模糊数学基本知识
- 格式:doc
- 大小:1.15 MB
- 文档页数:16
模糊算法入门指南初学者必读随着人工智能领域的发展,模糊算法越来越受到重视。
模糊算法是一种基于模糊逻辑的数学方法,用于处理现实生活中的模糊、不确定和模糊数据。
本文将介绍模糊算法的基本概念、原理和应用,并且为初学者提供了入门指南。
一、基本概念1. 模糊集合模糊集合是由一组具有模糊性质的元素组成的集合,其中每个元素都有其对应的隶属度,表示该元素属于模糊集合的程度大小。
模糊集合与传统集合的区别在于,传统集合的元素只能属于集合或不属于集合,而模糊集合的元素可能同时属于多个集合。
例如,一个人的身高可能既属于“高个子”这个集合,又属于“中等身高”这个集合,这时我们就可以用模糊集合来描述这个人的身高。
2. 模糊逻辑模糊逻辑是一种扩展了传统逻辑的数学方法,用于处理带有模糊性质的命题。
在模糊逻辑中,命题的真值不再只有0或1两种可能,而是在0到1之间连续变化。
例如,“这个人很高”这个命题,在传统逻辑中只有true或false两种可能,而在模糊逻辑中则可以分别对应0.8和0.2,表示这个人身高高度的程度。
3. 模糊推理模糊推理是指根据模糊逻辑规则对模糊数据进行推理的过程。
模糊推理的基本过程是先将模糊数据转换成模糊集合,在对模糊集合进行逻辑运算。
例如,已知“这个人很高”,“这个人是男性”,根据“高个子男性”这个模糊集合的定义,可以推断出该人属于“高个子男性”这个模糊集合。
二、基本原理模糊算法的核心是模糊推理,根据一定的规则推导出合理的结论。
模糊推理可以通过模糊集合的交、并、补等运算,来得到更为准确的结果。
模糊算法中常用的推理方法包括模糊关联、模糊综合评价、模糊聚类等。
三、应用领域1. 物流调度在物流调度中,模糊算法可以通过分析货物的种类、运输距离、车辆的容量等因素,来实现最优的调度和路径规划。
2. 医学诊断在医学诊断中,模糊算法可以通过分析医学数据,提供模糊的医学诊断结果,帮助医生做出更准确的诊断。
3. 控制系统在控制系统中,模糊算法可以通过模糊控制,实现对系统的自适应控制和优化控制。
第一节模糊数学基本知识一、模糊子集及其运算在经典集合论中,一个元素对于一个集合,要么属于,要么不属于,二者必居其一,绝不允许模棱两可。
这一要求就从根本上限定了以经典集合论为基础的常规数学方法的应用范围,它只能用来研究那些具有绝对明确的界限的事物和现象。
但是,在现实世界中,并非所有事物和现象都具有明确的界限。
譬如,“高与矮”,“好与坏”,“美与丑”,……,这样一些概念之间就没有绝对分明的界限。
严格说来,这些概念就是没有绝对的外延,这些概念被称之为模糊概念,它们不能用一般集合论来描述,而需要用模糊集合论去描述。
(一)模糊子集及其表示方法1.模糊子集(1)隶属函数:在经典集合论中,一个元素x和一个集合A之间的关系只能有Ax∉这两种情况。
集合可以通过其特征来刻划,每一个集合A都有x∈或者A一个特征函数C A(x),其定义如下:(1)式所表示的特征函数的图形,如图9-1所示。
由于经典集合论的特征函数只允许取0与1两个值,故与二逻辑值{0,1}相对应。
模糊数学是将二值逻辑{0,1}拓广到可取[0,1]闭区间上任意的无穷多个值的连续值逻辑。
因此,也必须把特征函数作适当的拓广,这就是隶属函数μ(x),它满足:0≤μ(x)≤1 (2)(1)式也可以记作μ(x)∈[0,1],一般情形下,其图形如图9-2所示。
(2)模糊子集的定义:1965年,查德首次给出了模糊子集的如下定义:设U 是一个给定的论域(即讨论对象的全体范围),μA:x→[0,1]是U到[0,1]闭区间上的一个映射,如果对于任何x∈U,都有唯一的μA(x)∈[0,1]与之对应,则该映射便给定了论域U上的一个模糊子集,μA称做的隶属函数,μA(x)称做x对的隶属度。
2.模糊子集的表示方法通过上述关于模糊子集的定义可以看出,一个模糊子集完全由其隶属函数所刻划。
因此,模糊子集通常有以下几种表示方法:=[μ1,μ2,…,μ(3)n]在(3)式中,μi∈[0,1](i=1,2,…,n)为第i个元素x i对的隶属度。
