图象落在x 轴的上方,无论x 为任何实数,都有y > 0 ;2 ' 当a < 0 时,图象落在x 轴的下方,无论x 为任何实数,都有y < 0 .2.抛物线y =ax2 +bx +c 的图象与y 轴一定相交,交点坐标为(0 ,c) ;中考题型例析1.二次函数解析式的确定例 1求满足下列条件的二次函数的解析式(1)图象经过 A(-1,3)、B(1,3)、C(2,6);(2)图象经过 A(-1,0)、B(3,0),函数有最小值-8;(3)图象顶点坐标是(-1,9),与 x 轴两交点间的距离是 6.分析:此题主要考查用待定系数法来确定二次函数解析式.可根据已知条件中的不同条件分别设出函数解析式,列出方程或方程组来求解.(1)解:设解析式为 y=ax 2+bx+c,把 A(-1,3)、B(1,3)、C(2,6)各点代入上式得解得 {3=a ‒b +c 3=a +b +c 6=4a +2b +c {a =1b =0c =2∴解析式为 y=x 2+2.(2)解法1:由 A(-1,0)、B(3,0)得抛物线对称轴为 x=1,所以顶点为(1,-8). 设解析式为 y=a(x-h)2+k,即 y=a(x-1)2-8.把 x=-1,y=0 代入上式得 0=a(-2)2-8,∴a=2. 即解析式为 y=2(x-1)2-8,即 y=2x 2-4x-6.解法2:设解析式为 y=a(x+1)(x-3),确定顶点为(1,-8)同上, 把 x=1,y=-8 代入上式得-8=a(1+1)(1-3).解得 a=2,∴解析式为 y=2x 2-4x-6.解法 3:∵图象过 A(-1,0),B(3,0)两点,可设解析式为:y=a(x+1)(x-3)=ax 2-2ax-3a.∵函数有最小值-8.∴ =-8.4a (‒3a )‒(2a)24a又∵a≠0,∴a=2.⎬∴解析式为 y=2(x+1)(x-3)=2x 2-4x-6.(3)解:由顶点坐标(-1,9)可知抛物线对称轴方程是 x=-1, 又∵图象与 x 轴两交点的距离为 6,即 AB=6.由抛物线的对称性可得 A 、B 两点坐标分别为 A(-4,0),B(2,0), 设出两根式 y=a(x-x 1)·(x-x 2),将 A(-4,0),B(2,0)代入上式求得函数解析式为 y=-x 2-2x+8.点评:一般地,已知三个条件是抛物线上任意三点(或任意 3 对 x,y 的值)可设表达式为y=ax 2+bx+c,组成三元一次方程组来求解; 如果三个已知条件中有顶点坐标或对称轴或最值,可选用 y=a(x-h)2+k 来求解;若三个条件中已知抛物线与 x 轴两交点坐标,则一般设解析式为 y=a(x-x 1)(x-x 2).2.二次函数的图象例 2y=ax 2+bx+c(a≠0)的图象如图所示,则点 M(a,bc)在().A.第一象限B.第二象限C.第三象限D.第四象限分析:由图可知:抛物线开口向上⇒ a>0.抛物线与y 轴负半轴相交 ⇒ c < 0b ⇒ bc>0.对称轴x = - 2a 在y 轴右侧 ⇒ b < 0∴点 M(a,bc)在第一象限. 答案:A.点评:本题主要考查由抛物线图象会确定 a 、b 、c 的符号.例 3 已知一次函数 y=ax+c 二次函数 y=ax 2+bx+c(a≠0),它们在同一坐标o系中的大致图象是().分析:一次函数 y=ax+c,当 a>0 时,图象过一、三象限;当 a<0 时,图象过二、 四象限;c>0 时, 直线交 y 轴于正半轴; 当 c<0 时, 直线交 y 轴于负半轴; 对于二次函数y= ax 2+bx+c(a≠0)来讲:⎧开口上下决定a 的正负⎪左同右异(即对称轴在y 轴左侧,b 的符号⎪⎨与a 的符号相同;)来判别b 的符号⎪抛物线与y 轴的正半轴或负半轴相交确定⎪⎩c 的正负解:可用排除法,设当 a>0 时,二次函数 y=ax 2+bx+c 的开口向上,而一次函数 y= ax+c 应过一、三象限,故排除 C;当 a<0 时,用同样方法可排除 A;c 决定直线与 y 轴交点;也在抛物线中决定抛物线与y 轴交点,本题中c 相同则两函数图象在y 轴上有相同的交点,故排除B.答案:D.3.二次函数的性质例 4对于反比例函数 y=-与二次函数 y=-x 2+3, 请说出他们的两个相同点:2x ①, ②; 再说出它们的两个不同点:① ,②.分析:本小题是个开放性题目,可以从以下几点性质来考虑①增减性②图象的形状③ 最值④自变量取值范围⑤交点等.解:相同点:①图象都是曲线,②都经过(-1,2)或都经过(2,-1);不同点:①图象形状不同,②自变量取值范围不同,③一个有最大值,一个没有最大值. 点评:本题主要考查二次函数和反比例函数的性质,有关函2数开放性题目是近几年命题的热点.4.二次函数的应用例 5 已知抛物线 y=x 2+(2k+1)x-k 2+k,(1)求证:此抛物线与 x 轴总有两个不同的交点.(2)设 x 1、x 2 是此抛物线与 x 轴两个交点的横坐标,且满足 x 12+x 2=-2k 2+2k+1.①求抛物线的解析式.②设点 P (m 1,n 1)、Q(m 2,n 2)是抛物线上两个不同的点, 且关于此抛物线的对称轴对称. 求 m+m 的值.分析:(1)欲证抛物线与 x 轴有两个不同交点,可将问题转化为证一元二次方程有两个不相等实数根,故令 y=0,证△>0 即可.(2)①根据二次函数的图象与x 轴交点的横坐标即是一元二次方程的根.由根与系数的关系,求出 k 的值,可确定抛物线解析式;②由 P 、Q 关于此抛物线的对称轴对称得 n 1=n 2, 由 n 1=m 12+m 1,n 2=m 22+m 2得 m 12+m 1=m 22+m 2,即(m 1-m 2)(m 1+m 2+1)=0 可求得 m 1+m 2= - 1.解:(1)证明:△=(2k+1)2-4(-k 2+k)=4k 2+4k+1+4k 2-4k=8k 2+1.∵8k 2+1>0,即△>0,∴抛物线与 x 轴总有两个不同的交点.(2) ①由题意得 x 1+x 2=-(2k+1), x 1· x 2=-k 2+k.∵x 1 2+x 2 2=-2k 2+2k+1,∴(x 1+x 2)2-2x 1x 2=- 2k 2+2k+1, 即(2k+1)2-2(-k 2+k)=-2k 2+k+1, 4k 2+4k+1+2k 2-2k= - 2k 2+2k+1.∴8k 2=0, ∴k=0,∴抛物线的解析式是 y=x 2+x.22②∵点 P 、Q 关于此抛物线的对称轴对称,∴n 1=n 2.又 n 1=m 12+m 1,n 2=m 2+m 2.∴m 12+m 1=m 2+m 2,即(m 1-m 2)(m 1+m 2+1)=0.∵P 、Q 是抛物上不同的点,∴m 1≠m 2,即 m 1-m 2≠0.∴m 1+m 2+1=0 即 m 1+m 2=-1.点评:本题考查二次函数的图象(即抛物线)与 x 轴交点的坐标与一元二次方程根与系数的关系.二次函数经常与一元二次方程相联系并联合命题是中考的热点.二次函数对应练习试题一、选择题1.