卡塞格林望远镜的结构形式
- 格式:docx
- 大小:178.48 KB
- 文档页数:10
望远镜的原理和结构图解示意图
望远镜的原理和结构图解示意图如下:
一、望远镜的原理
望远镜是由两组凸透镜—目镜和物镜组成。
它的结构特点是物镜的焦距长而目镜的焦距短,望远镜的成像原理是:物镜的作用是得到远处物体的实像,由于物体离物镜非常远,所以物体上各点发射到物镜上的光线几乎是平行光束,这样的光线经过物镜汇聚后,就在物镜焦点外,离焦点很近的地方,形成了一个倒立的、缩小的实像。
这个倒立的、缩小的实像又位于目镜的焦点以内,所以目镜起了放大镜的作用,目镜把经过物镜的倒立的的、缩小的实像放大成了一个正立的、放大的虚像。
这就是远处物体通过望远镜所成的虚像。
二、望远镜的结构图解示意图
一般来说,常规的双筒望远镜有以下几个部分组成:目镜,物镜,中间的棱镜,两个镜筒的连接部分,以及聚焦系统。
根据不同的尺寸大小,放大倍率,和用途以及个人喜好,双筒望远镜又可细分为好几种类型(详见双筒望远镜类型一表)。
下图是常规双筒望远镜的基本构造图:。
一种校准rc和其他卡塞格林家族望远镜的
方法
校准RC(斜向圆柱镜)和其他卡塞格林家族望远镜的方法主要涉及以下几个步骤:
1. 确定光路:首先,需要确定望远镜的光路结构。
RC望远镜和其他卡塞格林家族望远镜具有复杂的光学结构,包括主镜、次镜以及其他组件。
对于
精确的校准,需要了解每个镜片的位置和角度。
2. 镜片调整:校准过程中,需要调整主镜和次镜的位置和角度。
确保主
镜的中心对准次镜,使之完美匹配。
可通过微调螺丝来调整镜片的位置。
3. 准直器校准:准直器是望远镜中的一个重要组件,用于校准光路。
通
过调整准直器的位置和角度,确保望远镜的光线准直。
可以使用目镜或者衍
射格等工具进行准直器的校准。
4. 减少光学偏差:为了减少光学偏差,可以使用校准器件,如波前传感器、自动反射器等,进行镜面修正。
这些校准器件可以有效检测并纠正光学
系统中的误差,提高望远镜的成像质量。
5. 反复测试和调整:校准过程需要经过多次测试和调整。
可以使用星图、天体观测和其他测试手段来检验望远镜的成像效果。
根据测试结果,反复调
整望远镜的各个参数,直到达到期望的校准效果。
总结起来,校准RC和其他卡塞格林家族望远镜的方法主要包括确定光路、镜片调整、准直器校准、减少光学偏差和反复测试和调整。
通过这些步骤,可以实现望远镜的精确校准,提高其成像质量和准确度。
基于Zemax的牛顿望远镜的设计基于Zemax的牛顿望远镜的设计 (1)1、简介 (1)2、优缺点 (3)2.1优点: (3)2.2不足: (3)3、Zemax设计 (4)3.1 设计要求 (4)3.2 设计过程 (4)4、参考与鸣谢 (8)5、附录:望远镜的性能简介 (9)5.1 物镜的光学特性: (9)5.2 物镜的结构样式: (10)5.3 系统的整体性能: (11)1、简介1670年,牛顿制备了第一个反射式望远镜。
他使用凹面镜(球面)将光线反射到一个焦点,如图1,2。
这种方法比当时望远镜的放大倍数高出数倍。
图1,2老牛本准备用非球面(抛物面),研磨工艺所限,迫使其采用球面反射镜做主镜:将直径2.5厘米的金属磨制成一个凹面反射镜,并在主镜的焦点前放了一个与主镜成45°的反射镜,使经主镜反射后的会聚光经反射镜后以90°反射出镜筒后到达目镜。
如图3,4。
球面镜虽然会产生一定的象差,但用反射镜代替折射镜却是一个巨大的成功。
所有的巨型望远镜大多属于反射望远镜,牛顿望远镜为反射望远镜的发展辅平了道路。
从牛顿制作出第一架反射望远镜到今天,300多年过去了,人们在其中加入了其他的设计,产生了许多的变形。
例如,在牛顿式望远镜中加入一组透镜,就产生了施密特-牛顿式,除此之外,还有许多的变形,但他们的基本结构都是牛顿式的。
图3,4在今天,世界上一些最为著名的望远镜都是采用牛顿式的结构。
例如,位于巴乐马山天文台的Hale天文望远镜,其主镜的尺寸为5米;W.M. 凯克天文台的Keck天文望远镜,其主镜由36块六角形的镜面拼接,组合成直径10米的主镜;还有哈勃太空望远镜,也是牛顿式望远镜。
