中考数学复习阅读理解型问题[人教版]
- 格式:ppt
- 大小:656.50 KB
- 文档页数:16
中考数学复习《新定义及阅读理解型问题》测试题(含答案)题型解读1.考查题型:①新定义计算型;②阅读理解型;③新定义与阅读理解结合题. 2.考查内容:①新定义下的实数运算;②涉及“新定义”的阅读理解及材料分析;③与函数、多边形、圆结合,通过材料或定义进行相关证明或计算.3.在做此类题型时,首先要理解新定义的运算方式,提升从材料阅读中提取信息的能力,结合已知条件中的推理方法,学以致用,便可得以解决.1.对于实数a ,b ,定义一种新运算“⊗”为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=-18,则方程x ⊗(-2)=2x -4-1的解是( ) A . x =4 B . x =5 C . x =6 D . x =72.对于实数a 、b ,我们定义符号max {a ,b}的意义为:当a≥b 时,max {a ,b}=a ;当a <b 时,max {a ,b}=b ;如max {4,-2}=4,max {3,3}=3.若关于x 的函数为y =max {x +3,-x +1},则该函数的最小值是( )A . 0B . 2C . 3D . 43.我们根据指数运算,得出了一种新的运算,下表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 212=-1.其中正确的是( )A . ①②B . ①③C . ②③D . ①②③4.设a ,b 是实数,定义关于@的一种运算如下:a@b =(a +b)2-(a -b)2,则下列结论:( ) ①若a@b =0,则a =0或b =0; ②a@(b +c)=a@b +a@c ;③不存在实数a ,b ,满足a@b =a 2+5b 2;④设a ,b 是矩形的长和宽,若该矩形的周长固定,则当a =b 时,a@b 的值最大. 其中正确的是( )A . ②③④B . ①③④C . ①②④D . ①②③5.对于实数a ,b ,定义运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a≥b)a -b (a<b ),例如:因为 4>2,所以4*2=42-4×2=8,则(-3)*(-2)=________.6.规定:log a b(a>0,a ≠1,b>0)表示a ,b 之间的一种运算. 现有如下的运算法则:log a a n=n ,log N M =log a Mlog a N(a>0,a ≠1,N>0,N ≠1,M>0), 例如:log 223=3,log 25=log 105log 102,则log 1001000=________.第7题图7.实数a ,n ,m ,b 满足a<n<m<b ,这四个数在数轴上对应的点分别是A ,N ,M ,B(如图).若AM 2=BM·AB,BN 2=AN·AB,则称m 为a ,b 的“黄金大数”,n 为a ,b 的“黄金小数”,当b -a =2时,a ,b 的黄金大数与黄金小数之差m -n =________. 8.请阅读下列材料,并完成相应的任务: 阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元前212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理. 阿基米德折弦定理:如图①,AB 和BC 是⊙O 的两条弦(即折线ABC 是圆的一条折弦),BC>AB ,M 是ABC ︵的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD.下面是运用“截长法”证明CD =AB +BD 的部分证明过程.证明:如图②,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG. ∵M 是ABC ︵的中点, ∴MA =MC. …图① 图②任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图③,已知等边△ABC 内接于⊙O,AB =2,D 为AC ︵上一点,∠ABD =45°,AE ⊥BD 于点E ,则△BDC 的周长是________.图③9.