二次函数 y = x 2- 4x - 7 的顶点坐标是()A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3)2.把抛物线 y = -2x 2 向上平移 1 个单位,得到的抛物线是()A. y = -2(x +1)2B. y = -2(x -1)2C. y = -2x 2+1D. y = -2x 2-13.函数 y = kx 2- k 和 y = k(k ≠ 0) 在同一直角坐标系中图象可能是图中的()x4.已知二次函数 y = ax 2+ bx + c (a ≠ 0) 的图象如图所示,则下列结论: ①a,b同号;② 当 x = 1和 x = 3时,函数值相等;③ 4a + b = 0 ④当 y = -2时, x 的值只能取0.其中正确的个数是( )A.1 个B.2 个C. 3 个D.4 个5.已知二次函数 y = ax 2+ bx + c (a ≠ 0) 的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于 x 的一元二次方程ax 2+ bx + c = 0 的两个根分别是 x 1 = 1.3和x 2 =()A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数 y = ax 2 + bx + c 的图象如图所示,则点(ac , bc ) 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.方程 2x - x 2= 的正根的个数为()2xA.0 个B.1 个C.2 个.3个08.已知抛物线过点 A(2,0),B(-1,0),与 y 轴交于点 C,且 OC=2.则这条抛物线的解析式为A. y = x 2 - x - 2B. y = -x 2+ x + 2C. y = x 2- x - 2 或 y = -x 2+ x + 2 D. y = -x 2- x - 2 或 y = x 2+ x + 2二、填空题9.二次函数 y = x 2+ bx + 3 的对称轴是 x = 2 ,则b = 。
数学二次函数二次函数是数学中的重要概念之一,在数学的研究和实际应用中具有广泛的应用。
本文将从二次函数的定义、性质以及解题方法等方面进行探讨。
1. 二次函数的定义与一般式表示二次函数是指定义域为实数集合、由形如y = ax² + bx + c (a ≠ 0) 的函数所表示的函数关系。
其中,a、b、c为实数,且a不为零。
一般地,我们将y = ax² + bx + c的形式称为二次函数的一般式。
在二次函数中,a称为二次项的系数,b称为一次项的系数,c称为常数项。
2. 二次函数的图像特征二次函数的图像通常为抛物线的形状,其开口的方向与二次项系数a的正负有关。
当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
二次函数的图像还有以下特点:- 对称轴:二次函数的对称轴是垂直于x轴的一条直线,过抛物线的顶点。
- 零点:也称为根,即二次函数与x轴相交的点,对应的y值为0。
- 顶点:二次函数抛物线的最高点(开口向下时为最低点),其横坐标为对称轴的横坐标,纵坐标为对应的函数值。
3. 二次函数的性质二次函数具有许多重要的性质,以下是其中几个常见的性质:- 零点定理:对于二次函数y = ax² + bx + c,若它有零点,即存在实数x满足ax² + bx + c = 0,那么,这个实数x就是方程ax² + bx + c = 0的一个解。
- 最值定理:当抛物线开口向上时,二次函数的最小值等于顶点的纵坐标;当抛物线开口向下时,二次函数的最大值等于顶点的纵坐标。
- 单调性:对于二次函数y = ax² + bx + c,当a > 0时,函数在对称轴两侧递增;当a < 0时,函数在对称轴两侧递减。
4. 二次函数的求解与应用在解决实际问题时,二次函数起到了重要的作用。
通过解析的方法,我们可以求解二次方程,从而得到二次函数与x轴相交的点。
二次函数题型练题型一:二次函数的定义1.二次函数的概念:一般地,形如²y ax bx c =++(a ,b ,c 是常数,0a ≠)的函数,叫做二次函数.这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b ,c 可以为零,二次函数的定义域是全体实数.2.二次函数²y ax bx c =++的结构特征:(1)等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2(2)a ,b ,c 是常数,a 是二次项系数,b 是一次项系数,c 是常数项.①二次函数的识别例1.1下列函数中,是二次函数的是()A .261y x =+B .61y x =+C .8y x =D .281y x=-+【详解】解:A .是二次函数,故本选项符合题意;B .是一次函数,不是二次函数,故本选项不符合题意;C .是反比例函数,不是二次函数,故本选项不符合题意;D .等式的右边是分式,不是整式,不是二次函数,故本选项不符合题意;故选:A .变式1.11.下列各式中,y 是x 的二次函数的是()A.31y x =-B.21y x =C.231y x x =+- D.212y x x=+【答案】C 【解析】【分析】根据二次函数的定义:形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数求解可得.【详解】解:A 、y =3x -1是一次函数,不符合题意;B 、21y x =中右边不是整式,不是二次函数,不符合题意;C 、y =3x 2+x -1是二次函数,符合题意;D 、212y x x=+中右边不是整式,不是二次函数,不符合题意;故选:C .【点睛】本题主要考查二次函数的定义,解题的关键是掌握形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.②根据二次函数的定义求参数例1.2如果函数22(2)27my m x x -=-+-是二次函数,则m 的取值范围是()A .2m =±B .2m =C .2m =-D .m 为全体实数【详解】解:由题意得:20m -≠,222m -=,解得:2m =-,故选:C .变式1.22.已知函数y =(2﹣k )x 2+kx +1是二次函数,则k 满足__.【答案】k ≠2【解析】【分析】利用二次函数定义可得2﹣k ≠0,再解不等式即可.【详解】解:由题意得:2﹣k ≠0,解得:k ≠2,故答案为:k ≠2.【点睛】本题主要考查了二次函数的定义,准确分析计算是解题的关键.题型二:二次函数表达式的图像和性质①2y ax =方的图像和性质a 的符号开口方向顶点坐标对称轴性质a >向上()0,0y 轴0x >时,y 随着x 的增大而增大;0x <时,y 随着x的增大而减小;0x =时,y 有最小值00a <向下()0,0y 轴0x >时,y 随着x 的增大而减小;0x <时,y 随着x的增大而增大;0x =时,y 有最大值0例2.1抛物线22y x =-的对称轴是()A .