牛顿反射望远镜采用抛物面镜作为主镜,光进入镜筒的底端,然后折回开口处的第二反射镜(平面的对角反射镜),再次改变方向进入目镜焦平面。
目镜为便于观察,被安置靠近望远镜镜筒顶部的侧方。
牛顿反射望远镜用平面镜替换昂贵笨重的透镜收集和聚焦光线,结构较简单。
天文望远镜培训知识经常会碰到天文爱好者问:我想买天文望远镜,到底买怎样的好?这个问题实在不好回答,因为不同的爱好者水平、经济能力等因素各不相同。
要给出同样的答案勉为其难。
这里我整理了十个有关问题,希望能给他们一点帮助。
――――――――――――――――――问题一:我该不该买望远镜?答:如果你无法在夜空中识别五个以上的星座,就不该买望远镜。
因为即使你买了,你也找不到星。
――――――――――――――――――问题二:我什么时候该买望远镜?答:1、你已经认识十五个以上的星座,并开始为天天看那些星座感到单调重复。
2、了解一些望远镜的相关知识(如双筒望远镜和天文望远镜各自的优点和缺点;三类天文望远镜――折射式、反射式、折反射式的优点和缺点;影响望远镜性能的六大因素)3、你已经用过别人的望远镜,知道它的优点,以及存在什么缺点。
4、如果不买望远镜,你会吃不香,睡不着。
――――――――――――――――――问题三:我该买什么样的望远镜?答:一个天文爱好者最好有一台双筒镜和一台天文望远镜。
有人觉得要先买双筒镜,有人却说应该先买天文望远镜,其实是仁者见仁,智者见智。
两种望远镜都有各自的长处,带给人的乐趣也完全不同。
――――――――――――――――――问题四:用于天文观测的双筒望远镜怎样选择?国产50~80口径(50以下口径的双筒镜集光不够多,更适合观景用),放大倍数7~15倍(倍数过大不单会使视场变暗,而且手持观测会抖晃得厉害),单层膜最好选蓝膜。
价格200~1000元。
选择国内大厂的产品相对好一些。
最好多挑选,因为即使是国内大厂,由于装配水平参差不齐,观测效果也有很大差异。
建议不要选择变倍双筒镜,要获得和定倍双筒镜同样的光学质量,它的价格会贵5倍。
――――――――――――――――――问题五:我该选什么样的天文望远镜?对于初级爱好者选60~80口径的折射镜,应配两组以上目镜(如30X、60X),手动赤道仪,价格500~1000元。
天文望远镜是观测天体的重要手段,可以毫不夸大地说,没有望远镜的诞生和发展,就没有现代天文学。
随着望远镜在各方面性能的改进和提高,天文学也正经历着巨大的飞跃,迅速推进着人类对宇宙的认识。
从第一架光学望远镜到射电望远镜诞生的三百多年中,光学望远镜一直是天文观测最重要的工具,下面就对光学望远镜的发展作一个简单的介绍。
折射式望远镜:1608年,荷兰眼镜商人李波尔赛偶然发现用两块镜片可以看清远处的景物,受此启发,他制造了人类历史第一架望远镜。
1609年,伽利略制作了一架口径4。
2厘米,长约1。
2米的望远镜。
他是用平凸透镜作为物镜,凹透镜作为目镜,这种光学系统称为伽利略式望远镜。
伽利略用这架望远镜指向天空,得到了一系列的重要发现,天文学从此进入了望远镜时代。
1611年,德国天文学家开普勒用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜。
现在人们用的折射式望远镜还是这两种形式,天文望远镜是采用开普勒式。
需要指出的是,由于当时的望远镜采用单个透镜作为物镜,存在严重的色差,为了获得好的观测效果,需要用曲率非常小的透镜,这势必会造成镜身的加长。
所以在很长的一段时间内,天文学家一直在梦想制作更长的望远镜,许多尝试均以失败告终。
1757年,杜隆通过研究玻璃和水的折射和色散,建立了消色差透镜的理论基础,并用冕牌玻璃和火石玻璃制造了消色差透镜。
从此,消色差折射望远镜完全取代了长镜身望远镜。
但是,由于技术方面的限制,很难铸造较大的火石玻璃,在消色差望远镜的初期,最多只能磨制出10厘米的透镜。
十九世纪末,随着制造技术的提高,制造较大口径的折射望远镜成为可能,随之就出现了一个制造大口径折射望远镜的高潮。