如果三角形三边的长a 、b 、c 满足a +b +c3=b ,那么我们就把这样的三角形叫做“匀称三角形”.如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.(1)如图①,已知两条线段的长分别为a 、c(a<c),用直尺和圆规作一个最短边、最长边的长分别为a 、c 的“匀称三角形”(不写作法,保留作图痕迹);(2)如图②,△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作⊙O 的切线交AB 延长线于点E ,交AC 于点F.若BE CF =53,判断△AEF 是否为“匀称三角形”?请说明理由.10.我们知道,任意一个正整数n 都可以进行这样的分解:n =p×q(p,q 是正整数,且p≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q 是n 的最佳分解,并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有F(m)=1;(2)如果一个两位正整数t ,t =10x +y(1≤x≤y≤9,x ,y 是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”.求所有“吉祥数”中F(t)的最大值.11.已知点P(x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离d 可用公式d =|kx 0-y 0+b|1+k 2计算. 例如:求点P(-1,2)到直线y =3x +7的距离. 解:因为直线y =3x +7,其中k =3,b =7,所以点P(-1,2)到直线y =3x +7的距离为d =|kx 0-y 0+b|1+k 2=|3×(-1)-2+7|1+32=210=105. 根据以上材料,解答下列问题:(1)求点P(1,-1)到直线y =x -1的距离;(2)已知⊙Q 的圆心Q 坐标为(0,5),半径r 为2,判断⊙Q 与直线y =3x +9的位置关系并说明理由; (3)已知直线y =-2x +4与y =-2x -6平行,求这两条直线之间的距离.12.【图形定义】如图,将正n 边形绕点A 顺时针旋转60°后,发现旋转前后两图形有另一交点O ,连接AO ,我们称AO 为“叠弦”;再将“叠弦”AO 所在的直线绕点A 逆时针旋转60°后,交旋转前的图形于点P ,连接PO ,我们称∠OAB 为“叠弦角”,△AOP 为“叠弦三角形”. 【探究证明】(1)请在图①和图②中选择其中一个证明:“叠弦三角形”(即△AOP)是等边三角形; (2)如图②,求证:∠OAB=∠OAE′. 【归纳猜想】(3)图①、图②中“叠弦角”的度数分别为__________,__________; (4)图中,“叠弦三角形”__________等边三角形(填“是”或“不是”); (5)图中,“叠弦角”的度数为__________(用含n 的式子表示).13.若抛物线L :y =ax 2+bx +c(a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.(1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数y =6x 的图象上,它的“带线”l 的解析式为y =2x -4,求此“路线”L 的解析式;(3)当常数k 满足12≤k≤2时,求抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴,y 轴所围成的三角形面积的取值范围.1. B 【解析】根据题意a ⊗b =1a -b 2,则 x ⊗(-2)=1x -(-2)2=1x -4,又∵x ⊗(-2)=2x -4-1,∴1x -4=2x -4-1,解得x =5,经检验x =5是原方程的根,∴原方程x ⊗(-2)=2x -4-1的解是x =5. 2. B 【解析】当x +3≥-x +1时,max{x +3,-x +1}=x +3,此时x ≥-1,∴y ≥2;当x +3<-x +1时,max{x +3,-x +1}=-x +1,此时x <-1,∴y >2.