直线12x =B .直线12x =-C .直线0x =D .直线0y =【详解】解:对称轴为y 轴,即直线0x =.故选C .变式2.13.抛物线y =2x 2,y =-2x 2,y =12x 2的共同性质是()A.开口向上B.对称轴是y 轴C.都有最高点D.y 随x 的增大而增大【答案】B 【解析】【分析】根据二次函数的图象与性质解题.【详解】抛物线y =2x 2,y =12x 2开口向上,对称轴是对称轴是y 轴,有最低点,在y 轴的右侧,y 随x 的增大而增大,y =-2x 2,开口向下,对称轴是对称轴是y 轴,有最高点,在y 轴的左侧,y 随x 的增大而增大,故抛物线y =2x 2,y =-2x 2,y =12x 2的共同性质是对称轴是y 轴,故选:B .【点睛】本题考查二次函数图象的性质,是重要考点,难度较易,掌握相关知识是解题关键.②2y ax c =+方的图像和性质a 的符开口顶点坐对称性质号方向标轴a >向上()0,c y 轴0x >时,y 随着x 的增大而增大;0x <时,y 随着x的增大而减小;0x =时,y 有最小值c0a <向下()0,c y 轴0x >时,y 随着x 的增大而减小;0x <时,y 随着x的增大而增大;0x =时,y 有最大值c例2.24.将抛物线y =x 2+3向右平移2个单位后,所得抛物线顶点是_______________.【答案】(2,3)【解析】【分析】根据题目给出的二次函数顶点式,以及“左加右减”的平移原则写出平移后的顶点式,再写出对应的顶点坐标.【详解】解:根据“左加右减”的平移原则,向右平移两个单位,平移后解析式应该是2(2)3y x =-+,∴顶点坐标是()2,3.故答案是:()2,3.【点睛】本题考查二次函数的平移,解题的关键是掌握二次函数平移的方法.【详解】解:根据“左加右减”的平移原则,向右平移两个单位,平移后解析式应该是2(2)3y x =-+,∴顶点坐标是()2,3.故答案是:()2,3.变式2.25.在同一直角坐标系中,画出下列二次函数的图象:222111,2,2222y x y x y x ==+=-.【答案】见解析【解析】【分析】利用描点法可画出这三个函数的图象.【详解】解:列表:描点:见表中的数据作为点的坐标,在平面直角坐标系中描出各点;连线:用平滑的线连接,如图所示:【点睛】本题主要考查二次函数图象的画法,掌握基本的描点法作函数图象是解题的关键.③顶点式()2y a x h k =-+的性质a 的符号开口方向顶点坐标对称轴性质a >向上(),h k 直线x h=x h >时,y 随着x 的增大而增大;x h <时,y 随着x 的增大而减小;x h =时,y 有最小值k0a <向下(),h k 直线x h >时,y 随着x 的增大而减小;x h <时,y 随x h =着x 的增大而增大;x h =时,y 有最大值k例2.3若二次函数2()1y x m =--.当3x ≤时,y 随x 的增大而减小,则m 的取值范围是()A .3m =B .3m >C .3m ≥D .3m ≤【详解】解:由题知二次函数对称轴为x m =,开口向上,根据二次函数图像的性质:只需满足3x m ≤≤即可满足题意,故选C .变式2.36.已知点P (m ,n )在抛物线y =a (x ﹣5)2+9(a ≠0)上,当3<m <4时,总有n >1,当7<m <8时,总有n <1,则a 的值为()A.1B.﹣1C.2D.﹣2【答案】D 【解析】【分析】根据抛物线的解析式可以确定抛物线的顶点和增减性,再根据已知条件确定a 的符号和关于a 的不等式,从而得到a 的值.【详解】解:∵抛物线y =a (x ﹣5)2+9(a ≠0),∴抛物线的顶点为(5,9),∵当7<m <8时,总有n <1,∴a 不可能大于0,则a <0,∴x <5时,y 随x 的增大而增大,x >5时,y 随x 的增大而减小,∵当3<m <4时,总有n >1,当7<m <8时,总有n <1,且x =3与x =7对称,∴m =3时,n≥1,m =7时,n≤1,∴491491a a +≥⎧⎨+≤⎩,∴4a+9=1,∴a =﹣2,故选:D .【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的顶点坐标、增减性及其与图象的关系是解题关键.④一般式2y ax bx c=++a 的符号开口方向顶点坐标对称轴性质a >向上24,24b ac b a a ⎛⎫-- ⎪⎝⎭直线2bx a=-2bx a >-时,y 随着x 的增大而增大;2b x a <-时,y 随着x 的增大而减小;2b x a =-时,y 有最小值244ac b a -0a <向下24,24b ac b aa ⎛⎫-- ⎪⎝⎭直线2bx a=-2bx a>-时,y 随着x 的增大而增大;0x <时,y 随着x 的增大而增大;2b x a=-时,y 有最小值244ac b a -例2.4若()1–3.5,A y 、()2–1,B y 、()31,C y 为二次函数2––45y x x =+的图象上三点,则123,,y y y 的大小关系是__________.(用>连接)【详解】对称轴为直线4222(1)b x a -==-=⨯-,∵–10a =<,∴当–2x <时,y 随x 的增大而增大,当–2x >时,y 随x 的增大而减小,∵2( 3.5)2 3.5 1.5,1(2)121,1(2)123---=-+=---=-+=--=+=,∴213y y y >>.故答案为:213y y y >>.变式2.47.某同学利用描点法画二次函数y =ax 2+bx+c (a ≠0)的图象时,列出的部分数据如下表:序号①②③④⑤x 01234y3﹣23经检查,发现表格中恰好有一组数据计算错误,请你找出错误的那组数据_____.(只填序号)【答案】③.【解析】【分析】由图表的信息知:第一、二、四、五个点的坐标都关于x=2对称,所以错误的一组数据应该是(2,-2);可选取其他四组数据中的任意三组,用待定系数法求出抛物线的解析式.【详解】解:选取(0,3)、(1,0)、(3,0);设抛物线的解析式为y=a (x-1)(x-3),则有:a (0-1)(0-3)=3,a=1;∴y=(x-1)(x-3)=x 2-4x+3.当x =2时,y =22﹣4×2+3=﹣1≠﹣2,所以③数据计算错误.故答案为:③.【点睛】本题考查了用待定系数法求函数解析式的方法,能够正确的判断出错误的一组数据是解答此题的关键.⑤一般式与顶点式的转换将一般式进行配方变形得到224y 24b ac b a x a a -⎛⎫=±+⎪⎝⎭可以根据上述公式,实现二次函数的一般式与顶点式之间的转换.例2.5对于抛物线243y x x =-+.(1)将抛物线的一般式化为顶点式.(2)在坐标系中利用五点法画出此抛物线.x……y ……(3)结合图象,当03x <<时,求出y 的取值范围.