世界上现有的8架70厘米以上的折射望远镜有7架是在1885年到1897年期间建成的,其中最有代表性的是1897年建成的口径102厘米的叶凯士望远镜和1886年建成的口径91厘米的里克望远镜。
望远镜知识点总结望远镜的构成望远镜主要由物镜、目镜和支架等部分组成。
物镜是望远镜最前端的透镜或镜片,负责收集远处目标的光线,并将其聚焦在焦点上。
目镜是望远镜的背部,负责放大被物镜聚焦的图像,使其能够被观察者所看到。
支架是望远镜的支撑部分,可以是三脚架、云台等,用于支撑和稳固望远镜。
望远镜的类型根据原理和用途的不同,望远镜可以分为折射望远镜、反射望远镜、红外望远镜等多种类型。
折射望远镜是使用透镜或物镜和目镜将光线通过折射进行观察的望远镜,常见的折射望远镜有古典折射望远镜和折射望远镜。
反射望远镜是使用镜面反射进行观察的望远镜,主要包括纽托望远镜、卡塞格林望远镜等。
红外望远镜是一种能够接收红外线信号的望远镜,适用于夜间和特殊环境的观测。
望远镜的使用在使用望远镜时,需要注意其保养和使用方法。
首先,要定期清洁望远镜的透镜或镜片,以确保其清晰度和透光性。
其次,要注意避免望远镜受到震动或冲击,以免损坏透镜或镜片。
另外,望远镜在观测天文或地理景观时,需要选择合适的焦距和放大倍数,以便获得清晰的观测效果。
最后,在使用望远镜时,还需要注意观测的环境和气候条件,以确保能够获得良好的观测效果。
望远镜的应用望远镜在不同领域有不同的应用,主要包括天文观测、地理观测、军事侦察等。
在天文观测中,望远镜可以帮助观测者观察天空中的恒星、行星、星云等天体现象。
在地理观测中,望远镜可以用于观测远处地理景观、野生动物等。
在军事侦察中,望远镜可以用于观测敌方的动态和目标位置,起到侦察和监视的作用。
综上所述,望远镜是一种十分重要的光学仪器,具有广泛的应用价值。
它通过利用透镜或镜片将远处物体放大,使观察者能够更清晰地观察远处物体或景观。
望远镜有不同的类型和用途,在使用时需要注意保养和使用方法,以确保其正常运作和长久使用。
望远镜在天文观测、地理观测、军事侦察等领域有着重要的应用价值,对人类的探索和观测工作起到了重要的作用。
一、折射望远镜用透镜作物镜的望远镜。
分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。
因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。
其中以双透镜物镜应用最普遍。
它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱。
在满足一定设计条件时,还可消去球差和彗差。
由于剩余色差和其他像差的影响,双透镜物镜的相对口径较小,一般为1/15-1/20,很少大于1/7,可用视场也不大。
口径小于8厘米的双透镜物镜可将两块透镜胶合在一起,称双胶合物镜,留有一定间隙未胶合的称双分离物镜。
为了增大相对口径和视场,可采用多透镜物镜组。
折射望远镜的成像质量比反射望远镜好,视场大,使用方便,易于维护,中小型天文望远镜及许多专用仪器多采用折射系统,但大型折射望远镜制造起来比反射望远镜困难得多。
伽利略望远镜光路图开普勒望远镜光路图二、反射望远镜用凹面反射镜作物镜的望远镜。
可分为牛顿望远镜、卡塞格林望远镜、格雷果里望远镜、折轴望远镜几种类型。
反射望远镜的主要优点是不存在色差,当物镜采用抛物面时,还可消去球差。
但为了减小其它像差的影响,可用视场较小。
对制造反射镜的材料只要求膨胀系数较小、应力小和便于磨制。
磨好的反射镜一般在表面镀一层铝膜,铝膜在2000-9000埃波段范围的反射率都大于80%,因而除光学波段外,反射望远镜还适于对近红外和近紫外波段进行研究。
反射望远镜的相对口径可以做得较大,主焦点式反射望远镜的相对口径约为1/5-1/2.5,甚至更大,而且除牛顿望远镜外,镜筒的长度比系统的焦距要短得多,加上主镜只有一个表面需要加工,这就大大降低了造价和制造的困难,因此目前口径大于1. 34米的光学望远镜全部是反射望远镜。
一架较大口径的反射望远镜,通过变换不同的副镜,可获得主焦点系统(或牛顿系统)、卡塞格林系统和折轴系统。