模糊数学是一种处理模糊和不确定性问题的数学方法,它基于模糊集合理论,用于描述和处理无法精确量化的概念和现象。
以下是模糊数学的一些基本概念:
模糊集合:模糊集合是一种将不确定性或模糊性引入集合概念的数学工具。
与传统的集合不同,模糊集合中的元素具有一定的隶属度,表示元素与集合的模糊关系。
隶属函数:隶属函数是模糊集合中元素与集合的隶属度之间的映射关系。
它描述了元素在模糊集合中的程度或概率。
模糊关系:模糊关系是一种描述模糊集合之间的关系的数学工具。
它反映了元素之间的模糊连接或模糊相似性。
模糊逻辑:模糊逻辑是一种处理模糊命题和推理的逻辑系统。
它扩展了传统的二值逻辑,允许命题具有模糊的真值或隶属度。
模糊推理:模糊推理是一种基于模糊规则和模糊推理机制进行推理和决策的方法。
它能够处理模糊的输入和输出,并提供模糊的推理结果。
模糊数学运算:模糊数学中存在一系列的运算,包括模糊集合的并、交、补运算,模糊关系的复合运算等。
这些运算用于处理模糊集合和模糊关系的操作。
模糊控制:模糊控制是一种应用模糊数学方法进行控制的技术。
它通过模糊逻辑和模糊推理实现对复杂系统的控制,具有适应性和容错性的特点。
以上是模糊数学的一些基本概念,它们构成了模糊数学理论的基础,被广泛应用于人工智能、决策分析、模式识别、控制系统等领域。
模糊数学及其应用引言任何新生事物的产生和发展,都要经过一个由弱到强,逐步成长壮大的过程,一种新理论、一种新学科的问世,往往一开始会受到许多人的怀疑甚至否定。
模糊数学自1965年L.A.Zadeh教授开创以来所走过的道路,充分证实了这一点,然而,实践是检验真理的标准,模糊数学在理论和实际应用两方面同时取得的巨大成果,不仅消除了人们的疑虑,而且使模糊数学在科学领域中,占有了自己的一席之地。
经典数学是适应力学、天文、物理、化学这类学科的需要而发展起来的,不可能不带有这些学科固有的局限性。
这些学科考察的对象,都是无生命的机械系统,大都是界限分明的清晰事物,允许人们作出非此即彼的判断,进行精确的测量,因而适于用精确方法描述和处理。
而那些难以用经典数学实现定量化的学科,特别是有关生命现象、社会现象的学科,研究的对象大多是没有明确界限的模糊事物,不允许作出非此即彼的断言,不能进行精确的测量。
清晰事物的有关参量可以精确测定,能够建立起精确的数学模型。
模糊事物无法获得必要的精确数据,不能按精确方法建立数学模型。
实践证明,对于不同质的矛盾,只有用不同质的方法才能解决。
传统方法用于力学系统高度有效,但用于对人类行为起重要作用的系统,就显得太精确了,以致于很难达到甚至无法达到。
精确方法的逻辑基础是传统的二值逻辑,即要求符合非此即彼的排中律,这对于处理清晰事物是适用的。
但用于处理模糊性事物时,就会产生逻辑悖论。
如判断企业经济效益的好坏时,用“年利税在100万元以上者为经济效益好的企业”表达,否则,便是经济效益不好的企业。
根据常识,显而易见:“比经济效益好的企业年利税少1元的企业,仍是经济效益好的企业”,而不应被划为经济效益不好的企业。
这样,从上面的两个结论出发,反复运用经典的二值逻辑,我们最后就会得到,“年利税为0者仍为经济效益好的企业”的悖论。
类似的悖论有许多,历史上最著名的有“罗素悖论”。
它们都是在用二值逻辑来处理模糊性事物时产生的。
一.模糊数学的基础知识1.模糊集、隶属函数及模糊集的运算。
普通集合A ,对x ∀,有A x ∈或A x ∉。
如果要进一步描述一个人属于年轻人的程度大小时,仅用特征函数就不够了。
模糊集理论将普通集合的特征函数的值域推广到[0,1]闭区间内,取值的函数以度量这种程度的大小,这个函数(记为)(x E )称为集合E 的隶属函数。
即对于每一个元素x ,有[0,1]内的一个数)(x E 与之对应。
(1)模糊子集的定义:射给定论域U ,U 到[0,1]上的任一映射:))((],1,0[:U u u A u U A ∈∀→→都确定了U 上的一个模糊集合,简称为模糊子集。
)(u A 称为元素u 属于模糊集A 的隶属度。
映射所表示的函数称为隶属函数。
例如:设论域U=[0,100],U 上的老年人这个集合就是模糊集合:⎪⎩⎪⎨⎧≤<-+≤=--10050,))550(1(50,0)(12u u u u A 若在集合U 上定义了一个隶属函数,则称E 为模糊集。