【详解】(1)()222434443(2)1y x x x x x =-+=-+-+=--.∴抛物线的顶点式为2(2)1y x =--.(2)x (012)34…y…31-03…函数图象如图所示:(3)根据函数图象可知,当03x <<时,y 的取值范围是13y -≤<.变式2.58.将抛物线223y x x =--变成顶点式为________.【答案】()214y x =--【解析】【分析】由于二次项系数是1,所以直接加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】解:223y x x =--2214x x =-+-()214x =--.故答案为:()214y x =--.【点睛】本题主要考查的是二次函数的顶点式,正确配方是解题的关键.⑥二次函数图象的平移例2.6将抛物线2y x =向右平移1个单位,再向上平移3个单位后,它的解析式为()A .2(1)3y x =++B .2(1)3y x =-+C .2(1)3y x =+-D .2(1)3y x =--【详解】解:将抛物线2y x =图象向右平移1个单位,再向上平移3个单位,所得图象解析式为2(1)3y x =-+故选择:B .变式2.69.把抛物线y=-2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.()2y 211x =-++ B.()2y 211x =--+C.()2y 211x =--- D.()2y 211x =-+-【答案】B【解析】【分析】按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【详解】抛物线22y x =-向上平移1个单位,可得221y x =-+,再向右平移1个单位得到的抛物线是()2211y x =--+.故选B .【点睛】本题考查了二次函数图象的平移,其规律是:将二次函数解析式转化成顶点式y=a (x -h )2+k (a ,b ,c 为常数,a ≠0),确定其顶点坐标(h ,k ),在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.题型三:各项系数与函数图像的关系a 决定二次函数图象的开口方向,a ,b 决定对称轴的位置,(左同右异,即a 与b 同号,则对称轴在y 轴左侧,反之在y 轴右侧)c 决定抛物线与y 轴交点的位置.例3已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论:①0,0b c <>;②0a b c ++<;③方程的两根之和大于0;④0a b c -+<,其中正确的个数是()A .4个B .3个C .2个D .1个【详解】试题分析:∵抛物线开口向下,∴0a <,∵抛物线对称轴0x >,且抛物线与y 轴交于正半轴,∴0,0b c >>,故①错误;由图象知,当1x =时,0y <,即0a b c ++<,故②正确,令方程20ax bx c ++=的两根为1x 、2x ,由对称轴0x >,可知1202x x +>,即120x x +>,故③正确;由可知抛物线与x 轴的左侧交点的横坐标的取值范围为:10x -<<,∴当1x =-时,0y a b c =-+<,故④正确.故选B .变式310.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是()A.1B.2C.3D.4【答案】C【解析】【详解】①∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x ==﹣1,∴b =2a <0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以①正确;②∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,∴4ac <b 2,所以②正确;③∵b =2a ,∴2a ﹣b =0,所以③错误;④∵x =﹣1时,y >0,∴a ﹣b +c >2,所以④正确.故选C .视频题型四:待定系数法求二次函数解析式一般用待定系数法求解二次函数的解析式,再求解过程中需要注意其使用的形式,1.已知抛物线上的三点坐标,一般用一般式求解析式2.已知抛物线顶点或对称轴或最值,一般用顶点式进行求解,3.已知抛物线与x 轴的交点横坐标,一般用交点式进行求解,4.已知抛物线上纵坐标相同的两点,一般用顶点式进行求解.例4已知二次函数2y x bx c =-++的图象经过(1,0),(0,5)-两点,则这个二次函数的解析式为_______.【详解】解:把()1,0、()0,5代入2y x bx c =-++,得105b c c --+=⎧⎨=⎩,解得45b c =⎧⎨=⎩,所以二次函数的解析式为245y x x =-++.故答案为:245y x x =-++.变式411.若二次函数的图象过(﹣3,0)、(1,0)、(0,﹣3)三点,则这个二次函数的解析式为________________.【答案】223y x x =+-.【解析】【分析】设出二次函数的解析式为2y ax bx c =++,将三点坐标代入二次函数解析式求出a ,b ,c 的值,即可确定出解析式.【详解】设二次函数的解析式为2y ax bx c =++,将(﹣3,0)、(1,0)、(0,﹣3)三点代入解析式得:93003a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得:123a b c =⎧⎪=⎨⎪=-⎩.则二次函数解析式为223y x x =+-.故答案为:223y x x =+-.【点睛】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.题型五:二次函数与一元二次方程1.一元二次方程20ax bx c ++=,是二次函数2y ax bx c =++当0y =,即与x 轴相交的特殊情况2.二次函数与x 轴的交点个数当0∆>是,抛物线与x 轴有两个交点;当0∆=是,抛物线与x 轴有一个交点;当∆<0是,抛物线与x 轴没有交点;①抛物线与X 轴Y 轴的交点问题例5.1抛物线23y x =+与y 轴的交点坐标为()A .()3,0B .()0,3C .D .【详解】当0x =时,3y =,则抛物线23y x =+与y 轴交点的坐标为()0,3,故选B .变式5.112.抛物线y =2x 2﹣2x 与x 轴的交点坐标为___.【答案】(0,0),(1,0).【解析】【分析】解方程2x 2﹣2x =0,即可求出抛物线与x 轴的交点坐标.【详解】当y =0时,2x 2﹣2x =0,解得x 1=0,x 2=1,所以抛物线与x 轴的交点坐标为(0,0),(1,0).故答案为(0,0),(1,0).