综上y 的最小值为2.3. B 【解析】①∵24=16,∴log 216=4,故①正确;②∵52=25,∴log 525=2,故②不正确;③∵2-1=12,∴log 212=-1,故③正确. 4. C 【解析】∵a @b =(a +b )2-(a -b )2,若a @b =0,则(a +b )2-(a -b )2=0,∴(a +b )2=(a -b )2, ∴a +b =±(a -b ),∴a =0或b =0,∴①正确;∵a @b =(a +b )2-(a -b )2,∴a @(b +c )=[a +(b +c )]2-[a -(b +c )]2=[a +(b +c )+a -(b +c )][a +(b +c )-(a -b -c )]=4ab +4ac ,∵a @b +a @c =(a +b )2-(a -b )2+(a +c )2-(a -c )2=a 2+2ab +b 2-a 2+2ab -b 2+a 2+2ac +c 2- a 2+2ac -c 2=4ab +4ac ,∴a @(b +c )=a @b +a @c ,∴②正确;∵a @b =(a +b )2-(a -b )2= a 2+2ab +b 2-a 2+2ab -b 2=4ab ,当a =b =0时,满足a @b =a 2+5b 2,∴③错误;若矩形的周长固定,设为2c ,则2c =2a +2b ,b =c -a ,a @b =(a +b )2-(a -b )2=4ab =4a (c -a )=-4(a -12c )2+c 2,∴当a =12c 时,4ab 有最大值是c 2,即a =b 时,a @b 的值最大,∴④正确.综上,正确结论有①②④.5. -1 【解析】根据新定义,当a<b 时,a*b =a -b 列出常规运算,进行计算便可.∵-3<-2,∴由定义可知,原式=-3-(-2)=-1.6. 32 【解析】根据新运算法则,得log 1001000=log 101000log 10100=log 10103log 10102=32. 7. 25-4 【解析】设AN =y ,MN =x ,由题意可知:AM 2=BM ·AB ,∴(x +y)2=2(2-x -y),解得x +y =5-1(取正),又BN 2=AN·AB ,∴(2-y)2=2y ,解得y =3-5(y <2),∴m -n =MN =x =5-1-(3-5)=25-4,故填25-4.8. 解:(1)又∵∠A =∠C ,CG =AB. ∴△MBA ≌△MGC(SAS ),∴MB =MG . 又∵MD ⊥BC , ∴BD =GD ,∴CD =CG +GD =AB +BD. (2)2+2 2.【解法提示】折线BDC 为⊙O 的一条折弦,由题意知A 为BDC ︵中点,由材料中折弦定理易得BE =DE +CD ,在Rt △ABE 中可得BE =2,所以△BCD 周长为BC +CD +DE +BE =2+2 2.9. 解:(1)作图如解图①.第9题解图①(2)△AEF是“匀称三角形”.理由如下:如解图②,第9题解图②连接AD、OD,∵AB是⊙O直径,∴AD⊥BC,∵AB=AC,∴D是BC中点,∵O是AB中点,∴OD是△ABC的中位线,∴OD∥AC.∵DF切⊙O于D点,∴OD⊥DF,∴EF⊥AF,过点B作BG⊥EF于点G,易证Rt△BDG≌Rt△CDF(AAS),∴BG=CF,∵BECF=53,∴BEBG=53,∵BG∥AF(或Rt△BEG∽Rt△AEF),∴BEBG=AEAF=53.在Rt△AEF中,设AE=5k,则AF=3k,由勾股定理得,EF=4k,∴AF+EF+AE3=3k+4k+5k3=4k=EF,∴△AEF是“匀称三角形”.10. (1)证明:∵m是一个完全平方数,∴m=p×q,当p=q时,p×q就是m的最佳分解,∴F(m)=pq=pp=1.(2)解:由题意得,(10y+x)-(10x+y)=18,得y=x+2(y≤9),∴t=10x+y=10x+x+2=11x+2(1≤x≤7),则所有的“吉祥数”为:13,24,35,46,57,68,79共7个,∵13=1×13,24=1×24=2×12=3×8=4×6,35=1×35=5×7,46=1×46=2×23,57=1×57,68=1×68=2×34=4×17,79=1×79,∴F(13)=113,F(24)=46=23,F(35)=57,F(46)=223,F(57)=157,F(68)=417,F(79)=179,∴“吉祥数”中F(t)的最大值为:F(35)=57.11. 