(2)模糊集合的表示:},.....,,{21n u u u U =,)(u A 称为元素u 属于模糊集A 的隶属度;则模糊集可以表示为:nn u u A u u A u u A A )(....)()(2211+++=。
或 )}(),.....,(),({21n u A u A u A A =,))}(,()),.....,(,()),(,{(2211n n u A u u A u u A u A =,(3)模糊集合的运算:)}(),.....,(),({21n u A u A u A A =,)}(),.....,(),({21n u B u B u B B =,并集:)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∨∨∨=⋃,交集:)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∧∧∧=⋂,补集:)}(1),.....,(1),(1{21n c u A u A u A A ---=,包含:B A u B u A U u ⊂≤∈∀,则有有若)()(,,2.模糊集的截集已知U 上模糊子集))((],1,0[:U u u A u U A ∈∀→→对]1,0[∈λ,则称})(,{λλ≥∈=u A U u u A 为模糊集A 的λ-截集; 称})(,{λλ>∈=u A U u u A s 为模糊集A 的λ-强截集;λ称为λA 、sA λ的置信水平或阀值。
第六章模糊数学基础6.1概述6.1.1传统数学与模糊数学6.1.2不相容原理6.2 模糊集合与隶属度函数6.2.1 模糊集合及其运算6。
2.2隶属度函数6.3模糊逻辑与模糊推理6.3.1模糊逻辑6.3.2模糊语言6.3.3 模糊推理第六章模糊数学基础6.1 概述6.1。
1 传统数学与模糊数学6.1。
2 不相容原理1965年,美国自动化控制专家扎德(L 。
A. Zadeh )教授首先提出用隶属度函数(membersh ip functi on)来描述模糊概念,创立了模糊集合论,为模糊数学奠定了基础。
不相容原理:“随着系统复杂性的增加,我们对其特性作出精确而有意义的描述的能力会随之降低,直到达到一个阈值,一旦超过它,精确和有意义二者将会相互排斥"。
这就是说,事物越复杂,人们对它的认识也就越模糊,也就越需要模糊数学。
不相容原理深刻的阐明了模糊数学产生和发展的必然性,也为三十多年来模糊数学的发展历史所证实.6。
2 模糊集合与隶属度函数 6。
2.1 模糊集合及其运算一、模糊集合(Fu zzy S ets)的定义传统集合中的元素是有精确特性的对象,称之为普通集合。
例如,“8到12之间的实数"是一个精确集合C ,C={实数r |8≤r ≤12},用特征函数μC (r )表示其成员,如图6.1(a )所示。
⎪⎩⎪⎨⎧≤≤=其它,,01281)(r r C μ在模糊论域上的元素符合程度不是绝对的0或1,而是介于0和1之间的一个实数。
例如,“接近10的实数”是一个模糊集合F ={r |接近10的实数},用“隶属度(Members hip)”μF (r )作为特征函数来描述元素属于集合的程度。
018121107.29110.750.27512.8rrμC (r )μF (r )(a) (b )图6.1 普通集合与模糊集合的对比模糊集合的定义如下:论域U 上的一个模糊集合F 是指,对于论域U 中的任一元素u ∈U,都指定了[0,1]闭区间中的一个数F μ(u )∈[0,1]与之对应,F μ(u)称为u对模糊集合F的隶属度.也可以表示成映射关系:F μ:U →[0,1] u →F μ(u )这个映射称为模糊集合F 的隶属度函数(me mber ship functi on). 模糊集合有时也称为模糊子集.U 中的模糊集合F 可以用元素u 及其隶属度F μ(u)来表示:()(){}F u u u U F =∈,μ仍以前面提到的“年轻"、“中年"、“老年"为例,这三个年龄特征分别用模糊集合A 、B、C表示,它们的论域都是U =[0,100],论域中的元素都是年龄u ,我们可以规定模糊集合A 、B 、C 的隶属度函数分别为μA(u)、μB (u )、μC (u ),如图6。