【点睛】本题考查了二次函数与坐标轴的交点坐标与一元二次方程解的关系,二次函数与x 轴的交点横坐标是ax 2+bx +c =0时方程的解,纵坐标是y =0.②根据二次函数图象确定相应方程根的情况例5.2已知函数2y ax bx c =++的图象如图所示,则关于x 的方程240ax bx c ++-=的根的情况是()A .有两个相等的实数根B .有两个异号的实数根C .有两个不相等的实数根D .没有实数根【详解】∵函数的顶点的纵坐标为4,∴直线4y =与抛物线只有一个交点,∴方程240ax bx c ++-=有两个相等的实数根,故选A .变式5.213.如图,抛物线2y ax =与直线y bx c =+的两个交点坐标分别为()2,4A -,()1,1B ,则关于x 的方程20ax bx c --=的解为______.【答案】12x =-,21x =【解析】【分析】根据二次函数图象与一次函数图象的交点问题得到方程组2y ax y bx c ⎧=⎨=+⎩的解为1124x y =-⎧⎨=⎩,2211x y =⎧⎨=⎩,于是易得关于x 的方程ax 2-bx-c=0的解.【详解】解:∵抛物线2y ax =与直线y bx c =+的两个交点坐标分别为()2,4A -,()1,1B ,∴方程组2y ax y bx c ⎧=⎨=+⎩的解为1124x y =-⎧⎨=⎩,2211x y =⎧⎨=⎩,即关于x 的方程20ax bx c --=的解为12x =-,21x =.故答案为x 1=-2,x 2=1.【点睛】本题考查了二次函数的性质:二次函数y=ax 2+bx+c (a ≠0)的顶点坐标是24(,)24b ac b a a--,对称轴直线x=-2b a .也考查了二次函数图象与一次函数图象的交点问题.③用图象求一元二次方程的近似根例5.3如表是一组二次函数23y x x =--的自变量和函数值的关系,那么方程230x x --=的一个近似根是()x1234y 3-1-39A .1.2B .2.3C .3.4D .4.5【解析】【分析】根据二次函数的图象特征解答.【详解】解:观察表格得:方程230x x --=的一个近似根在2和3之间,故选:B .变式5.3.114.如图,以直线1x =为对称轴的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是().A.23x << B.34x << C.45x << D.56x <<【答案】C【解析】【分析】先根据图象得出对称轴左侧图象与x 轴交点横坐标的取值范围,再利用对称轴1x =,可以算出右侧交点横坐标的取值范围.【详解】∵二次函数2y ax bx c =++的对称轴为1x =,而对称轴左侧图象与x 轴交点横坐标的取值范围是32x -<<-,∴右侧交点横坐标的取值范围是45x <<.故选:C .【点睛】本题主要考查了图象法求一元二次方程的近似根,解答本题首先需要观察得出对称轴左侧图象与x 轴交点横坐标的取值范围,再根据对称性算出右侧交点横坐标的取值范围.变式5.3.215.若m 、n (n <m )是关于x 的一元二次方程1﹣(x ﹣a )(x ﹣b )=0的两个根,且b <a ,则m ,n ,b ,a 的大小关系是()A.m<a<b<nB.a<m<n<bC.b<n<m<aD.n<b<a<m【答案】D【解析】【详解】试题分析:如图抛物线y=(x ﹣a )(x ﹣b )与x 轴交于点(a ,0),(b ,0),抛物线与直线y=1的交点为(n ,1),(m ,1),由图象可知,n <b <a <m .故选D .考点:抛物线与x 轴的交点.③利用图象求不等式的取值范围例5.3如图是抛物线2(0)y ax bx c a =++≠图象的一部分.当0y <时,自变量x 的范围是___【详解】解:∵由函数图象可知,函数图象与x 轴的一个交点坐标为(1,0)-,对称轴为直线2x =,∴抛物线与x 轴的另一个交点坐标为()5,0,∴当0y <时,15x -<<.故答案为:15x -<<.变式5.316.二次函数2y x bx c =-++的部分图象如图所示,由图象可知,方程20x bx c -++=的解为___________________;不等式20x bx c -++<的解集为___________________.【答案】①.11x =-,25x =②.1x <-或5x >【解析】【分析】根据抛物线的对称轴和抛物线与x 轴一个交点求出另一个交点,再通过二次函数与方程的两根,二次函数与不等式解集的关系求得答案.【详解】∵抛物线的对称轴为2x =,抛物线与x 轴一个交点为(5,0)∴抛物线与x 轴另一个交点为(-1,0)∴方程20x bx c -++=的解为:11x =-,25x =由图像可知,不等式20x bx c -++<的解集为:1x <-或5x >.故答案为:11x =-,25x =;1x <-或5x >.【点睛】本题考查了二次函数的图像性质,掌握二次函数与方程的两根,二次函数与不等式的解集关系,是解决问题的关键.④求x 轴与抛物线的截线长例5.4已知二次函数24y x x m =-+的图象与x 轴交于A 、B 两点,且点A 的坐标为()1,0,则线段AB 的长为()A .1B .2C .3D .4【详解】将点()1,0A 代入24y x x m =-+,得到3m =,所以243y x x =-+,与x 轴交于两点,设()()1122,,,A x y b x y ∴2430x x -+=有两个不等的实数根,∴12124,3x x x x +=⋅=,∴122AB x x =-==;故选B .变式5.417.已知方程2x 2﹣3x ﹣5=0两根为52,﹣1,则抛物线y =2x 2﹣3x ﹣5与x 轴两个交点间距离为_________.【答案】72【解析】【详解】试题分析:根据一元二次方程与二次函数的关系可知抛物线与x 轴两交点的横坐标,再根据距离公式即可得出答案.解:∵方程2x 2﹣3x ﹣5=0两根为52,﹣1,∴抛物线y =2x 2﹣3x ﹣5与x 轴两个交点的横坐标分别为52,﹣1,∴两个交点间距离为57(1)22--=.故答案为72.题型六:实际问题与二次函数①图形问题例6.1如图,有长为24m 的篱笆,一面利用墙(墙的最大可用长度a 为10m ),围成中间隔有一道篱笆的长方形花圃(由两个小矩形花圃组成).设花圃的一边AB 为m x ,面积为2m S .(1)求S 与x 之间的函数表达式(写出自变量的取值范围).(2)如果要围成面积为245m 的花圃,那么AB 的长是多少米?(3)能围成面积比245m 更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.【详解】解:(1)∵024310x <-≤,∴1483x ≤<∴()21424332483S x x x x x ⎛⎫=-=-+≤< ⎪⎝⎭.(2)当45S =时,有232445x x -+=.解得123,5x x ==.∵1483x ≤<,∴5x =,即AB 的长为5m .(3)能围成面积比245m 更大的花圃.