解:(1)∵直线y =x -1,其中k =1,b =-1, ∴点P(1,-1)到直线y =x -1的距离为: d =|kx 0-y 0+b|1+k 2=|1-(-1)-1|1+12=12=22.(2)相切.理由如下:∵直线y =3x +9,其中k =3,b =9,∴圆心Q(0,5)到直线y =3x +9的距离为d =|kx 0-y 0+b|1+k 2=|3×0-5+9|1+(3)2=42=2,又∵⊙Q 的半径r 为2,∴⊙Q 与直线y =3x +9的位置关系为相切.(3)在直线y =-2x +4上任意取一点P , 当x =0时,y =4, ∴P(0,4),∵直线y =-2x -6,其中k =-2,b =-6,∴点P(0,4)到直线y =-2x -6的距离为d =|kx 0-y 0+b|1+k 2=|-2×0-4-6|1+(-2)2=105=25,∴这两条直线之间的距离为2 5.12. (1)选择图①.证明:依题意得∠DAD′=60°,∠PAO =60°. ∵∠DAP =∠DAD′-∠PAD′=60°-∠PAD′,∠D ′AO =∠PAO -∠PAD ′=60°-∠PAD′, ∴∠DAP =∠D′AO.∵∠D =∠D′,AD =AD′, ∴△DAP ≌△D ′AO(ASA ), ∴AP =AO , 又∵∠PAO =60°,∴△AOP 是等边三角形. 选择图②.证明:依题意得∠EAE′=60°,∠PAO =60°. ∵∠EAP =∠EAE′-∠PAE′=60°-∠PAE′, ∠E ′AO =∠PAO -∠PAE′=60°-∠PAE′, ∴∠EAP =∠E′AO(ASA ). ∵∠E =∠E′,AE =AE′, ∴△EAP ≌△E ′AO , ∴AP =AO , 又∵∠PAO =60°, ∴△AOP 是等边三角形.第12题解图(2)证明:如解图,连接AC ,AD ′,CD ′. ∵AE ′=AB ,∠E′=∠B =180°×(5-2)5=108°,E ′D ′=BC ,∴△AE ′D ′≌△ABC(SAS ),∴AD ′=AC ,∠AD ′E ′=∠ACB , ∴∠AD ′C =∠ACD′, ∴∠OD ′C =∠OCD′, ∴OC =OD′,∴BC -OC =E′D′-OD′,即BO =E′O. ∵AB =AE′,∠B =∠E′, ∴△ABO ≌△AE ′O(SAS ), ∴∠OAB =∠OAE′. (3)15°,24°.【解法提示】∵由(1)得,在图①中,△AOP 是等边三角形, ∴∠DAP +∠OAB =90°-60°=30°, 在△OAB 和△OAD′中,⎩⎪⎨⎪⎧OA =OABA =D′A, ∴△ABO ≌△AD ′O(HL ), ∴∠OAB =∠D′AO , 由(1)知∠D′AO =∠DAP , ∴∠OAB =∠DAP , ∴∠OAB =12×30°=15°;∵由(1)得,在图②中,△PAO 为等边三角形, ∴∠PAE +∠BAO =∠EAB -∠PAO ,∵∠EAB=15×180°×(5-2)=108°,∴∠PAE+∠BAO=48°,同理可证得∠OAB=∠PAE,∴∠OAB=12×48°=24°.(4)是.【解法提示】由(1)(2)可知,“叠弦”AO所在的直线绕点A逆时针旋转60°后,AO=AP,且∠PAO =60°,故△AOP是等边三角形.(5)60°-180°n(n≥3).【解法提示】由(1)(2)(3)可知,“叠弦角”的度数为正n边形的内角度数减去60°之后再除以2,即∠OAB=180°(n-2)n-60°2,化简得∠OAB=60°-180°n(n≥3).13. 解:(1)由题意得n=1,∴抛物线y=x2-2x+1=(x-1)2,顶点为Q(1,0),将(1,0)代入y=mx+1,得m=-1,∴m=-1,n=1.(2)由题意设“路线”L的解析式为y=a(x-h)2+k,∵顶点Q的坐标在y=6x和y=2x-4上,∴⎩⎪⎨⎪⎧k=6hk=2h-4,解得h=-1或3,∴顶点Q的坐标为(-1,-6)或(3,2),∴y=a(x+1)2-6或y=a(x-3)2+2,又∵“路线”L过P(0,-4),代入解得a=2(顶点为(-1,-6)),a=-23(顶点为(3,2)),∴y=2(x+1)2-6或y=-23(x-3)2+2,即y=2x2+4x-4或y=-23x2+4x-4.