第六章 配位化学
- 格式:ppt
- 大小:2.01 MB
- 文档页数:59
第六章配位化合物【学习目标】● 掌握配位化合物的组成和命名● 熟悉配位平衡常数及有关离子浓度的计算● 知道螯合物的形成条件,能分辨出螯合物● 了解配合物在医学上的意义交流研讨1799年塔萨厄尔(Tassaert)往CoCl2溶液中加入氨水,先有粉红色沉淀生成,继续加入氨水则沉淀消失,放置一天后析出橙色晶体。
经分析知粉红色沉淀是Co(OH)2,橙色晶体是CoCl3·6NH3,Co(OH)2在过量的氨水的存在下被氧化成3价。
起初,人们把这种橙色的晶体看成是稳定性较差的CoCl3和6个NH3分子加成物;但将这种橙色晶体加热至150℃时,却无法释放出氨;用稀硫酸溶解后,回流数小时也不生成硫酸铵。
那么这种橙色晶体到底是什么类型的化合物,化合物结构式是什么样的呢?这种橙色的晶体属于配位化合物,简称配合物,是组成复杂、应用十分广泛的一类重要化合物,过去称为络合物,其原意是指复杂的化合物。
随着科学技术的发展,它在科学研究和生产实践中显示出越来越重要的作用,已经形成了一门独立的学科──配位化学。
配合物不仅在化学领域里得到广泛的应用,而且和医学关系极为密切。
例如与呼吸有密切关系的血红素就是含有亚铁的配位物,人体内大多数酶(生物催化剂)分子含有配合状态存在的金属元素,有些药物本身就是配合物或通过在体内形成配合物才能发生药效。
利用金属配合物的形成进行金属中毒治疗,体内某些金属元素缺乏所引起的疾病的诊断和治疗等都涉及到配位化学的理论和方法。
因此学习有关配合物的基本知识,对学习医学来说也是十分必要的。
第一节 配位化合物的基本概论一、配合物的定义在硫酸铜溶液中加入Ba 2+离子,会有白色BaSO 4沉淀生成,加入稀NaOH 溶液则有浅蓝色Cu(OH)2沉淀生成,这说明在硫酸铜溶液中存在着游离的Cu 2+离子和SO 42-离子。
在硫酸铜溶液中加入过量氨水,可得一深蓝色溶液,再向溶液中加入稀NaOH 溶液后得不到浅蓝色Cu(OH)2沉淀,但加入Ba 2+则有白色BaSO 4沉淀生成。
第六章配位化学配位化学是一门在无机化学基础上发展起来的交叉学科,现代配位化学不仅和化学学科中的物理化学、有机化学、分析化学和高分子化学密切融合,而且通过材料科学及生命科学,进而与物理学和生物学等一级学科相互渗透和交叉。
经过几代人的共同努力,我国配位化学研究水平大为提高,一些方向逐渐步入国际先进行列。
本章将对我国化学工作者近年在配位化学领域研究前沿上具有一定国际影响力的代表性成果进行论述。
6.1配位化学中的新反应及方法学研究配位化学中的新反应和合成方法研究是进行配位化学研究的重要前提和基础研究课题之一。
配合物最传统的合成方法是溶液法将反应物在溶剂中搅拌,或者缓慢扩散(包括分层扩散,蒸汽扩散,U型管缓慢扩散)通过直接、交换、氧化还原反应等方法,一般适用于反应物(金属盐和配体)溶解性比较好的,在温度不太高就可以反应的配位化合物的合成。
而对于金属盐以及有机配体都难于溶解的体系,传统的溶液法往往无能为力。
无机化学家除了继续发展传统的配位化合物合成方法外,对发现新合成反应或建立新合成方法的研究都从来没有间断过,特别是在利用这些新反应、新方法来制备、合成具有新颖结构或特殊功能的配位化合物方面,近年来取得了长足的进展,其中利用水热和溶剂热合成的方法已经取得了很多值得关注的成果,包括一些新颖的原位金属/配体反应,被誉为“连接配位化学和有机合成化学的桥梁”[1];而模板合成技术也被成功得用于配合物以及其聚集体的可控组装中;一些特殊的合成技术和方法如离子热、微波辅助、固相反应等也将在本节介绍。
6.1.1溶剂(水)热条件下原位金属/配体反应作为配位化学和有机化学的重要研究内容之一,原位金属/配体反应已被广泛地用于新型有机反应的发现,反应机理的阐述以及新型配位化合物的合成,尤其是用于合成那些利用有机配体直接反应难以得到的配合物。
传统的合成反应一般是在敞开体系而且比较温和的条件下发生的,而在溶剂热或水热反应条件下,利用原位金属/配体反应法制备配位化合物是十几年兴起的一种新合成方法,这一源于无机材料,特别是多孔分子筛材料的合成方法,已被广泛地应用于配位化合物,尤其是难溶的配位聚合物的合成[1, 2]。
配位化学讲义第六章溶液中配合物的稳定性第六章 配合物在溶液中的稳定性第一节 影响配合物稳定性的因素一、概述逐级稳定常数和积累稳定常数: M+L=ML[M][L][ML]K 1=[M][L][ML]K β11==ML+L=ML 2[ML][L]][ML K 22=22212[M][L]][ML K K β==ML 2+L=ML][L][ML ][ML K 233=333213[M][L]][ML K K K β==…………… ……………… …………二、金属离子对配合物稳定性的影响1、具有惰性气体电子结构的金属离子碱金属:Li+、Na+、K+、Rb+、Cs+碱土金属:Be2+、Mg2+、Ca2+、Sr2+、Ba2+及:Al3+、Sc3+、Y3+、La3+一般认为它们与配体间的作用主要是静电作用,金属离子z/r越大,配合物越稳定。
例:二苯甲酰甲烷[phC(O)CH2C(O)ph]配合物的lgK1值(30℃,75%二氧六环)M2+ lgK1Be2+13.62Mg2+8.54Ca2+7.17Sr2+ 6.40Ba2+ 6.102、Irving-Williams顺序研究发现:第四周期过渡金属离子与含O、N配位原子的配体的高自旋八面体配合物,其稳定性顺序如下:Mn2+ < Fe2+ < Co2+ < Ni2+ < Cu2+ > Zn2+CFSE(Dq) 0 -4 -8 -12 -6 0这称为Irving-Williams顺序,可用CFSE解释。
Ni2+<Cu2+,可用Jahn-Teller效应解释。
三、配体性质对配合物稳定性的影响1、碱性配位原子相同,结构类似的配体与同种金属离子形成配合物时,配体碱性越强,配合物越稳定。
例:Cu2+的配合物:配体lgK H lgK1BrCH2CO2H 2.861.59ICH2CO2H 4.051.91phCH2CO2H 4.311.982、螯合效应1)螯合效应:螯合环的形成使配合物稳定性与组成和结构相似的非螯合配合物相比大大提高,称为螯合效应。