∵()223243448S x x x =-+=--+,其函数图象开口向下,对称轴为直线4x =,当4x >时,y 随x 的增大而减小,∴在1483x ≤<的范围内,当143x =时,S 取得最大值,1403S =最大值.即最大面积为2140m 3,此时14m,10m 3AB BC ==.变式6.1设等边三角形的边长为()0x x >,面积为y ,则y 与x 的函数关系式是()A .212y x =B .214y x =C .22y x =D .24y x =【详解】解:作出BC 边上的高AD .∵ABC 是等边三角形,边长为x ,∴12CD x =,∴高为2=h x ,∴2124y x h x =⨯=.故选:D .②图形运动问题例6.2如图,矩形ABCD 中,6cm,3cm AB BC ==,动点P 从A 点出发以1cm /秒向终点B 运动,动点Q 同时从A 点出发以2cm /秒按A D C B →→→的方向在边,,AD DC CB 上运动,设运动时间为x (秒),那么APQ 的面积()2cmy 随着时间x (秒)变化的函数图象大致为()A .B .C .D .【详解】根据题意可知:,2AP x AQ x ==,①当点Q 在AD 上运动时,211222y AP AQ x x x =⋅⋅=⋅=,为开口向上的二次函数;②当点Q 在DC 上运动时,1133222y AP DA x x =⋅=⨯=,为一次函数;③当点Q 在BC 上运动时,211(122)622y AP BQ x x x x =⋅⋅=⋅⋅-=-+,为开口向下的二次函数.结合图象可知A 选项函数关系图正确.故选:A .变式6.218.如图,在矩形ABCD 中,6AB cm =,12BC cm =,点P 从点A 出发,沿AB 边向点B 以1cm/s 的速度移动,同时点Q 从点B 出发,沿BC 边向点C 以2cm/s 的速度移动,分别到达B ,C 两点就停止运动,则△PQB 的面积最大时,所用时间为()A.2sB.3sC.4sD.5s【答案】B【解析】【分析】表示出PB ,BQ 的长,根据三角形面积公式列出函数关系式,然后配方求解即可.【详解】解:由题意得:AP=tcm ,则PB=(6-t)cm ,BQ=2tcm ,故S △PQB =221(6)26(3)92t t t t t ??-+=--+,∴当t=3s 时,△PQB 的面积最大,故选B.【点睛】本题考查的是二次函数的应用,根据题意表示出三角形的两直角边长是根本,得出面积并配方找最大值是关键.③拱桥问题例6.3如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.【详解】抛物线依坐标系所建不同而各异,如下图.(仅举两例)①如图1建立坐标系,∵顶点在原点,∴设函数解析式为2y ax =,∵图像过()20,6,∴2620a =⨯,解得:3200a =-,∴抛物线的表达式为23200y x =-.②如图2建立坐标系,∵图像相当于图1的图像向上平移6,∴抛物线的表达式为236200y x =-+.故正确,抛物线表达式为23200y x =-或236200y x =-+.变式6.319.如图,一座抛物线型拱桥,桥下水面宽度是4m 时,拱高为2m ,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m,那么木船的高不得超过______m.【答案】1.2【解析】【详解】以水面所在水平线为x轴,过拱桥顶点作水平线的垂线,作为y轴,建立坐标系,设水平面与拱桥的交点为A(-2,0),B(2,0),C(0,2),利用待定系数法设函数的解析式为y=a(x+2)(x-2)代入点C坐标,求得a=-12,即抛物线的解析式为y=-12(x+2)(x-2),令x=1,解得y=1.5,船顶与桥拱之间的间隔应不少于0.3,则木船的最高高度为1.5-0.3=1.2米.故答案为:1.2.④销售问题例6.4我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.某市某电器商场根据民众健康需要,代理销售某种空气净化器,其进价时200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低5元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)求出月销售量y (单位:台)与售价x (单位:元/台)之间的函数关系式,并求出自变量x 的取值范围;(2)当售价x 定为多少时,商场每月销售这种空气净化器所获得的利润w (单位:元)最大?最大利润是多少?【详解】解:(1)根据题中条件销售价每降低5元,月销售量就可多售出50台,当售价为x 时,降了()400x -,所以月销售多了()10400x -台,则月销售量y (台)与售价x (元/台)之间的函数关系式;()10400200104200y x x =-+=-+∵空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台∴300104200450x x ≥⎧⎨-+≥⎩解得300375x ≤≤(2)由题意有:(200)w x y=-(200)(104200)x x =--+2106200840000x x =-+-210(310)121000x =--+∴当售价x 定为310元时,w 有最大值,为121000变式6.420.某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.【答案】(1)20元;(2)每件衬衫应降价15元,商场盈利最多,共1250元.【解析】【分析】(1)总利润=每件利润×销售量,根据题意可得利润表达式,再求当1200w =时x 的值;(2)根据函数关系式,运用二次函数的性质求最值.【详解】解:设每天利润为w 元,每件衬衫降价x 元,根据题意得()()()22402022608002151250w x x x x x =-+=-++=--+(1)当1200w =时,22608001200x x -++=,解之得121020x x ==,.根据题意要尽快减少库存,所以应降价20元.答:每件衬衫应降价20元.(2)解:商场每天盈利w=()()40202x x -+()22151250x =--+.∵-2<0∴抛物线开口向下∴当x=15时,w 有最大值,w 的最大值为1250,所以当每件衬衫应降价15元时,商场盈利最多,共1250元.答:每件衬衫降价15元时,商场平均每天盈利最多.【点睛】本题考查二次函数应用的销售问题的最值,熟练掌握二次函数的性质是解题的关键.⑤投球问题例6.5如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度()m y 与运行的水平距离()m x 满足关系式()2y a x k h =-+.已知球与D 点的水平距离为6m 时,达到最高2.6m ,球网与D 点的水平距离为9m .