(3)由题可知抛物线顶点坐标为(-3k2-2k+12a,4ak-(3k2-2k+1)24a),设带线l:y=px+k,代入顶点坐标得p=3k2-2k+12,11 ∴y =3k 2-2k +12x +k , 令y =0,则带线l 交x 轴于点(-2k 3k 2-2k +1,0),令x =0,则带线l 交y 轴于点(0,k), ∵k ≥12>0, ∴3k 2-2k +1=3(k -13)2+23>0, ∴带线l 与坐标轴围成三角形面积为S =12·2k 3k 2-2k +1·k =k 23k 2-2k +1=11k 2-2·1k +3, 令t =1k ,∵12≤k ≤2,∴12≤t ≤2,∴S =1t 2-2t +3,∴1S =t 2-2t +3=(t -1)2+2,故当t =2时,(1S )max =3;当t =1时,(1S )min =2.∴13≤S ≤12.。
专题六 阅读理解型问题1.(2011年山东菏泽)定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则,计算2☆3的值是( )A.56B.15C .5D .6 2.(2012年贵州六盘水)定义:f (a ,b )=(b ,a ),g (m ,n )=(-m ,-n ),例如:f (2,3)=(3,2),g (-1,-4)=(1,4),则g [f (-5,6)]=( )A .(-6,5)B .(-5,-6)C .(6,-5)D .(-5,6)3.(2012年山东莱芜)对于非零的两个实数a ,b ,规定a ⊕b =1b -1a.若2⊕(2x -1)=1,则x 的值为( )A.56B.54C.32 D .-164.(2012年湖南湘潭)文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1.若输入7,则输出的结果为( )A .5B .6C .7D .85.(2012年湖北随州)定义:平面内的直线l 1与l 2相交于点O ,对于该平面内任意一点M ,点M 到直线l 1,l 2的距离分别为a ,b ,则称有序非负实数对(a ,b )是点M 的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是( )A .2个B .1个C .4个D .3个6.(2012年四川德阳)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文a ,b ,c ,d 对应密文a +2b,2b +c,2c +3d,4d .例如:明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为A .4,6,1,7B .4,1,6,7C .6,4,1,7D .1,6,4,77.(2012年湖北荆州)新定义:[a ,b ]为一次函数y =ax +b (a ≠0,a ,b 为实数)的“关联数”.若“关联数”[1,m -2]的一次函数是正比例函数,则关于x 的方程1x -1+1m=1的解为__________.8.小明是一位刻苦学习、勤于思考、勇于创新的学生.一天,他在解方程时,有这样的想法:x 2=-1这个方程在实数范围内无解,如果存在一个数i 2=-1,那么方程x 2=-1可以变为x 2=i 2,则x =±i ,从而x =±i 是方程x 2=-1的两个根.小明还发现i 具有如下性质:i 1=i ,i 2=-1,i 3=i 2·i =()-1i =-i ,i 4=()i 22=()-12=1,i 5=i 4·i =i ,i 6=()i 23=()-12=1,i 7=i 6·i =-i ,i 8=()i 42=1…… 请你观察上述等式,根据发现的规律填空: i 4n +1=______,i 4n +2=______,i 4n +3=______,i 4n =______(n 为自然数).9.(2012年湖南张家界)阅读材料:对于任何实数,我们规定符号⎪⎪⎪ a c ⎪⎪⎪b d 的意义是⎪⎪⎪ac ⎪⎪⎪bd =ad -bc .例如:⎪⎪⎪ 1 3 ⎪⎪⎪24=1×4-2×3=-2,⎪⎪⎪ -2 3⎪⎪⎪45=(-2)×5-4×3=-22.(1)按照这个规定,请你计算⎪⎪⎪ 57⎪⎪⎪68的值;(2)按照这个规定,请你计算:当x 2-4x +4=0时,⎪⎪⎪ x +1x -1⎪⎪⎪2x2x -3的值.10.