凸轮机构和齿轮机构
- 格式:ppt
- 大小:6.89 MB
- 文档页数:170
运动副及其分类一、什么是运动副?运动副是指将输入的运动和力矩转换为输出运动和力矩的机械构件,一般由构件、轴承、密封元件、驱动元件等部分组成。
运动副广泛应用于机械设备、自动化生产线、机器人运动系统等领域,是现代工业自动化和智能制造的基础。
二、运动副的分类按结构形式可分为:平面机构、立体连接机构、滑块机构、曲柄摇杆机构、齿轮机构、连杆机构、凸轮机构、链条机构、离合器及制动器、气动液压机构。
1. 平面机构平面机构一般由连杆、链条、凸轮等构件组成,是最基本的运动副之一。
平面机构广泛应用于加工机床、织布机床、高速操作设备等领域。
常见的平面机构有连杆机构、曲柄摇杆机构、滑块机构等,其中连杆机构最常见,一般由活塞齿轮、连杆和转动轴组成。
2. 立体连接机构立体连接机构是由三个或三个以上的构件组成,可以将输入运动和力矩转换为任意的输出运动和力矩。
常见的立体连接机构有球面机构、球面与曲柄连接等,是机器人运动系统和航天器设计中不可或缺的部分。
3. 滑块机构滑块机构一般由滑块、导轨和驱动部分组成,可将输入的运动转化为线性运动,是机床、自动化生产线、锻造机械等领域中非常重要的运动副。
常见的滑块机构有翼板机构、滑块摇杆机构、曲柄滑块机构等。
4. 曲柄摇杆机构曲柄摇杆机构一般由曲柄、连杆和摇杆组成,为机器人运动系统、汽车发动机等领域中广泛应用的运动副之一。
5. 齿轮机构齿轮机构是将输入的运动通过齿轮的啮合和转动进行传动和转换的运动副,广泛应用于机床、印刷设备、起重设备等领域中。
常见的齿轮机构有平齿轮和斜齿轮、齿轮副、行星齿轮副等,其中行星齿轮副常用于航空、航天和机器人的运动控制系统中。
6. 连杆机构连杆机构一般由连杆、转动轴和轴承等构件组成,可将一种转动运动转化为另一种转动运动或线性运动,是机床、铣床、锻造机械等领域中广泛应用的运动副之一。
7. 凸轮机构凸轮机构一般由凸轮、摇杆、轴承等构件组成,可以将输入的运动转化为线性或旋转运动,常用于窄幅生产线、高速运动设备等领域。
简述齿轮机构相对于连杆机构、凸轮机构的优缺点。
下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!齿轮机构相对于连杆机构、凸轮机构的优缺点1. 引言在机械设计中,齿轮机构、连杆机构和凸轮机构是常见的传动机构,它们在各种工程应用中扮演着重要角色。
在各类机械中,常需要某些构件实现周期性的运动和停歇。
能够将主动件的连续运动转换成从动件有规律的运动和停歇的机构称为间歇运动机构。
而实现间歇运动的四种常用机构分别为:棘轮机构、槽轮机构、凸轮式间歇运动机构和不完全齿轮机构。
一、棘轮机构棘轮机构的类型很多,从工作原理上可分为轮齿啮合式和摩擦式棘轮机构;从结构上可分为外啮合式和内啮合式棘轮机构;从传动方向上分为单向(单动和双动)式和双向式棘轮机构。
棘轮机构是把摇杆的摆动转变为棘轮的间歇回转运动。
其优点轮齿式棘轮机构运动可靠,棘轮转角容易实现有级调节,但在工作过程中棘爪在齿面上滑行,齿尖易磨损并伴有噪音,同时为使棘爪能顺利落入棘轮槽,摇杆摆角应略大于棘轮转角,这样就不可避免地存在空程和冲击,在高速时尤其严重,所以常用在低速、轻载下实现间歇运动。
