当前位置:文档之家› 互感器的绝缘试验

互感器的绝缘试验

互感器的绝缘试验
互感器的绝缘试验

互感器的绝缘试验

一、电流互感器的绝缘试验

我国目前生产的20kV 及以下电压等级的电流互感器多采用干式固体夹层绝缘结构,在进行定期试验时,以测量绕组绝缘电阻和交流耐压为主。

测量绕组绝缘电阻的主要目的是检查其绝缘是否有整体受潮或者劣化现象。测量一次绕组用2500V 兆欧表,二次绕组用1000V 或2500V 兆欧表,而且非被测绕组应接地。测量时候还应考虑空气湿度、套管表面脏污对绝缘电阻的影响。必要时将套管表面屏蔽,以消除表面泄露的影响。温度的变化对绝缘电阻影响很大,测量时应记下准确温度,以便比较。为减小温度的影响,最好在绕组温度稳定后进行测量。

对于35kV 及以上电压等级的互感器,多采用油浸式夹层绝缘结构,除了应进行绝缘电阻和交流耐压试验外,尚需做介质损耗角正切值(tan δ)的试验。

1、电流互感器极性检查

电流互感器极性检查实验接线如图8-1所示,当开关S 瞬间合上时,若L 1和K 1同极性,则毫伏表的指示为正,指针右摆,然后回零。在电流互感器的极性检查中L 1和K 1在铁芯上起始是按同一方向绕制的,极性检查采用直流感应法。 K2

-+K1TA

L2L1

-+

S mV

图8-1电流互感器极性检查接线图

油断路器套管型电流互感器二次侧的始端a 与油断路器套管的一次侧接线端同极性。当油断路器两侧电流互感器流过同方向一次电流时,两侧的a 端极性恰恰相反,在做极性试验时,要将断路器合上,在两侧套管出线处加电压。如图8-2所示。

TA1

图8-2安装在油断路器上套管型电流互感器的极性检查示意图

2、电流互感器的励磁特性试验

电流互感器的励磁特性试验接线如图8-3所示。

PA

(a)

TA

(b)TA

N

B

A

图8-3电流互感器的励磁特性试验接线图

(a) 输出电压220~380V ;(b)输出电压500V

TR ——调压器;PA ——电流表;PV ——电压表

测量电流互感器的励磁特性可以发现一次绕组有无匝间短路,计算10%误差曲线,并从励磁特性校核用于继电保护的电流互感器的特性是否符合要求。

试验时电压从零向上递升,以电流为基准,读取电压值,直至额定电流。若对特性曲线有特殊要求而需要继续增加电流时,应迅速读数,以免绕组过热。

由于电流互感器一次绕组匝间短路时,励磁特性在开始部分电流会比正常的略低,因此应再开始部分多测几点。当电流互感器励磁电压较高,电流较大时,输出电压可增至500V 左右,但读取的励磁电流值为毫安级,因此对仪表的选取应加以注意。

I

图8-4电流互感器二次绕组匝间短路时的励磁特性曲线

1——正常曲线;2——短路1匝;3——短路2匝

根据规程规定,电流互感器只对继电保护有特性要求时才进行该项试验,但在调试工作中,当对测量用的电流互感器发生怀疑时,也可测量该电流互感器的励磁特性,以供分析。

3、电流互感器铁芯退磁

对电流互敢器铁芯进行退磁主要是因为在有大电流通过的情况下切断电源或在运行中发生二次开路时,通过短路电流以及在采用直流电源的各种试验后,可能在电流互感器的铁芯中留下剩余磁,磁将使电流互感器的比差尤其是角差增大。

方法是使一次绕组开路,当二次绕组额定电流为5A时,通入1~2.5A电流,当二次绕组额定电流为1A时,通过0.2~0.5A的50HZ交流电流,然后使电流从最大值均匀降到零,并在切断电流电源前将二次绕组短路.。且在上述过程中,电流不应中断或发生突变,重复二、三次后,即可退去电流互感器铁芯中的剩磁。

二、电压互感器的绝缘试验

20kV及以下电压等级的电压互感器,多采用干式固体夹层绝缘结构。但也有一部分是户内用的油浸式夹层绝缘结构。对于它们的绝缘试验和电流互感器基本相同,但根据现场的实际需要,有时增加感应耐压试验。对35~66kV电压等级的电压互感器应进行绝缘电阻测试、交流耐压(串级绝缘不能进行)、感应耐压、介质损失正切值(tanδ)等项试验。对66kV 以上电压等级的电压互感器还应增加绝缘油中溶解气体分析试验。上述各项试验方法,可参考变压器试验和绝缘油试验的有关项目。唯有对串级式电压互感器的tanδ值测量要采取另外的接线才能得到正确的判断。下面着重介绍目前国内采用的几种有效的测量方法。