折反射望远镜构造望远镜的发展经历了约400年的时间,现在它已在科学研究和生活的方方面面发挥着重要的作用。
1608年荷兰人汉斯·利伯希发明了第一部望远镜。
随之而来的是折射望远镜、反射望远镜和折反射式望远镜的相继产生。
德国人史密特首先于1938年制作了第一部折反射式望远镜。
折反射望远镜系统的特点是便于校正轴外像差。
以球面镜为基础,加入适当的折射元件,用以校正球差,得以取得良好的光学质量。
由于折反射望远镜具有视场大、光力强等特点,适合于观测延伸(彗星、星系、弥散星云等)天体,并可进行巡天观测,较适合天文爱好者使用。
本文通过探究折反射式望远镜的构造、阐明其光学结构原理从而加强折反射望远镜在啊日常生活的中应用,为今后的技术创新提供助力。
关键词:望远镜;凸透镜;凹透镜;折射式;反射式;折反射式0. 引言望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。
望远镜可大致分为折射望远镜、反射望远镜和折反射式望远镜三种.应用最广泛的有施密特望远镜(美国Meade 12”LX200SC),施密特—卡塞格林系统(南京天仪中心的KP300S),马克苏托夫与马克苏托夫—卡塞格林望远镜(南京御夫天文科教仪器厂生产的Φ160mm等系列)四种类型。
1.折反射式望远镜1.1.折、反射式望远镜的基本光学原理天文望远镜由物镜和目镜组成,接近景物的凸形透镜或凹形反射镜叫做物镜,靠近眼睛那块叫做目镜。
远景物的光源视作平行光,根据光学原理,平行光经过透镜或球面凹形反射镜便会聚焦在一点上,这就是焦点。
焦点与物镜距离就是焦距。
再利用一块比物镜焦距短的凸透镜或目镜就可以把成像放大,这时观察者觉得远处景物被拉近,看得特别清楚。
O=物镜 E=目镜 f =焦点 fo=物镜焦距 fe=目镜焦距 D=物镜口径 d =斜镜折射镜是由一组透镜组成,反射式则包括一块镀了反光金属面的凹形球面镜和把光源作90 °反射的平面镜。
卡塞格林望远镜的结构形式11种,主要是根据主镜和次镜面型及有无校正器来分的,以下就是这11种的类型及结构形式(主镜面型在前,次镜在后)。 1、Classical Cassegrain 抛物面 双曲面 2、Ritchey-Chretien 双曲面 双曲面 3、Dall-Kirkham 椭圆面 球面 4、Houghton-Cassegrain 双凸透镜+双凹透镜 球面 球面 5、Schmit-Cassegrain 施密特校正器 面型任意 6、Maksutov-Cassegrain 弯月透镜 球面 球面 7、Schmidt-meniscus Cassegrain施密特校正器+弯月透镜 球面 球面 8、Mangin-Cassegrain 多个球面透镜 球面 球面 9、Pressmann-Camichel 球面 椭圆面 10、Schiefspiegler 斜反射离轴 11、Three-mirror Cassegrain 三片反射镜 面型任意 以下详细介绍这几种卡塞格林结构形式: 1、Classical Cassegrain (经典的卡塞格林系统): "传统的"卡塞格林望远镜有抛物面镜的主镜,和双曲面的次镜将光线反射并穿过主镜中心的孔洞,折叠光学的设计使镜筒的长度紧缩。在小望远镜和照相机的镜头,次镜通常安装在封闭望远镜镜筒的透明光学玻璃板上的光学平台。这样的装置可以消除蜘蛛型支撑架造成的"星状"散射效应。封闭镜筒虽然会造成集光量的损失,但镜筒可以保持干净,主镜也能得到保护。 它利用双曲面和抛物面反射的一些特性,凹面的抛物面反射镜可以将平行于光轴入射的所有光线汇聚在单一的点上-焦点;凸面的双曲面反射镜有两个焦点,会将所有通过其中一个焦点的光线反射至另一个焦点上。这一类型望远镜的镜片在设计上会安放在共享一个焦点的位置上,以便光线能在双曲面镜的另一个焦点上成像以便观测,通常外部的目镜也会在这个点上。抛物面的主镜将进入望远镜的平行光线反射并汇聚在焦点上,这个点也是双曲线面镜的一个焦点。然后双曲面镜将这些光线反射至另一个焦点,就可以在那儿观察影像.