摩擦式棘轮机构传递运动平稳、无噪声,棘轮转角可作无级调节。
图1 单向轮齿啮合式棘轮但由于运动准确性差,不宜用于运动精度要求高的场合。
在工程实践中,棘轮机构常用于实现间歇送进(如牛头刨床)、止动(如起重和牵引设备中)和超越(如钻床中以滚子楔块式棘轮机构作为传动中的超越离合器,实现自动进给和快速进给功能)等场合。
图2 摩擦式棘轮二、槽轮机构槽轮机构又称马尔他机构或日内瓦机构,也是常用的间歇运动机构之一。
普通平面槽轮机构有外接式槽轮机构(图3)和内接式槽轮机构(图4)两种类型。
它主要是由带有均布的径向开口槽的槽轮2、带有圆柱销A的拔盘1以及机架组成。
图3 外接式槽轮机构图4 内接式槽轮机构槽轮机构的工作过程是:主动拨盘1上的圆柱销A进入槽轮2上的径向槽以前,拔盘上的凸锁止弧α将槽轮上的凹锁止弧β锁住,则槽轮静止不动。
当拔盘圆柱销A进入槽轮径向槽时,凸、凹锁止弧刚好分离,圆柱销可以驱动槽轮转动。
当圆柱销脱离径向槽时,凸锁止弧又将凹锁止弧锁住,从而使槽轮静止不动。
因此,当主动拨盘作连续转动时,槽轮被驱动作单向的间歇转动。
外接式槽轮机构的主动拨盘1与槽轮2转向相反;内接式槽轮机构的主动拨盘1与槽轮2转向相同,且传动平稳、占空间小,槽轮停歇时间较短。
曲线转直线的机构
将曲线运动转化为直线运动的机构在机械设计中具有广泛的应用,以下是其中一些常见的机构及其工作原理:
1. 曲柄滑块机构
曲柄滑块机构是一种常见的将旋转运动转化为直线运动的机构。
在曲柄滑块机构中,曲柄和滑块之间通过转动副连接,而滑块和固定杆(机架)之间通过移动副连接。
当曲柄绕固定点旋转时,滑块在移动副的作用下沿着直线方向移动。
这种机构广泛应用于各种冲压机械、压缩机、往复式发动机等领域。
2. 凸轮机构
凸轮机构由凸轮和从动件组成。
凸轮具有曲线轮廓或沟槽,从动件是移动构件。
当凸轮旋转时,其曲线轮廓或沟槽推动从动件沿着预定轨迹移动,从而实现将旋转运动转化为直线运动。
凸轮机构广泛应用于各种自动化装置、机床、纺织机械等领域。
3. 齿轮齿条机构
齿轮齿条机构由齿轮和齿条组成。
当齿轮旋转时,其齿与齿条的齿槽相啮合,从而推动齿条沿着直线方向移动。
齿轮齿条机构广泛应用于各种传动装置、机床、
机器人等领域。
4. 滚子丝杠机构
滚子丝杠机构由丝杠和滚珠或滚子组成。
当丝杠旋转时,滚珠或滚子在丝杠的螺旋槽内滚动,从而实现将旋转运动转化为直线运动。
滚子丝杠机构广泛应用于各种机床、工业机器人、精密传动装置等领域。
除了以上常见的机构外,还有一些其他形式的机构可以实现曲线转直线的运动转换,如连杆机构、链条传动机构等。
这些机构各有特点和适用范围,可以根据具体需求选择合适的机构来实现所需的运动转换。
同时,对于不同的曲线转直线运动转换需求,可能还需要进行特殊的设计和制造,以满足特定的运动轨迹、速度、加速度等要求。
间歇机构的常见类型
间歇机构是指在机器或设备中,用于实现一定运动规律的机构。
它利用了时间间隔的特性,使机器或设备在工作时能够实现一定的运动规律和运动方式。
下面我们来了解一下间歇机构的常见类型。
1. 凸轮机构
凸轮机构是一种通过凸轮的形状和运动来实现运动规律的机构。
它由凸轮、从动件和固定件组成,通过凸轮的运动,带动从动件以一定的规律运动。
2. 齿轮机构
齿轮机构是一种常见的间歇机构,它利用齿轮的运动来实现一定的运动规律。