高度为2.43m ,球场的边界距O 点的水平距离为18m ,则下列判断正确的是()A .球不会过网B .球会过球网但不会出界C .球会过球网并会出界D .无法确定【详解】分析:(1)将点()0,2A 代入2(6) 2.6y a x =-+求出a 的值;分别求出9x =和18x =时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点()0,2A 代入2(6) 2.6y a x =-+,得:362.62a +=,解得:160a =-,∴y 与x 的关系式为21(6) 2.660y x =--+;当9x =时,21(96) 2.6 2.45 2.4360y =--+=>,∴球能过球网,当18x =时,21(186) 2.60.2060y =--+=>,∴球会出界.故选C .变式6.521.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L 是()A. 4.6mB. 4.5mC.4mD.3.5m【答案】B【解析】【分析】根据题意将篮圈高度y =3.05代入函数21 3.55y x =-+解得x ,再加上3即可求得L .【详解】如图,把y =3.05代入函数21 3.55y x =-+,解得:x =1.5或x =﹣1.5(舍),则L =3+1.5=4.5m.故选B.⑥喷水问题例6.6如图,花坛水池中央有一喷泉,水管3m OP =,水从喷头P 喷出后呈抛物线状先向上至最高点后落下,若最高点距水面4m ,P 距抛物线对称轴1m ,则为使水不落到池外,水池半径最小为()A .1B .1.5C .2D .3【详解】如图建立坐标系:抛物线的顶点坐标是()1,4,设抛物线的解析式是()214y a x =-+,把()0,3代入解析式得:43a +=,解得:1a =-,则抛物线的解析式是:()214y x =--+,当0y =时,()2140x --+=,解得:123,1x x ==-(舍去),则水池的最小半径是3米.故选:D .变式6.622.如图,斜坡AB 长10米,按图中的直角坐标系可用53y x =-+表示,点A 、B 分别在x 轴和y 轴上,在坡上的A 处有喷灌设备,喷出的水柱呈抛物线形落到B 处,抛物线可用213y x bx c =-++表示.(1)求抛物线的函数关系式;(2)求水柱离坡岗AB的最大高度.【答案】(1)21533y x x =-++;(2)254【解析】【分析】(1)根据直角三角形的性质求出点A 、B 的坐标,再利用待定系数法求解可得;(2)水柱离坡面的距离d=21553x x ⎛⎫-++-+ ⎪ ⎪⎝⎭,整理成一般式,再配方成顶点式即可得.【详解】解:(1)∵AB=10、∠OAB=30°,∴OB=12AB=5、OA=ABcos ∠OAB=10×2=,则A(,0)、B (0,5),将A 、B 坐标代入213y x bx c =-++,得175035c c ⎧-⨯++=⎪⎨⎪=⎩,解得:35b c ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为21533y x x =-++;(2)水柱离坡面的距离d=21553x x ⎛⎫-++-+ ⎪ ⎪⎝⎭,=2125324x ⎛⎫--+ ⎪ ⎪⎝⎭,∴当254.【点睛】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式、二次函数的图象与性质等知识点,难度不大.⑦增长率问题例6.7共享单车为市民出行带来了方便,某单车公司第一个月投放a 辆单车,计划第三个月投放单车y 辆,设该公司第二、三两个月投放单车数量的月平均增长率为x ,那么y 与x 的函数关系是()A .2y x a=+B .()21y a x =+C .()21y x a=-+D .()21y a x =-【详解】解:设该公司第二、三两个月投放单车数量的月平均增长率为x ,依题意得第三个月第三个月投放单车()21a x +辆,则()21y a x =+.故选:B .变式6.723.某工厂前年的生产总值为10万元,去年比前年的年增长率为x ,预计今年比去年的年增长率仍为x ,今年的总产值为y 万元.(1)求y 关于x 的函数关系式.(2)当x=20%时,今年的总产值为多少?(3)在(2)的条件下,前年、去年和今年三年的总产值为多少万元?【答案】(1)210(1)y x =+;(2)14.4万元;(3)36.4万元.【解析】【分析】(1)根据题意列式为y=10×(1+x)×(1+x)=10(1+x)²;(2)把x 的值代入(1)求解即可;(3)代入求解即可.【详解】(1)根据题意列式为y=10×(1+x)×(1+x)=10(1+x)²;(2)当x=20%时,今年的总产值=10(1+20%)²=14.4万元;(3)依题意,得前年,去年和今年三年的总产值为:10+10(1+20%)+10(1+x)²=36.4(万元).【点睛】本题考查了二次函数的应用,解题的关键是将实际问题转化为二次函数求解.⑧其他问题例6.8小明和小丽先后从A 地出发同一直道去B 地,设小丽出发第min x 时,小丽、小明离B 地的距离分别为1y m 、2y m ,1y 与x 之间的数表达式11802250y x =-+,2y 与x 之间的函数表达式是22101002000y x x =--+.(1)小丽出发时,小明离A 地的距离为m .(2)小丽发至小明到达B 地这段时间内,两人何时相距最近?最近距离是多少?【详解】解(1)当0x =时,122250,2000y y ==∴1222502000250(m)y y -=-=故答案为:250(2)设小丽出发第min x 时,两人相距m S ,则()21802250101002000S x x x =-+---+即21080250S x x =-+其中010x ≤≤因此,当8042210b x a -=-=-=⨯时S 有最小值,224410250(80)904410ac b a -⨯⨯--==⨯也就是说,当小丽出发第4min 时,两人相距最近,最近距离是90m变式6.824.如图,有一个横截面边缘为抛物线的隧道入口,隧道入口处的底面宽度为8m ,两侧距底面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个隧道入口的最大高度为_________m .。
第1-3讲 二次函数全章综合提高【知识清单】 ※一、网络框架※二、清单梳理1、一般的,形如2(0,,,)y ax bx c a a b c =++≠是常数的函数叫二次函数。
例如222212,26,4,5963y x y x y x x y x x =-=+=--=-+-等都是二次函数。
注意:系数a不能为零,,b c 可以为零。