模糊集合基础知识您需要知道的五个概念模糊集合是模糊数学的一个重要分支,广泛应用于信息处理、人工智能、控制科学等领域。
本文将介绍五个重要的概念,帮助读者更好地理解模糊集合。
概念一:模糊集合模糊集合是指具有模糊性质的集合,即其中的元素不是非黑即白,而是具有一定的灰色程度。
模糊集合用μ(x)表示,表示元素x属于该集合的程度,取值范围在[0,1]之间。
如果μ(x)等于0,表示元素x不属于该集合;如果μ(x)等于1,表示元素x完全属于该集合。
概念二:隶属函数隶属函数是指用来描述元素x隶属于模糊集合的程度的函数,也称为隶属度函数或者隶属度值函数。
通常用符号μ(x)表示,μ(x)的大小反映了元素x在模糊集合中的隶属程度。
概念三:模糊关系模糊关系是指一个元素与另一个元素之间存在的模糊连接,其定义可以用一个矩阵来表示。
该矩阵的每个元素都是一个隶属于[0,1]之间的值,描述了两个元素之间的某种程度上的相互作用关系。
概念四:模糊逻辑运算模糊逻辑运算是指在模糊集合上进行的逻辑运算。
常用的模糊逻辑运算包括取反、交集和并集等。
在模糊集合上进行逻辑运算时,需要对隶属度函数进行计算。
概念五:模糊系统模糊系统是指以模糊逻辑为基础的控制系统,其输入和输出可以是模糊集合,通过模糊逻辑的运算和推理,实现对过程的模糊控制。
模糊系统广泛应用于自动控制、模式识别等领域。
结语了解模糊集合的基本概念对于理解和研究模糊数学具有重要的意义。
在实际应用中,模糊集合可以用于处理具有模糊性质的信息,提高信息处理的精度和效率。
在模糊集合的基础上,人们还可以进一步研究模糊度量、模糊拓扑、模糊代数等方面的内容,从而推进模糊数学的不断发展和应用。
模糊综合评判1、概念及基本知识1965年,美国著名自动控制专家查德(L.A. Zadeh )教授提出了模糊(fuzzy )的概念,并发表了第一篇用数学方法研究模糊现象的论文“模糊集合”(fuzzy set )。
他提出用“模糊集合”作为表现模糊事物的数学模型。
并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。
而模糊综合评价是根据模糊数学的隶属度理论把定性评价转化为定量评价的一种综合评价方法。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
在决策中,对于方案、人才、成果的评价,人们的考虑往往是从多种因素出发的,而且这些考虑一般只能用模糊语言来描述。
例如,评价者从考虑问题的诸因素出发,参照有关的数据和情况,根据他们的判断对复杂问题分别作出“大、中、小”;“高、中、低”;“优、良、可、劣”;“好、较好、一般、较差、差”等程度的模糊评价。
然后通过模糊数学提供的方法进行运算,就能得出定量的综合评价结果。
2、模糊综合评价的基本原理首先确定被评价对象的因素(指标)集合评价(等级)集;再分别确定各个因素的权重及它们的隶属度向量,获得模糊评判矩阵;最后把模糊评判矩阵与因素的权向量进行模糊运算并进行归一化,得到模糊综合评价结果。
其特点在于评判逐对象进行,对被评价对象有唯一的评价值,不受被评价对象所处对象集合的影响。
综合评价的目的是要从对象集中选出优胜对象,所以还需要将所有对象的综合评价结果进行排序。
3、模糊综合评判方法步骤1、确定评价对象的因素论域2、确定评语等级论域3、进行单因素评价,建立模糊关系矩阵R4、确定评价因素的模糊权向量5、多因素模糊评价6、对模糊综合评价结果进行分析答案二:模糊综合评价的一般步骤如下:(1) 确定评价对象的因素集(2) 确定评语集;(3) 作出单因素评价(4) 综合评价1、 确定评价对象的因素集{}m 21,,,U u u u L =也就是说有m 个评价指标,表明我们对被评价对象从哪些方面来进行评判描述。