齿轮机构包括齿轮、从动件、固定件等组成,通过齿轮的运动带动从动件以一定的规律运动。
3. 连杆机构
连杆机构是一种通过连杆的长度和角度变化来实现一定的运动
规律的机构。
它由连杆、从动件和固定件组成,通过连杆的长度和角度变化,带动从动件以一定的规律运动。
4. 摆杆机构
摆杆机构是一种通过摆杆的运动来实现一定的运动规律的机构。
它由摆杆、从动件和固定件组成,通过摆杆的运动,带动从动件以一定的规律运动。
5. 曲柄机构
曲柄机构是一种通过曲柄的旋转来实现一定的运动规律的机构。
它由曲柄、连杆、从动件和固定件组成,通过曲柄的旋转,带动连杆以一定的规律运动,从而带动从动件以一定的规律运动。
以上就是间歇机构的常见类型,它们广泛应用于各种机器和设备中,是机械设计工程师必须了解和掌握的知识。
凸轮机构在加工齿轮中的作用
随着工业的发展,凸轮机构在加工齿轮方面起着非常重要的作用。
凸轮机构是一种机械装置,用来改变动随机的移动方向。
它由两个或多个相互接触,形成转动的抗击物,即凸轮和凹轮组成。
凸轮机构被广泛应用于机床、工业机械等装置,可以实现位移、速度及力矩的改变和调整,是工业齿轮减速传动中不可缺少的重要元件。
齿轮减速传动中,凸轮机构的作用是改变动随机的转动方向并输出正确的速度和力矩。
当凸轮和凹轮互接时,动随机的转动会通过凸轮机构被传导和转换,从而输出不同方向上的转动能量,并达到调节和减速的目的。
凸轮机构有许多有记分的传动形式,最常用的是圆形凸轮机构,由数十个凸轮和凹轮组成,大大降低了齿轮减速传动中齿轮能量传输和转换的繁琐程度,降低了工作系统的复杂性,改善了传动系统的性能,也使齿轮加工的效率提高了很多。
凸轮机构在改变和调节动随机的转动方向,输出正确的速度和力矩方面发挥着重要作用,它是齿轮减速传动系统不可或缺的部分。
因此,它的特点决定了齿轮加工的重要性和必要性。
齿轮机构及其设计答案渐开线直齿圆柱齿轮正确啮合的条件是: 两齿轮的模数相等和压力角相等。
一对平行轴斜齿圆柱齿轮的正确啮合条件是:两轮法面上的模数和压力角分别相等,螺旋角大小相等,方向相反(外啮合)或相同(内啮合),一对直齿圆锥齿轮传动的正确啮合条件是两轮大端的模数和压力角相等。
3.蜗杆蜗轮传动的正确啮合条件是 : 其中间平面内蜗轮与蜗杆的模数和压力角分别相等, 当两轴交错为90度时,还应使蜗杆的导程角等于涡轮螺旋角。
标准渐开线直齿圆锥齿轮的标准模数和压力角定义在大端。
一对渐开线直齿圆柱齿轮啮合传动时,两轮的节圆总是相切并相互作纯滚动的,而两轮的中心距不一定总等于两轮的分度圆半径之和。
7.共轭齿廓是指一对能满足齿廓啮合基本定律的齿廓。
8. 用齿条刀具加工标准齿轮时,齿轮分度圆与齿条中线相切,加工变位齿轮时,中线与分度圆不相切。
被加工的齿轮与齿条刀具相"啮合"时,齿轮节圆与分度圆重合。
9. 有两个模数、压力角、齿顶高系数及齿数相等的直齿圆柱齿轮,一个为标准齿轮1,另一个为正变位齿轮2,试比较这两个齿轮的下列尺寸,哪一个较大、较小或相等:db1 = db2;da1 < da2;d1=d2;df1 < df2;sa1 > sa2;s1 > s2。
10. 标准齿轮除模数和压力角为标准值外,还应当满足的条件是分度圆上齿厚等于齿槽宽,即s=e 。
11. 斜齿轮在法面上具有标准模数和标准压力角。