1、高压标准电容器自激法

采用高压交流电桥高压标准电容器自激法测量串级式电压互感器的tanδ值接线如图8-5所示。图中A-X为两元件铁芯串接高压侧绕组的出线端,a-x为低压侧绕组出线端,a d-x d 为低压侧辅助绕组出线端。图中利用电压互感器本身作为试验变压器,套管和绕组的对地电容作为C x。这种线路的电压分布与电压互感器工作时一致。所以避免了高压侧绕组靠近低压端的容量大,造成主要反映低压端介质损失的缺点。如能采用更高电压的标准电容器,使自激电压达到额定值,就更接近实际。如国产的250kV六氟化硫标准电容器,就能够满足110kv及220kv的电压互感器在工作电压下用自激法测tanδ的试验。试验方法和用QS1型电桥对角接线法测量tanδ的方法完全一样,由于桥体处于低压端,所以标准电容器可以选用更高电压等级的,以满足电压互感器的测量要求。

a d

图8-5采用高压标准电容器自激法测量tanδ值接线

2、低压标准电容器自激法

如图8-6所示,利用QS1型桥体内的标准电容做电桥的标准臂,对串级式互感器进行自激测量tanδ值。

图8-6 利用低压标准电容器自激法测量tanδ值接线

由图8-6可知,电桥的供电是取自辅助绕组端子上所感应的电压,标准电容桥臂承受的电压较低,此时辅助绕组的负荷很小,U1和U2向量基本上是重合的,经验证明他们之间的角差影响可以忽略不计。

不管用高压标准电容器自激法,还是用低压标准电容器自激法,在测量串级式互感器的值时,仍然避免不了强电场的干扰影响。其干扰源,一个来自互感器高压侧外界电场(附近的高压设备),一个来自二次侧激磁系统。前者可采用高压屏蔽的办法消除,具体办法参考变压器的试验,后者可将调压装置的接地点尽量靠近滑动接点。另外还可以配合调换自激电源的相位,使干扰减少到最小程度。

3、末端屏蔽法

如图8-7所示,同样可以利用QS1型高压电桥进行测量,并需用高压试验变压器B,在被试电压互感器的高压侧激磁,同时供给电桥电源。低压末端接地,低压绕组也处于较低电位,这样基本上避免了小套管因受潮和脏污对测量值的影响。可见,末端屏蔽法的接线只能测出和低压绕组及辅助绕组直接耦合的高压绕组部分的tanδ值。如老式JCC-110和JCC-220型两个或两个以上铁芯的电压互感器,只能反映部分高压绕组的tanδ值。两个铁芯只反映下部一个铁芯即1/2tanδ值。四个铁芯只反映1/4tanδ值。但比过去的常规接线基本上不能反映高压线圈的tanδ值要好的多,且不像常规接线那样只能加压2000~2500V,而是能满足标准电容器的电压(QS1型电桥可以加压到10kV),对提高tanδ值的灵敏度也大有好处。显然,末端屏蔽法比自激法测得的结果偏小,如果采用QS1型电桥测量的tanδ小于1%时,须在Z4臂上并联一适当电阻R'4扩大其量程。根据我国一些地区的经验,并联电阻值可选等于R4的数值,即3184欧,这时Z4臂上的电阻就变成了1592欧,量程增大了一倍。因此,所测得的tanδ值必须除2,才是QS1型电桥指示的实际值。

图8-7用末端屏蔽法测量tan δ值接线

末端屏蔽法,同样有电源系统和外界电场的干扰问题,其防止措施和自激法相同。

4、电容式电压互感器的试验方法

电容式电压互感器接线如图8-8所示,由电容分压器(包括主电容器C 1,分压电容器C 2)、中间变压器(即中间互感器YH )、共振电抗器L 1、载波阻抗器L 2及阻尼电抗器R 等元件组成。