(2011年四川达州)给出下列命题:命题1:直线y =x 与双曲线y =1x有一个交点是(1,1);命题2:直线y =8x 与双曲线y =2x有一个交点是⎝⎛⎭⎫12,4; 命题3:直线y =27x 与双曲线y =3x有一个交点是⎝⎛⎭⎫13,9; 命题4:直线y =64x 与双曲线y =4x有一个交点是⎝⎛⎭⎫14,16; ……(1)请你阅读、观察上面命题,猜想出命题n (n 为正整数); (2)请验证你猜想的命题n 是真命题.11.先阅读理解下列例题,再按要求完成下列问题. 例题:解一元二次不等式6x 2-x -2>0.解:把6x 2-x -2分解因式,得6x 2-x -2=()3x -2()2x +1, 又6x 2-x -2>0,所以()3x -2()2x +1>0,由有理数的乘法法则“两数相乘,同号得正”有(1)⎩⎪⎨⎪⎧ 3x -2>0,2x +1>0,或(2)⎩⎪⎨⎪⎧3x -2<0,2x +1<0,解不等式组(1),得x >23,解不等式组(2),得x <-12.所以()3x -2()2x +1>0的解集为x >23或x <-12.因此,一元二次不等式6x 2-x -2>0的解集为x >23或x <-12.(1)求分式不等式5x +12x -3<0的解集;(2)通过阅读例题和解答问题(1),你学会了什么知识和方法?12.(2012年江苏盐城)知识迁移:当a >0,且x >0时,因为⎝⎛⎭⎪⎫x -a x 2≥0,所以x -2 a +a x ≥0.从而x +a x ≥2 a (当x =a时,取等号).记函数y =x +ax(a >0,x >0),由上述结论,可知:当x =a 时,该函数有最小值为2 a .直接应用已知函数y 1=x (x >0)与函数y 2=1x(x >0),则当x =______时,y 1+y 2取得最小值为______.变形应用已知函数y 1=x +1(x >-1)与函数y 2=(x +1)2+4(x >-1),求y 2y 1的最小值,并指出取得该最小值时相应的x 的值.实际应用已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共360元;二是燃油费,每千米1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设汽车一次运输路程为x千米,求当x为多少时,该汽车平均每千米的运输成本最低?最低是多少元?专题六 阅读理解型问题 【专题演练】 1.A2.A 解析:∵f (-5,6)=(6,-5),∴g [f (-5,6)]=g (6,-5)=(-6,5).故选A.3.A 4.B 5.C 6.C 7.x =3 8.i -1 -i 19.解:(1)⎪⎪⎪ 5 7⎪⎪⎪68=5×8-7×6=-2. (2)由x 2-4x +4=0,得x =2.⎪⎪⎪ x +1x -1⎪⎪⎪2x 2x -3=⎪⎪⎪ 3 1⎪⎪⎪41=3×1-4×1=-1.10.解:(1)直线y =n 3x 与双曲线y =nx有一个交点是⎝⎛⎭⎫1n ,n 2. (2)验证如下:将点⎝⎛⎭⎫1n ,n 2代入y =n 3x , ∵右边=n 3·1n=n 2=左边,∴左边=右边.∴点⎝⎛⎭⎫1n ,n 2在直线y =n 3x 上. 同理可证,点⎝⎛⎭⎫1n ,n 2在直线y =nx上. ∴点⎝⎛⎭⎫1n ,n 2是两函数的交点.11.解:(1)由有理数的除法法则“两数相除,异号得负”有: (1)⎩⎪⎨⎪⎧ 5x +1>0,2x -3<0, 或(2)⎩⎪⎨⎪⎧5x +1<0,2x -3>0, 解不等式组(1),得-15<x <32,解不等式组(2),得不等式组(2)无解.因此,分式不等式5x +12x -3<0的解集为-15<x <32.(2)通过阅读例题和解答问题(1),学会了解一元二次不等式、分式不等式的一种方法. 12.解:直接应用:1 2变形应用:因为y 2y 1=(x +1)2+4x +1=(x +1)+4x +1≥4,所以y 2y 1的最小值是4.此时x +1=4x +1,(x +1)2=4,x =1.实际应用:设该汽车平均每千米的运输成本为y ,则y =360+1.6x +0.001x 2.故平均每千米的运输成本为y x =0.001x +360x +1.6=0.001x +0.360.001x+1.6. 由题意,可得当0.001x =0.36,即x =600时,yx取得最小值.此时yx≥2 0.36+1.6=2.8.答:当汽车一次运输路程为600千米时,其平均每千米的运输成本最低,最低是2.8元.。
