中科院计算流体力学最新讲义CFD2011-第7讲-有限体积法1
- 格式:ppt
- 大小:4.78 MB
- 文档页数:25
cfd有限体积法CFD有限体积法CFD(Computational Fluid Dynamics)是指利用计算机模拟流体运动的科学技术。
而有限体积法(FVM,Finite Volume Method)是CFD中的一种数值方法,它将流域分割成许多小的控制体积,然后通过对每个控制体积内的物理量进行离散化,将偏微分方程转化为代数方程组,从而求解出流场的各个物理量。
1. FVM基本原理1.1 控制体积FVM方法将流域分割成许多小的控制体积,每个控制体积都是一个封闭区域。
在这个区域内,可以计算出各种物理量(如密度、速度、压力等),并且这些物理量在整个区域内都是均匀的。
1.2 通量通量是指单位时间内通过单位面积所传递的某种物理量。
在FVM中,通量是一个重要的概念。
通过对每个控制体积进行质量守恒和动量守恒方程进行离散化,可以得到通量在各个边界上的表达式。
1.3 离散化离散化是将偏微分方程转化为代数方程组的过程。
在FVM中,通过对控制体积内的物理量进行离散化,可以得到每个控制体积内的物理量与相邻控制体积内的物理量之间的关系式。
1.4 数值求解离散化后,可以得到代数方程组。
通过数值方法(如迭代法、高斯消元法等),可以求解出这个方程组,并得到流场各个物理量的数值解。
2. FVM优点2.1 适用性广FVM方法适用于各种复杂流动问题,如湍流、多相流、非牛顿流等。
2.2 精度高FVM方法是一种高精度的数值方法,能够准确地计算出流场各个物理量的分布情况。
2.3 稳定性好FVM方法具有良好的稳定性和收敛性,在计算过程中不会出现发散等问题。
3. FVM应用领域3.1 航空航天工业在航空航天工业中,FVM方法被广泛应用于飞行器气动力学、燃烧室燃烧过程模拟、液体火箭发动机喷注等领域。
3.2 汽车工业在汽车工业中,FVM方法被用于模拟气动力学、燃烧过程、发动机燃料喷射等问题。
3.3 能源领域在能源领域中,FVM方法被用于模拟火电厂锅炉内的流动和传热过程、风力发电机叶片的气动特性等问题。
有限体积法介绍有限体积法1 有限体积法基本原理上⼀章讲到的有限差分法将数值⽹格的节点上定义为计算节点,并在⽹格节点上对微分形式的流体基本⽅程进⾏离散,⽤⽹格节点上的物理量的代数⽅程作为原PDE 的近似。
在本章所要学习的有限体积法则采⽤了不同的离散形式。
⾸先,有限体积法离散的是积分形式的流体⼒学基本⽅程:d q ds ds SSΩΩ+??Γ=?φφρφn n v(1)计算域⽤数值⽹格划分成若⼲⼩控制体。
和有限差分法不同的是,有限体积法的⽹格定义了控制体的边界,⽽不是计算节点。
有限体积法的计算节点定义在⼩控制体内部。
⼀般有限体积法的计算节点有两种定义⽅法,⼀种是将⽹格节点定义在控制体的中⼼,另⼀种⽅法中,相邻两个控制体的计算节点到公共边界的距离相等。
第⼀种⽅法的优点在于⽤计算节点的值作为控制体上物理量的平均值具有⼆阶的精度;第⼆种⽅法的好处是在控制体边界上的中⼼差分格式具有较⾼的精度。
积分形式的守恒⽅程在⼩控制体和计算域上都是成⽴的。
为了获得每⼀个控制体上的代数⽅程,⾯积分和体积分需要⽤求⾯积公式来近似。
2 ⾯积分的近似采⽤结构化⽹格,在⼆维情况下,每⼀个控制体有4个⾯,⼆维情况,每⼀个控制体有6个表⾯。
计算节点⽤⼤写字母表⽰,控制体边界和节点⽤⼩写字母表⽰。
为了保证守恒性,控制体不能重叠,每⼀个⾯都是相邻两个控制体的唯⼀公共边界。
控制体边界上的积分等于控制体个表⾯的积分的和:∑??=kkfds fdS(2)上式中,f 可以表⽰n u ρφ或nΓφ。
显然,为了获得边界上的积分,必须知道f 在边界上的详细分布情况,这是不可能实现的,由于只是计算节点上的函数值,因此必须采⽤近似的⽅法来计算积分。
整个近似过程分成两步第⼀步:⽤边界上⼏个点的近似积分公式第⼆步:边界点上的函数值⽤计算节点函数值的插值函数近似⾯积分可采⽤以下不同精度的积分公式:⼆阶精度积分:e e e e S e Sf S f fds F e≈==?(3)上式中e f 为边界中点出的函数值。
第七讲 有限体积法简介(a )圆形管流的结构网格(b )圆形管流的非结构网格123459876HKGFEDCBA(,)i j (1,)i j +(1,)i j -(,1)i j -(,1)i j +A BA By ∆A Bx ∆ABC DEFGHK(,)i j (,1)i j +(,1)i j -(1,)i j +(1,1)i j ++(1,1)i j -+(1,)i j -(1,1)i j --(1,1)i j +-JΩIJΩ12345二维有限体积网格中心单元结构网格中心结点结构网格中心单元非结构网格中心结点非结构网格AB CDE FGHD C G HSA B C DSA D H ESE F G H SAB CD PABCDEFGHABCDFE HG六面体划分成四面体或棱锥的方法应用于势流计算的飞机有限面元三角网格计算域的常规有限元划分二.有限体积方法(Finite V olume Method )(一)积分形式的Euler 方程 二维非定常Euler 方程U F G txy∂∂∂++=∂∂∂ (12-1)uU v e ρρρ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦()2u u pF u v e p u ρρρ⎡⎤⎢⎥+⎢⎥=⎢⎥⎢⎥+⎣⎦()2v u vG v p e p v ρρρ⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥+⎣⎦补充 ()22112pe u vργ=++-在区域ABCD 内对Euler 方程进行积分:0A B C D U F G d x d y t x y ⎛⎫∂∂∂++= ⎪∂∂∂⎝⎭⎰⎰(12-2)整理上式,得0A B C DA B C D F G U d x d y d x d y tx y ⎛⎫∂∂∂++= ⎪∂∂∂⎝⎭⎰⎰⎰⎰(12-3)1j -1j +j1i +1i -i12j S+(),i j RTSPABCDQ12i S +格林定理:设C 为逐段光滑的简单(无自交点)闭曲线围成的单连域S ,这围线的方向使区域S 保持在左边。
计算流体力学有限体积法【中英文版】Title: Calculation of Fluid Mechanics using Finite Volume MethodTitle: 计算流体力学有限体积法Section 1: Introduction to Finite Volume MethodThe Finite Volume Method (FVM) is a numerical technique used to solve partial differential equations which describe fluid flow and other physical phenomena.In FVM, the domain of interest is discretized into a finite number of control volumes or cells.第一部分:有限体积法简介有限体积法(FVM)是一种用于求解描述流体流动和其他物理现象的偏微分方程的数值技术。
在FVM中,感兴趣的域被离散化为有限数量的控制体积或单元。
Section 2: Discretization ProcessThe discretization process involves dividing the domain into smaller sub-domains known as control volumes.The governing equations are then applied to each control volume, leading to a set of algebraic equations which can be solved to obtain the solution at each node.第二部分:离散化过程离散化过程涉及将域划分为称为控制体积的小子域。