2、Ritchey- chretien(R-C系统,里奇克列基昂): 平行于光轴的光﹐满足等光程和正弦条件的卡塞格林望远镜。它是由克列基昂(H.Chretien)提出﹑里奇(G.W.Ritch)制成的﹐按他们两人姓氏的第一个字母得名为R-C望远镜。它的焦点称为R-C焦点。这种望远镜的主﹑副镜形状很接近旋转双曲面﹐在实用上可把这种系统近似地视为消除三级球差和彗差的﹑由旋转双曲面组成的系统。由于消除了彗差﹐可用视场比其他形式的卡塞格林望远镜更大一些﹐并且像斑呈对称的椭圆形。如果采用弯曲底片﹐视场会更明显地增大﹐像斑则呈圆形。一个主镜相对口径为1/3﹑系统相对口径为1/8﹑且像成在主镜后面不远处的这种望远镜﹐其主镜偏心率接近于1.06的双曲面﹐副镜偏心率接近于2.56的双曲面。在理想像平面(近轴光的像平面)上﹐如要求像斑的弥散不超过1﹐可用视场直径约为19'﹔如用弯曲底片﹐仍要求像斑的弥散不超过1﹐则视场直径可达37'。如要获得更大的视场﹐则需加入像场改正透镜。加入像场改正的R-C望远镜比主镜为抛物面的卡塞格林望远镜的效果也更好。但在R-C望远镜中使用主焦点时﹐所成的像是有球差的。因此﹐使用它的主焦点时通常至少需加入一块改正透镜或反射镜。 典型的卡塞格林系统主镜为抛物面,次镜为双曲面,这样只能校正球差,如果将主镜也改为双曲面则可以校正两种像差,球差和慧差,视场也可适当增大,但为了进一步增大视场则还需校正场曲、象散和畸变,这就还需要在像方加一组至少由两片透镜组成的校正透镜组,可称之为场镜。
3、Dall-Kirkham cassegrain(达--客 卡塞格林) 达尔-奇克汉卡塞格林望远镜是霍勒斯达尔在1928年设计出来的,并在1930年由当时的科学美国人编辑,也是业余天文学家的艾伦奇克汉和艾伯特G.英格尔写成论文发表在该杂志上。这种设计使用凹的椭圆面镜做主镜,凸的球面镜做第二反射镜。这样的系统比卡塞格林或里奇-克莱琴的系统都容易磨制,但是没有修正离轴的彗形像差和视场畸变,所以离开轴心的影像品质便会很快的变差。但是对长焦比的影响较小,所以焦比在f/15以上的反射镜仍会采用此种形式的设计。
4、Houghton-cassegrain (H-C系统,霍顿卡塞格林):两个球面反射镜 Hougton的改正镜由一块双凸透镜和一块双凹镜组成,能很好的修正球差,彗差,畸变,可用视场很大,色差也极小,可以忽略不计.像差主要是离轴像散.所有面都是球面,曲率半径较大(不象马克苏托夫的改正镜曲率半径很小)容易加工.对材料要求也较低. 安装方面,改正镜两透镜之间的间隔,以及和主镜间的距离的容差很大,主要是对正光轴. Hougton用于目视和摄影都有很好的表现. 个人感觉Hougton做成大焦比(快速)用于摄影更能体现它的优势. 如果小焦比目视的话,和抛物面牛反相比基本没明显的优势.已有一些国外DIYer做出Hougton-牛望远镜. 这种形式可以说是目前DIYer唯一能自制的折反镜了. 另外,我在oslo里测试过,当口径较小时(比如100mm,120mm),将改正镜的双凸透镜改为凸平镜,双凹镜改为凹平镜,虽然会引入一些像差,但是非常小(按摄影要求).只要要求不是相当的高,完全在可以接受的范围内.