中考冲刺:阅读理解型问题—巩固练习(提高)【巩固练习】一、选择题1. 已知坐标平面上的机器人接受指令“[a ,A]”(a ≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向其面对方向沿直线行走a .若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( )A .(-1,)B .(-1.-1) D .(-1)2.任何一个正整数n 都可以进行这样的分解:n =s ×t(s 、t 是正整数,且s ≤t),如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:()pF n q=.例如18可以分解成1×18,2×9,3×6这三种,这时就有31(18)62F ==. 给出下列关于F(n)的说法:(1)1(2)2F =;(2)3(24)8F =;(3)F(27)=3;(4)若n 是一个完全平方数,则F(n)=1.其中正确说法的个数是( ).A .1B .2C .3D .4二、填空题3.阅读下列题目的解题过程:已知a 、b 、c 为△ABC 的三边长,且满足222244a cbc a b -=-,试判断△ABC 的形状. 解:∵222244a cbc a b -=-, (A)∴2222222()()()c a b a b a b -=+-, (B) ∴222c a b =+, (C)∴△ABC 是直角三角形.问:(1)上述解题过程中,从哪一步开始出现错误? 请写出该错误步骤的代号:________________. (2)错误的原因为:________________________. (3)本题的正确结论为:____________________.4.先阅读下列材料,然后解答问题:从A ,B ,C 三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯. 一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)(1)321nm m m m n C n n --+=-⨯⨯⨯ggg ggg .例:从7个元素中选5个元素,共有577654354321C ⨯⨯⨯⨯=⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有______________种.三、解答题5. 已知p 2-p -1=0,1-q -q 2=0,且pq ≠1,求1pq q+的值.解:由p 2-p -1=0及1-q -q 2=0,可知p ≠0,q ≠0 又∵pq ≠1,∴1p q ≠ ∴1-q-q 2=0可变形为21110q q ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭的特征所以p 与1q 是方程x 2- x -1=0的两个不相等的实数根则111,1pq p qq++=∴=根据阅读材料所提供的方法,完成下面的解答.已知:2m 2-5m -1=0,21520n n +-=,且m ≠n ,求:11m n+的值.6. 阅读以下材料,并解答以下问题.“完成一件事有两类不同的方案,在第一类方案中有m 种不同的方法,在第二类方案中有n 种不同的方法,那么完成这件事共有N =m+n 种不同的方法,这是分类加法计数原理,完成一件事需要两个步骤,做第一步有m 种不同的方法,做第二步有n 种不同的方法.那么完成这件事共有N =m ×n 种不同的方法,这就是分步乘法的计数原理.”如完成沿图①所示的街道从A 点出发向B 点行进这件事(规定必须向北走,或向东走),会有多种不同的走法,其中从A 点出发到某些交叉点的走法数已在图②填出.(1)根据以上原理和图②的提示,算出从A 出发到达其余交叉点的走法数,将数字填入图②的空圆中,并回答从A 点出发到B 点的走法共有多少种?(2)运用适当的原理和方法算出从A 点出发到达B 点,并禁止通过交叉点C 的走法有多少种?(3)现由于交叉点C 道路施工,禁止通行,求如任选一种走法,从A 点出发能顺利开车到达B 点(无返回)的概率是多少?7.阅读:我们知道,在数轴上,x =1表示一个点,而在平面直角坐标系中,x =1表示一条直线;我们还知道,以二元一次方程2x -y +1=0的所有解为坐标的点组成的图形就是一次函数y =2x +1的图象,它也是一条直线,如图①.