2

图8-8电容式电压互感器接线图

g ——保护间隙;K ——断路开关

其介质损失角tan δ值的测试,可分单元件试验。例如,对电容器,可照电力电容的要求进行试验;对中间变压器,可选用“自激法”或“末端屏蔽法”均可得到有效的结果。

(完整版)电流互感器末屏的工作原理及试验方法

电流互感器末屏的工作原理及试验方法(故障攻关特色工作室) 朔黄铁路原平分公司

一、什么是电流互感器的电容屏及末屏? 电容型电流互感器器身的一次绕组为“U”字型,导体根据额定电流的大小而有铝管、铜管等形式,一次绕组用绝缘纸缠绕,一般由数层绝缘纸绕制而成,绝缘纸之间有锡箔层,这些锡箔层即电容屏,其中,靠近一次绕组的屏称为“零屏”,最外层的电容屏称之为末屏,也称作“地屏”。两两电容屏之间形成电容。 二、电流互感器内部为什么要设置电容屏? 电容型电流互感器随着额定电压等级的提高,尤其是110KV及以上电压等级的电流互感器,其互感器缠绕一次绕组的绝缘纸厚度也越来越大,这就使绝缘内的电场强度越来越不均匀,而绝缘材料的耐电强度是有限的,电场强度不均匀后,某些局部绝缘所受的电场强度会超出本身耐电强度,绝缘整体的利用率就会降低,如果在绝缘纸中,设置一些电容屏,每两个电容屏与两屏之间的绝缘层就形成一个电容器,电容器的最内电极(零屏)与电流互感器一次绕组高压端连接,最外电极(末屏)与地连接时,整个电流互感器就构成一个高电压与地电位之间由多个电容器串联的电容器。 绝缘纸缠绕一次绕组为圆柱形同心圆结构,串联的每个电容器(相邻两个电容屏组成)都是一个圆柱形电容器,同等绝缘厚度下,电容屏设置越多,每个电容器的内极半径和外极半径之差就越小,内外电极表面的场强差别也就越小,若中间屏数量无限多,则各电容屏之间的场强差别趋近于零,但在实际的电流互感器中,电容屏数量是有限的,所以每个电容屏的场强也并不完全相等,但也起到了非常大

的均匀场强的作用,这样就使内绝缘的各部分尽量场强分布一致,最大程度的利用绝缘材料。 三、电流互感器的末屏为什么一定要接地? 电流互感器最外部的电容屏即末屏必须接地,如果末屏接地发生断裂或接触不良,末屏与地之间会形成一个电容,而这个电容远小于流互内部电容屏之间的电容,也就是说,首屏到末屏为数个容值一样的串联电容器,接地断裂或接触不良后,这个电路又串进一个容值很小的电容器。 容抗X=1/(2πfC),可见频率相同的情况下,电容器的容值与容抗成反比,所以在这个电路中,这个串进来的对地小电容容抗要远大于流互内部电容器。而又由于串联电路,电流处处相等,所以电流互感器内各电容器的电量Q是相等的,Q=CU,所以对地小电容所分得的电压远远大于流互内部电容器。这个末屏高电压会使电流互感器内部绝缘的电场强度分布极度不均匀,在电场力的作用下,内部绝缘的电荷会朝末屏聚集,场强集中后,周围固体介质会烧坏或炭化,也会使绝缘油分解出大量特征气体,从而使绝缘油色谱分析结果超标,也会对地发生火花放电。 如果末屏接地,电流互感器只存在电容屏组成的电容,则每个电容器电压均分,且末屏接地,导致末屏这个最外极的电容屏电势为零,而由于电容器两极板之间电荷一定是数量相等,极性相反,且只会从负极板经外部电路流向正极板放电,所以末屏这个极板的电荷并不会导入进地,即Q不变。

民熔电压互感器常规试验检测方法

1、电压互感器概述 2、典型的变压器利用电磁感应原理将高压变低压,或大电流变小电流,为测量装置、保护装置和控制装置提供合适的电压或电流信号。电力系统中常用的电压互感器一次侧电压与系统电压有关,一般为几百至几百千伏,标准二次电压一般为100V和100V/2;而电力系统中常用的电流互感器一次侧电流一般为几安培至几万安培,标准二次电流一般为5a、1a、0.5a等。 一。电压互感器原理电压互感器原理类似于变压器原理,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一铁心上,铁心内磁通量为Ф。根据电磁感应定律,绕组电压U与电压频率f、绕组匝数W、磁通量φ的关系如 下: 民熔电压互感器的常规试验方法是什么,电工们都在看这篇文章