模糊数学知识小结与模糊数学相关的问题模糊聚类分析—根据研究对象本身的属性构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系模糊层次分析法—两两比较指标的确定模糊综合评判—综合评判就是对受到多个因素制约的事物或对象作出一个总的评价,如产品质量评定、科技成果鉴定、某种作物种植适应性的评价等,都属于综合评判问题。
由于从多方面对事物进行评价难免带有模糊性和主观性,采用模糊数学的方法进行综合评判将使结果尽量客观从而取得更好的实际效果模糊数学基础一.Fuzzy 数学诞生的背景1)一个古希腊问题:“多少粒种子算作一堆?”2)Fuzzy 概念的广泛存在性,如“找人问题”3)何谓Fuzzy 概念?,如何描述它?由集合论的要求,一个对象x,对于一个集合,要么属于A,要么不属于A,二者必居其一,且仅居其一,绝对不允许模棱两可。
这种绝对的方法,是不能处理所有科学的问题,即现实生活中的一切事物一切现象都进行绝对的精确化时行不通的,从而产生模糊概念。
二.模糊与精确的关系对立统一,相互依存,可互相转化。
- 精确的概念可表达模糊的意思:如“望庐山瀑布”“飞流直下三千尺,凝是银河落九天”- Fuzzy的概念也能表达精确的意思:模糊数学不是让数学变成模模糊糊的东西,而是让数学进入模糊现象这个禁区,即用精确的数学方法去研究处理模糊现象。
三. 模糊性与随机性的区别事物分确定性现象与非确定性现象- 确定性现象:指在一定条件下一定会发生的现象。
- 非确定性现象分随机现象与模糊现象* 随机性是对事件的发生而言,其事件本身有着明确的含义,只是由于发生的条件不充分,事件的发生与否有多种可能性。
* 模糊性是研究处理模糊现象的,它所要处理的事件本身是模糊的。
模糊数学的广泛应用性模糊技术是21世纪的核心技术模糊数学的应用几乎渗透到自然科学与社会科学的所有领域:1)软科学方面:投资决策、企业效益评估、经济宏观调控等。
2)地震科学方面:地震预报、地震危害分析。
一.模糊数学的基础知识1.模糊集、隶属函数及模糊集的运算。
普通集合A ,对x ∀,有A x ∈或A x ∉。
如果要进一步描述一个人属于年轻人的程度大小时,仅用特征函数就不够了。
模糊集理论将普通集合的特征函数的值域推广到[0,1]闭区间内,取值的函数以度量这种程度的大小,这个函数(记为)(x E )称为集合E 的隶属函数。
即对于每一个元素x ,有[0,1]内的一个数)(x E 与之对应。
(1)模糊子集的定义:射给定论域U ,U 到[0,1]上的任一映射: ))((],1,0[:U u u A u U A ∈∀→→都确定了U 上的一个模糊集合,简称为模糊子集。
)(u A 称为元素u 属于模糊集A 的隶属度。
映射所表示的函数称为隶属函数。
例如:设论域U=[0,100],U 上的老年人这个集合就是模糊集合:⎪⎩⎪⎨⎧≤<-+≤=--10050,))550(1(50,0)(12u u u u A 若在集合U 上定义了一个隶属函数,则称E 为模糊集。
(2)模糊集合的表示:},.....,,{21n u u u U =,)(u A 称为元素u 属于模糊集A 的隶属度;则模糊集可以表示为:nn u u A u u A u u A A )(....)()(2211+++=。
或 )}(),.....,(),({21n u A u A u A A =,))}(,()),.....,(,()),(,{(2211n n u A u u A u u A u A =,(3)模糊集合的运算:)}(),.....,(),({21n u A u A u A A =,)}(),.....,(),({21n u B u B u B B =,并集:)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∨∨∨=⋃,交集:)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∧∧∧=⋂,补集:)}(1),.....,(1),(1{21n c u A u A u A A ---=,包含:B A u B u A U u ⊂≤∈∀,则有有若)()(,,2.模糊集的截集已知U 上模糊子集))((],1,0[:U u u A u U A ∈∀→→对]1,0[∈λ,则称})(,{λλ≥∈=u A U u u A 为模糊集A 的λ-截集; 称})(,{λλ>∈=u A U u u A s 为模糊集A 的λ-强截集;λ称为λA 、sA λ的置信水平或阀值。