2(0)0=00=0000000y ax a y a y a y a x y x x y x a x y x x y x ⎧=≠⎧⎪⎪⎪><⎨⎪><>⎧⎪⎨⎪<<>⎩⎩最小值最大值概念:形如的函数简单二次函数图像:是过(0,0)的一条抛物线对称轴:轴性质最值:当时,;当时,当时,在对称轴左边(即),随的增大而减小。
在对称轴右边(即),随的增大而增大。
增减性当时,在对称轴左边(即),随的增大而增大。
在对称轴右边(即),随的增大而减小。
二次函数2222(0)004242440=0=440y ax bx c a a a b ac b a a b x a ac b ac b a y a y a a a ⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩=++≠⎧><⎪⎪-⎪⎨⎪⎪=⎪⎩--><>最小值最大值概念:形如的函数,注意还有顶点式、交点式以及它们之间的转换。
开口方向:,开口向上;,开口向下。
图像:是一条抛物线顶点坐标:(-,)对称轴:-最值:当时,,当时,一般二次函数性质:当时,在对称轴左增减性:22022b b x y x x y x a a b b a x y x x y x a a ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎪⎪⎧⎪<>⎨⎪⎪⎪⎪⎪⎨⎪⎪⎪<<>⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩边(即-),随的增大而减小。
在对称轴右边(即-),随的增大而增大。
当时,在对称轴左边(即-),随的增大而增大。
二次函数的定义 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①y=x2-4x+1; ②y=2x2; ③y=2x2+4x; ④y=-3x; ⑤y=-2x-1; ⑥y=mx2+nx+p; ⑦y =; ⑧y=-5x。 该物体所经过的路程为 。 二次函数的对称轴、顶点、最值 (方法:如果解析式为顶点式y=a(x-h)2+k,则最值为k;如果解析式为一般式y=ax2+bx+c则最值为4ac-b24a ) 1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为 。 2.抛物y=x2+bx+c线的顶点坐标为(1,3),则b= ,c= . 3.抛物线y=x2+3x的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.已知抛物线y=x2+(m-1)x-14 的顶点的横坐标是2,则m的值是_ . 5.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m= 。 6.当n=______,m=______时,函数y=(m+n)xn+(m-n)x的图象是抛物线,且其顶点在原点,此抛物线的开口________.。 7.已知二次函数y=x2-4x+m-3的最小值为3,则m= 。 函数y=ax2+bx+c的图象和性质 1.抛物线y=x2+4x+9的对称轴是 。 2.抛物线y=2x2-12x+25的开口方向是 ,顶点坐标是 。 3.试写出一个开口方向向上,对称轴为直线x=-2,且与y轴的交点坐标为(0,3)的抛物线的解析式 。 4.通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)y=12 x2-2x+1 ; (2)y=-3x2+8x-2; (3)y=-14 x2+x-4 函数y=a(x-h)2的图象与性质
1.填表:
抛物线 开口方向 对称轴 顶点坐
标
2
23xy
2
321xy
2.已知函数y=2x2,y=2(x-4)2,和y=2(x+1)2。
(1)分别说出各个函数图象的开口方、对称轴和顶点坐标。
(2)分析分别通过怎样的平移。可以由抛物线y=2x2得到抛物线y=2(x-4)2和y=2(x+1)2?
3.试写出抛物线y=3x2经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。
(1)右移2个单位;(2)左移23 个单位;(3)先左移1个单位,再右移4个单位。
4.试说明函数y=12 (x-3)2 的图象特点及性质(开口、对称轴、顶点坐标、增减性、最值)。
二次函数的增减性
1.二次函数y=3x2-6x+5,当x>1时,y随x的增大而 ;当x<1时,y随x的增大
而 ;当x=1时,函数有最 值是 。
2.已知函数y=4x2-mx+5,当x> -2时,y随x的增大而增大;当x< -2时,y随x的增大而减少;
则x=1时,y的值为 。
3.已知二次函数y=x2-(m+1)x+1,当x≥1时,y随x的增大而增大,则m的取值范围是 .
4.已知二次函数y=-12 x2+3x+52 的图象上有三点A(x1,y1),B(x2,y2),C(x3,y3)且3
二次函数的平移
技法:只要两个函数的a 相同,就可以通过平移重合。将二次函数一般式化为顶点式y=a(x-h)2+k,
平移规律:左加右减,对x;上加下减,直接加减 6.抛物线y= -32 x2向左平移3个单位,再向下平移4个单位,所得到的抛物线的关系式为 。 7.抛物线y= 2x2, ,可以得到y=2(x+4}2-3。 8.将抛物线y=x2+1向左平移2个单位,再向下平移3个单位,所得到的抛物线的关系式为 。 函数的交点 11.抛物线y=x2+7x+3与直线y=2x+9的交点坐标为 。 12.直线y=7x+1与抛物线y=x2+3x+5的图象有 个交点。 函数的的对称 13.抛物线y=2x2-4x关于y轴对称的抛物线的关系式为 。 14.抛物线y=ax2+bx+c关于x轴对称的抛物线为y=2x2-4x+3,则 a= b= c= 函数的图象特征与a、b、c的关系 1.已知抛物线y=ax2+bx+c的图象如右图所示,则a、b、c的符号为( ) A.a>0,b>0,c>0 B.a>0,b>0,c=0 C.a>0,b<0,c=0 D.a>0,b<0,c<0 3.抛物线y=ax2+bx+c中,b=4a,它的图象如图3,有以下结论: ①c>0; ②a+b+c> 0 ③a-b+c> 0 ④b2-4ac<0 ⑤abc< 0 ;其中正确的为( ) A.①② B.①④ C.①②③ D.①③⑤ 4.当b<0是一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系内的图象可能是( ) 二次函数与x轴、y轴的交点(二次函数与一元二次方程的关系) 1. 如果二次函数y=x2+4x+c图象与x轴没有交点,其中c为整数,则c= (写一个即可)
2. 二次函数y=x2-2x-3图象与x轴交点之间的距离为
3. 抛物线y=-3x2+2x-1的图象与x轴交点的个数是( )
A.没有交点 B.只有一个交点 C.有两个交点 D.有三个交点
4. 若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,则m 的取值范围是