12. 若两轴夹角为90度的渐开线直齿圆锥齿轮的齿数为Z1=25, Z2=40,则两轮的分度圆锥角= 32度 ; = 58度。
13. 一对直齿圆锥齿轮传动时的分度圆锥角应根据齿轮齿数和两轴交角来决定。
14. 如图所示两对蜗杆传动中,(a)图蜗轮的转向为逆时针;(b)图蜗杆的螺旋方向为右旋。
15. 用标准齿条型刀具加工标准齿轮时,其刀具的中线与轮坯分度圆之间做纯滚动.第二章答案:1)平面运动副的最大约束数为 2 ,最小约束数为 1 。
简述机械组织的特点与类型。
机械组织是由一个或几个运动部件组成的一个机器的基本单元,是机器中最常见的结构形式。
机械组织有以下三个特点:机械组织的特点: 1、零件的制造和装配工作量大; 2、使用维护方便,故障较少; 3、零件的尺寸较大。
机械组织可分为凸轮机构和齿轮机构两大类。
凸轮机构又分为: 1、零件的制造和装配工作量大; 2、使用维护方便,故障较少; 3、零件的尺寸较大。
凸轮机构又分为凸轮轮廓的曲线化和凸轮机构按其传动比的不同可分为: 1、改变凸轮形状来改变运动规律的,称为从动件运动规律的凸轮机构。
2、通过凸轮的轴向移动改变运动规律的,称为改变运动规律的凸轮机构。
齿轮机构的优缺点: 1、传动效率高;2、运动均匀性好,传动比准确;3、结构紧凑、效率高。
齿轮机构的种类及应用: 1、根据各轮齿数目的多少,齿轮机构分为单齿和双齿两大类。
2、根据齿廓曲线的形状,齿轮机构可分为直齿和斜齿两大类。
3、根据运动时所采用的压力角的不同,齿轮机构可分为直齿圆柱齿轮机构、斜齿圆柱齿轮机构、锥齿轮机构和蜗杆传动等四种类型。
机械组织的分类:按运动类型分类:周期性运动机构和摆动、转动机构。
根据运动学理论,常把机械组织分为平面运动机构和空间运动机构。
根据机构自身运动形式可分为: 1、直线运动机构。
2、曲线运动机构。
2、便于提高劳动生产率,改善工人劳动条件。
4、零件尺寸较大。
凸轮机构主要参数: 1、最小曲率半径:凸轮最小曲率半径应根据凸轮轮廓曲线的形状,计算其对应的凸轮理论轮廓上的曲线最低点至最高点的距离,并作为设计的依据。
2、分度圆直径:分度圆直径的大小对凸轮机构的结构、传动精度及其运动的稳定性都有很大影响,它是确定凸轮轮廓上任意一点的位置的重要依据。
3、顶尖孔直径:顶尖孔直径的大小将直接影响凸轮与从动件之间的间隙,因此应根据凸轮机构的具体要求而定。
5、齿厚:对一般的渐开线圆柱齿轮,齿厚S是凸轮设计中重要的参数之一,但在实际应用中不必严格控制,但对一些特殊要求的凸轮则必须进行设计,此时可参考相应的标准资料。
第二章服机械常见机构及传动原理2.1有关机构的基本概念一、机器的特征:1、任何机器都是人为的实物组合体。
2、各构件之间具有确定的相对运动。
3、能完成能量的转换,做有用功。
注:机构的特征为第1、2点。
二、机构:具有确定相对运动的刚性体的组合系统。
(机械:在工程上,机器和机构的总称)三、(机构的)构件:机构中,参与运动的刚性体。
(一)构件与零件的区别:1、零件是指机器的制造单元,是单一的实物体。
2、构件是机器的运动单元,可以是一个零件,也可以是若干个零件组成的刚性体。
(二)构件与机构的区别:机构是由构件组成的,但是若干个构件并不一定都能组成机构(如三杆)。
(三)机构中的构件可分为三类:机架、原动件、从动件。