二.模糊数学的基本定理1.模糊截积:已知U 上模糊子集))((],1,0[:U u u A u U A ∈∀→→对]1,0[∈λ,A λ也是U 上模糊集,其隶属函数为:)(),())((U u u A u A ∈∀∧=λλ; 称为A λ为λ与A 的模糊截积。
2.分解定理1:已知模糊子集)(U F A ∈,则λλλA A ]1,0[∈⋃= 推论1:对,U u ∈∀}],1,0[{)(λλλA u u A ∈∈∨=3.分解定理2:已知模糊子集)(U F A ∈,则SA A λλλ]1,0[∈⋃= 推论2:对,U u ∈∀}],1,0[{)(S A u u A λλλ∈∈∨=三.模糊关系与模糊聚类1.模糊关系与模糊关系的合成(1) 模糊关系普通集合的经典关系,模糊关系:从U 到V 上的一个模糊关系:]1,0[:→⨯V U R ,),(j i v u R 表示j i v u 与具有的关系程度,V v U u j i ∈∈,。
n m ij a A ⨯=)((ij a 满足0≤ij a ≤1)称为U 到V 上的一个模糊关系的模糊矩阵。
(2).设A =p n ij a ⨯)(和B =m p ij B ⨯)(为两个模糊矩阵,令ij c =)(1kj ik pk b a ∧∨=,i =1,2,…,n ,j =1,2,…,m 。
则称矩阵C =m n ij c ⨯)(为模糊矩阵A 与B 的褶积,记为C =A B •,其中“∨”和“∧”的含义为},max{b a b a =∨ },min{b a b a =∧显然,两个模糊矩阵的褶积仍为模糊矩阵2. 模糊等价矩阵及其λ矩阵设方阵A 为以模糊矩阵,若A 满足A A =A则称A 为模糊等价矩阵。
模糊等价矩阵可以反映模糊分类关系的传递性,即描述诸如“甲像乙,乙像丙,则甲像丙”这样的关系。
设A =n n ij a ⨯)(为一个模糊等价阵,0≤λ≤1为一个给定的数,令⎪⎩⎪⎨⎧<≥=λλλij ij ij a a a 若若,0,1)( ,,...,2,1,n j i =则称矩阵n n ij a A ⨯=)()(λλ为A 的-λ截阵例如,A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡14.06.04.014.06.04.01为一个模糊等价阵,取0.4<6.0≤λ,则λA =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010101若取4.00≤≤λ,则λA =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1111111112.模糊聚类:模糊划分的概念最早由Ruspini 提出,利用这一概念人们提出了多种聚类方法,比较典型的有:基于相似性关系和模糊关系的方法(包括聚合法和分裂法),基于模糊等价关系的传递闭包方法、基于模糊图论最大树方法,以及基于数据集的凸分解、动态规划和难以辨识关系等方法. 然而由于上述方法不适用于大数据量情况,难以满足实时性要求高的场合,因此其实际的应用不够广泛,故在该方面的研究也就逐步减少了. 实际中受到普遍欢迎的是基于目标函数的方法,该方法设计简单、解决问题的范围广,最终还可以转化为优化问题而借助经典数学的非线性规划理论求解,并易于计算机实现. 因此,随着计算机的应用和发展,该类方法成为聚类研究的热点.(1)模糊聚类的基本概念模糊聚类目标函数的演化模糊聚类方法模糊聚类法和一般的聚类方法相似,先将数据进行标准化,计算变量间相似矩阵或样品间的距离矩阵,将其元素压缩到0与1之间形成模糊相似矩阵,进一步改造为模糊等价矩阵,最后取不同的标准λ,得到不同的-λ截阵,从而就可以得到不同的类。