观察图①可以得出:直线x =1与直线y =2x +1的交点P 的坐标(1,3)就是方程组1210x x y =⎧⎨-+=⎩的解,所以这个方程组的解为13x y =⎧⎨=⎩在直角坐标系中,x ≤1表示一个平面区域,即直线x =1以及它左侧的部分,如图②;y ≤2x +1也表示一个平面区域,即直线y =2x +1以及它下方的部分,如图③.① ② ③ 回答下列问题:(1)在直角坐标系中,用作图象的方法求出方程组222x y x =-⎧⎨=-+⎩的解;(2)用阴影表示2y 2x 2y 0x ⎧⎪⎨⎪⎩≥-≤-+≥,所围成的区域.8. 我们学习过二次函数图象的平移,如:将二次函数23y x =的图象向左平移2个单位长度,再向下平移4个单位长度,所得图象的函数表达式是23(2)4y x =+-.类比二次函数图象的平移,我们对反比例函数的图象作类似的变换: (1)将1y x=的图象向右平移1个单位长度,所得图象的函数表达式为________,再向上平移1个单位长度,所得图象的函数表达式为________. (2)函数1x y x +=的图象可由1y x =的图象向________平移________个单位长度得到;12x y x -=-的图象可由哪个反比例函数的图象经过怎样的变换得到?(3)一般地,函数x by x a+=+(ab ≠0,且a ≠b)的图象可由哪个反比例函数的图象经过怎样的变换得到?9. “三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB 置于直角坐标系中,边OB 在x 轴上、边OA 与函数xy 1=的图象交于点P ,以P 为圆心、以2OP 为半径作弧交图象于点R .分别过点P 和R 作x 轴和y 轴的平行线,两直线相交于点M ,连接OM 得到∠MOB ,则∠MOB=31∠AOB .要明白帕普斯的方法,请研究以下问题:(1)设)1,(a a P 、)1,(bb R ,求直线OM 对应的函数表达式(用含b a ,的代数式表示).(2)分别过点P 和R 作y 轴和x 轴的平行线,两直线相交于点Q .请说明Q 点在直线OM 上,并据此证明∠MOB=31∠AOB . (3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明).10. 阅读下列材料:问题:如图1所示,在菱形ABCD 和菱形BEFG 中,点A ,B ,E 在同一条直线上,P 是线段DF 的中点,连接PG ,PC .若∠ABC =∠BEF =60°,探究PG 与PC 的位置关系PGPC的值.小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题: (1)写出上面问题中线段PG,与PC 的位置关系及PGPC的值; (2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中∠ABC =∠BEF =2α(0°<α<90°),将菱形BEFG 绕点B 顺旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).【答案与解析】 一、选择题 1.【答案】D ; 2.【答案】B ;二、填空题 3.【答案】 (1)C ;(2)错误的原因是由(B)到(C)时,等式两边同时约去了因式22()a b -,而22a b -可能等于0;(3)△ABC 是等腰三角形或直角三角形. 4.【答案】120.三、解答题 5.【答案与解析】解:由2m 2-5m -1=0知m ≠0,∵m ≠n ,∴11m n≠得21520mm+-=根据2215152020m m n n +-=+-=与的特征∴11mn与是方程x 2+5 x -2=0的两个不相等的实数根 ∴115m n+=- .6. 【答案与解析】(1)∵完成从A 点到B 点必须向北走,或向东走,∴到达A 点以外的任意交叉点的走法数只能是与其相邻的南边的交叉点和西边交叉点的数字之和,故使用分类加法原理,由此算出从A 点到达其余各交叉点的走法数,填表如图所示.故从A 点到B 点的走法共35种.(2)方法1:可先求从A 点到B 点,并经过交叉点C 的走法数,再用从A 点到B 点总走法数减去它,即得从A 点到B 点。