图1.1 电压互感器原理 ,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 3. 变压器绕组和极压变压器绕组的端子分为前端和后端。对于全绝缘电压互感器,一次绕组的头端和尾端对地能承受相同的电压,而对于半绝缘电压互感器,尾端只能承受几千伏的电压。A、X通常表示电压互感器一次绕组的头端和尾端,A、X或P1、P2通常表示电压互感器二次绕组的头端或尾端;L1通常表示电流互感器L2,L2分别表示一次绕组的头端和尾端。K1、K2、S1、S2为二次绕组的头端和尾端。不同的制造商可能有不同的标签。通常,下标1表示前端,下标2表示后端。当端部感应电势方向相同时,称为同音端;反之,如果在同音端引入相同方向的直流电流,则它们在磁芯中产生的磁通量也在同一方向。如图1.3A 所示,A-A端子的电压是两个绕组感应电位差的结果。变压器中正确的标签定义为极性降低。四。电压互感器与电流互感器结构的主要区别(2)电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。

电压电流互感器的试验方法

电压电流互感器的常规试验方法 一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图1.1 电压互感器原理

2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图1.2 电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X 分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2

分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。 (2)电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。 (3)电压互感器正常运行时,严禁将一次绕组的低压端子打开,严禁将二次绕组短路;电流互感器正常运行时,严禁将二次绕组开路。 5.电压互感器型号意义 第一个字母:J—电压互感器。 第二个字母:D—单相;S—三相;C—串级式;W—五铁芯柱。 第三个字母:G—干式,J—油浸式;C—瓷绝缘;Z—浇注绝缘;R—

互感器试验方法--电压互感器

电压互感器试验方法 一.测量绝缘电阻 《电气设备预防性试验规程》未对电压互感器的绝缘电阻标准做规定。 测量方法与变压器类似 1.工具选择 一次绕组:2500V兆欧表 二次绕组:1000V兆欧表或2500V兆欧表 2.步骤 ⑴断开互感器外侧电源; ⑵用放电棒分别对一次侧和二次侧接地充分放电; ⑶擦拭变压器瓷瓶; ⑷摇测高压侧对地绝缘电阻 ①所有二次侧短接,并接地; ②拆开一次侧中性点接地端; ③短接一次侧,并对地遥测绝缘值; ④记录数据。 ⑤用放电棒分别对一次侧和二次侧接地充分放电; ⑸用放电棒分别对ABC接地充分放电; ⑹摇测低压侧对地绝缘电阻(一般有星形和开口三角) ①短接一次侧,并接地; ②拆开二次侧中性点接地端; ③短接二次侧,并对地遥测绝缘值; ④记录数据。 ⑤用放电棒分别对一次侧和二次侧接地充分放电;

⑺用放电棒分别对二次侧接地充分放电; ⑻摇测高压对低压绝缘电阻 ①拆开一次侧中性点接地端; ②拆开二次侧中性点接地端; ③分别短接一次和二次侧,并遥测高压对低压间的绝缘值; ④记录数据。 ⑤用放电棒分别对一次侧和二次侧接地充分放电; ⑼摇测低压对低压绝缘电阻 ①拆开二次侧中性点接地端; ②分别短接星形二次侧和开口△二次侧; ③一次侧短接,并接地; ④遥测低压对低压间的绝缘值 ⑤记录数据。 ⑥用放电棒分别对一次侧和二次侧接地充分放电; 二.测量直流电阻 1.电流、电压表法 2.平衡电桥法(电桥用法见《进网作业电工培训教材》P319 ⑴单臂电桥法:1~106Ω ⑵双臂电桥法:1~10-5Ω及以下2. 3.注意事项 ⑴测量仪表的准确度≥级; ⑵连接导线接面积足够,尽量短; ⑶测量直流电阻时,其它非被测相绕组均短路接地。 4.测量结果的判断(电桥用法见《进网作业电工培训教材》P364 测量的相间差与制造厂或以前相应部位测量的相间差比较无显著差别。 三.测量介质损失tanδ(有关内容见《进网作业电工培训教材》P346) 只对35KV及以上互感器的一次绕组连同套管,测量tanδ 1.工具选择 QS1型或QS2型高压交流平衡电桥,又称为“西林电桥”。 QS1电桥的技术特性:额定电压10KV;tanδ测量范围~60%;试品测量范围Cx30pF~μF(当C N=50 pF时);测量误差tanδ=~3%时≤±%,tanδ=~6%时≤±10%;Cx 测量误差≤±5%。 2.高压测量(三种方法) ⑴正接线方法,如下图所示