具体步骤如下:第一步:数据标准化1.数据矩阵设论域},...,,{21n x x x U =为被分类的对象,每个对象又由m 个指标表示其性状: },...,,{21im i i i x x x x = (n i ,...,2,1=)于是得到原始数据矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nm n n m m x x x x x x x x x (2122221)11211 2.数据标准化在实际问题中,不同的数据一般有不同的量纲。
为了使有不同的量纲的量也能进行比较,通常需要对数据作适当的变换。
但是,即使这样得到的数据也不一定在区间[0,1]上。
因此,这里所说的数据标准化,就是要根据模糊矩阵的要求,将数据压缩到区间[0,1]上。
通常需要作如下变换:(1)平移·标准差变换: kk ik ik S x x x '-=' (m k n i ,...,2,1;,...,2,1==) 其中∑∑==-=='n i k ik k n i ik x x n S x n x 121)(1,1。
经过变化后,每个变量的均值为0,标准差为1,且消除了量纲的影响。
但是,这样得到的kx '还不一定在区间[0,1]上。
(2)平移·级差变换}{min }{max }{min 111ik n i ik n i ik n i ik ik x x x x x '-''-'=''≤≤≤≤≤≤- (m k ,...,2,1=)显然有10≤''≤ikx ,而且也消除了量纲的影响。
第二步:标定(建立模糊相似矩阵)设论},...,,{},,...,,{2121im i i i n x x x x x x x U ==依照传统的方法确定相似系数,建立模糊相似矩阵,i x 与j x 的相似程度),(j i ij x x R r =。
可根据问题的性质,选取下列公式之一计算ij r1. 数量积法⎪⎩⎪⎨⎧≠⋅==∑=;,1;,11j i x x M j i r jk mk ik ij 其中)(max 1∑=≠⋅=mk jk ik j i x x M 显然ij r ]1,0[∈,若ij r 中出现负值,也可采用下面的方法将ij r 压缩在[0,1]上 令21+='ij ij r r ,则]1,0[∈'ij r 。
当然也可用上述的平移·级差变换。
2.夹角余弦法ij r =2111221][∑∑∑===⋅nk n k jk ik n k jk ik x x x x若将变量i X 的n 个观测值T in i i x x x ),...,,(21与变量j X 的相应n 个观测值T jn j j x x x ),...,,(21看成n 维空间中的两个向量,ij r 正好时这两个向量夹角的余弦。
3.相关系数法从统计角度看,两个随机变量的相关系数是描述这两个变量关联性(线性关系)强弱的一个很有用的特征数字。
因此,用任意两个变量的n 个观测值对其相关系数的估计可作为两个变量关联性的一种度量,其定义为ij r =2111221])()([|)(||)(|∑∑∑=-=-⋅---nk n i j ji i ik n k j jk i ik x x x x x x x x , 其中i x (i =1,2,…,p )见(i x =∑=nk ik x n 11,i =1,2,…, p ,)。
ij r (1p j i ≤≤,)其实就是X =T p X X ),...,(1的样本相关矩阵中的各元素。
4.指数相似系数法∑=-⋅-=m k kjk ik ij S x x m r 122})(43exp{1, 其中∑=-=n i ik ik K x x n S 12)(1,而),...,2,1(11m k x n x n i ik k ==∑= 需要注意的是,相关系数法与指数相似系数法中的统计指标的内容是不同的。
5.最大最小法∑∑==∨∧=m k jk ik m k jk ik ij x xx xr 11)()(6.算术平均最小法 ∑∑==+∧=m k jk ik mk jk ik ij x xx x r 11)()(2 7.几何平均最小法∑∑==⋅∧=m k jkik m k jk ik ij x x x x r 11)( (上述5,6,7三种方法均要求0>ij x ,否则也要做适当变换)8.绝对值减数法∑=--=mk jk ik ij x x C r 1||1适当选取C ,使得01≤≤ij r 。