1、机架:机架是机构中视作固定不动的构件,它支承这其他可动构件。
在机构图中,机架上常标有斜线以示区别2、原动件:原动件是机构中接受外部给定运动规律的可动构件,原动件又称输入构件。
在机构图中,常标有箭头以示区别。
3、从动件:从动件是机构中岁原动件而运动的可动构件。
当从动件输出运动或实现其功能时,便称其为输出构件或执行件。
四、运动副的种类及代表符号(一)概述1、运动副:两构件相互接触而又保持一定相对运动的连接。
2、运动副的作用:用来约束构件的自由运动,即去除构件不需要的运动,而留下我们期望的运动。
3、运动副的理解:(1)运动副是一种连接;(2)运动副由两个机构组成;(3)组成运动副的两个构件之间有相对运动。
(二)运动副的分类1、按运动的范围分类:平面运动副和空间运动副。
(1)平面运动副:运动副只允许相邻两构件在同一平面或相对平行的平面内做相对运动。
(2)空间运动副:运动副允许相邻两构件的相对运动不只局限在平行的平面内。
2、按两构件的接触情况分类:低副和高副。
(1)低副:两构件通过面接触组成的运动副。
如转动副、移动副、球面副。
①转动副:只允许两构件相对转动的运动副。
若两构件之一是固定不动的,则称为固定铰链;若组成转动副的两构件都是运动的,则称为活动铰链。
适用标准机械设计根基知识点详解绪论、机器的特色:〔1〕它是人为的实物组合;〔2〕各实物间拥有确立的相对运动;〔3〕能取代或减少人类的劳动去达成有效的机械功或变换机械能。
第一章平面机构的自由度和速度剖析要求:握机构的自由度计算公式,理解的根基上掌握机构确立性运动的条件,娴熟掌握机构速度瞬心数的求法。
、根本观点运动副:凡两个构件直接接触而又能产生必定相对运动的联接称为运动副。
低副:两构件经过面接触构成的运动副称为低副。
高副:两构件经过点或线接触构成的运动副称为高副。
复合铰链:两个以上的构件同时在一处用展转副相联构成的展转副。
局部自由度:机构中常出现的一种与输出构件运动没关的自由度,称为局部自由度或剩余自由度。
虚拘束:对机构运动不起限制作用的重复拘束称为虚拘束或称悲观拘束。
瞬心:任一刚体相对另一刚体作平面运动时,其相对运动可看作是绕某一重合点的转动,该重合点称为刹时展转中心或速度瞬心,简称瞬心。
假如两个刚体都是运动的,那么其瞬心称为相对速度瞬心;假如两个刚体之一是静止的,那么其瞬心文档适用标准称为绝对速度瞬心。
、平面机构自由度计算作平面运动的自由构件拥有三个自由度,每个低副引入两个拘束,即便构件失掉两个自由度;每个高副引入一个拘束,使构件失掉一个自由度。
计算平面机构自由度的公式:F=3n-2PL-PH机构要拥有确立的运动,那么机构自由度数一定与机构的原动件数量相等。
即,机构拥有确立运动的条件是F>0,且F等于原动件个数。
、复合铰链、局部自由度和虚拘束(a)K个构件汇交而成的复合铰链应拥有(K-1)个展转副。
局部自由度固然不影响整个机构的运动,但滚子可使高副接触处的滑动摩擦变为转动摩擦,减少磨损,所以实质机械中常有局部自由度出现。
虚拘束对机构运动虽不起作用,可是能够增添构件的刚性和使构件受力均衡,所以实质机械中虚拘束随地可见。
、速度瞬心假如一个机构由K个构件构成,那么瞬心数量为N=K(K-1)/2瞬心地点的确定:双重合点相对速度方向,那么该两相对速度向量垂线的交点即是两构件的瞬心。