5、schmit-cassegrain 施密特-卡塞格林式: 施密特-卡塞格林式望远镜是一种折反射望远镜,以折叠的光路与修正板结合,做成一个紧密的天文学仪器。
施密特-卡塞格林的设计是以伯恩哈德·施密特的施密特摄星仪为基础,一如施密特摄星仪使用球面镜做主镜,并以施密特修正板来改正球面像差;承袭卡塞格林的设计,以凸面镜做次镜,将光线反射穿过主镜中心的孔洞,汇聚在主镜后方的焦平面上。有些设计会在焦平面的附近增加其他的光学元件,例如平场镜。 它有许多的变形(双球面镜、双非球面镜、或球面镜与非球面镜各一),可以被区分为两种主要的设计形式:紧密的和非紧密的。在紧密的设计中,修正板靠近或就在主镜的焦点上;非紧密的修正板则靠近或就在主镜的曲率中心上(焦距的两倍距离)。紧密设计的典型例子就是Celestron和Meade的产品,结合一个坚固的主镜和小而曲率大的次镜。这样虽然牺牲了视野的广度,但可以让镜筒缩成很短。多数紧密设计的Celestron和Meade的主镜焦比是f/2,而次镜是负f/5,产生的系统焦比是f/10。须要提出的例外是Celestron的C-9.25,主镜的焦比是f/2.3,次镜的焦比是f/4.3,结果是镜筒比一般紧密型的要长,而视野比较平坦。非紧密的设计让修正板靠近或就在主镜的曲率中心上,一种非常好的施密特-卡塞格林设计例子是同心,就是让所有镜面的曲率中心都在一个点上:主镜的曲率中心。在光学上,非紧密型的设计比紧密形的能产生较好的平场和变型的修正,但镜筒在长度上却有所增加。
【联想】施密特摄星仪是一种设计用于广视野但像差很小的天文照相机。其他相似的设计有赖特摄星仪和Lurie-Houghton(卢利-霍顿)望远镜。 施密特摄星仪是伯恩哈德·施密特在1930年发明的。他的光学构造是以易于磨制的球面镜做主镜,和位于主镜曲线前方的非球面镜的修正透镜,也就是熟知的修正板,底片或其他的检测设备安置在摄星仪内部的焦点上。在设计上都允许快速的焦比和控制住彗形像差和球面像差。 施密特摄星仪的焦平面有很明显的弧度(曲率),因此使用的底片、干版、或其他的检测器都必须有相对应的弧度。在某些情况下,检测器被制作出湾曲的弧度,在其他平面的媒介上则依据交平面的形状使用螺栓或固定夹来调整,或是应用真空牵引。有时也会使用平场,-以他最简单的形式,以一个平凸透镜直接紧贴著底片。使用这种透镜的称为施密特-Väisälä摄星仪。
6、Maksutov-cassegrain马克苏托夫-卡塞格林式: 马克苏托夫是折射反射(面镜-透镜)望远镜,被设计来减少离轴的像差,例如彗形像差。 在1944年,苏联光学家德密特利·马克苏托夫发明此型望远镜,在设计上以球面镜作主镜并结合在入射光孔的弯月形的修正壳以改正球面像差,这是在反射望远镜和其他类型上的重大问题。马克苏托夫式的最大缺点是不能制作大口径的(>250毫米/10 英吋),因为受到修正板的抑制,重量和制作成本都会上扬。 马克苏托夫物镜不能校正整个光束的球差,只能校正边缘球差,因此存在剩余球差,对轴外像差来说,只能校正慧差,不能校正象散。
在他发明之际,马克苏托夫自己暗示有可能取代卡塞格林式的“折叠”光学的构造。珀金埃尔默的设计师约翰·葛利格里由马克苏托夫的想法发展出了马克苏托夫-卡塞格林望远镜。稍后,葛利格里在1957年的天空和望远镜杂志上发表了划时代的f/15和f/23的马克苏托夫-卡塞格林望远镜设计,为珀金埃尔默明确的预告了这项设计在商业上的用途。 今天,许多被制造的马克苏托夫式都采用了'卡塞格林式'的设计(有时称为斑点马克苏托夫),原本的次镜被在修正板内侧的一小片铝制的斑点所取代。好处是已经固定住无须再对正与校准,也消除了蜘蛛型支撑架所产生的衍射条纹。缺点则是损失了一定量的自由度(次镜的曲率半径),因为次镜的曲率半径必须与弯月形修正板的内侧一致。葛利格里自己,第二次,再设计的速度较快的(f/15)时,就改采修正板的前面或主镜为非球面镜来减少像差。
7、Schmidt-meniscus Cassegrain 施密特弯月形卡塞格林 这种类型的望远镜可谓是集合了施密特和马克苏托夫的优点,相当于是叫了两种校正器,施密特用于校正球差,弯月用于校正慧差,不过这种类型的卡塞格林长度显得有些过长,不适合大口径的使用。