电流互感器检测项目及试验

、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换 成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏?几百千伏,标准二次电压通常是100V和100V/两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培?几万安培,标准二次电流通常有5A、1A、0.5A等。 1. 电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为①。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通①的关系为: 图1.1电压互感器原理 2. 电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通①也很小,这时一、二次绕组的磁势F (F=IW)大小相等,方向相反。

即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。

图1.2电流互感器的原理 3. 互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2 或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图 1.3a 所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4. 电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。 (2 )电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。 (3 )电压互感器正常运行时,严禁将一次绕组的低压端子打开,严禁将二次 绕组短路;电流互感器正常运行时,严禁将二次绕组开路。 5. 电压互感器型号意义 第一个字母:J —电压互感器。

110kV电压互感器试验报告

工程名称: 湛江110kV横山输变电工程试验日期:2015年09月24日安装位置:110kV 1M母线PT(A相) 1.铭牌: 2.绝缘电阻测试(单位:MΩ):温度:28℃湿度:65 % 3.绕组电阻测试: 温度: 28℃ 4.变比检查: 5.极性检查:A与1a、2a、da同极性。 工程名称: 湛江110kV横山输变电工程试验日期:2015年09月24日 安装位置:110kV 1M母线PT(A相)

6.电容值及介损测试: 温度: 18 ℃湿度: 65 % 7. 试验仪器仪表: 8. 试验结果: 合格 试验人员:试验负责人: 工程名称: 湛江110kV横山输变电工程试验日期:2015年09月24日安装位置:110kV 1M母线PT(B相) 1.铭牌:

2.绝缘电阻测试(单位:M Ω):温度:28℃ 湿度:65 % 3.绕组电阻测试: 温度: 28℃ 4.变比检查: 5.极性检查:A 与1a 、2a 、da 同极性。 工程名称: 湛江110kV 横山输变电工程 试验日期:2015年09月24日 安装位置:110kV 1M 母线PT (B 相) 6.电容值及介损测试: C 1 C 2

温度: 18 ℃湿度: 65 % 7. 试验仪器仪表: 8. 试验结果: 合格 试验人员:试验负责人: 工程名称: 湛江110kV横山输变电工程试验日期:2015年09月24日安装位置:110kV 1M母线PT(C相) 1.铭牌:

2.绝缘电阻测试(单位:M Ω):温度:28℃ 湿度:65 % 3.绕组电阻测试: 温度: 28℃ 4.变比检查: 5.极性检查:A 与1a 、2a 、da 同极性。 工程名称: 湛江110kV 横山输变电工程 试验日期:2015年09月24日 安装位置:110kV 1M 母线PT (C 相) 6.电容值及介损测试: 温度: 18 ℃ 湿度: 65 % C 1 C 2 N E B

电压互感器绝缘试验技术研究

电压互感器绝缘试验技术研究 发表时间:2019-12-12T15:53:17.633Z 来源:《工程管理前沿》2019年22期作者:杜晓平李涛杨宁[导读] 对无中间抽压端子叠装式电容式电压互感器(CVT)分压电容及介损的测量方法进行了探讨摘要: 对无中间抽压端子叠装式电容式电压互感器(CVT)分压电容及介损的测量方法进行了探讨,介绍了用变频介损试验的方法及注意事项。对采用自激法进行测量的可行性和必要性进行分析,指出影响自激法测量的主要因素,总结了测量中的有关问题,并就如何提高数据正确程度提出一些建议,并根据现场实际情况进行误差校正分析。现场试验表明,该改进的自激法可消除现场干扰,所得数据完全满足试验要 求。 关键词: 电容式电压互感器(CVT);自激法;误差分析;分压电容;介损1引言 电容式电压互感器(CVT)由于防系统谐振的性能较好,并且可以兼做系统通信用的载波电容,在110kV以上的系统中正在逐步替换原有的线路电磁式电压互感器,成为系统中一种必不可少的设备。目前的电容式电压互感器(CVT)绝大多数为叠装式结构[1]。由于现场试验时叠装式CVT的电容分压器和电磁单元不能分开[2],给现场绝缘测量造成了一定的困难,现场测量时的问题较多。因此,有必要对电容式电压互感器自激法试验方法的适用性和准确性进行探讨,寻求既切实可行又简便的测量方法供广大试验人员使用,本文将对这一问题进行探讨。 2 CVT和变频介损仪的基本原理 2.1 CVT基本结构及工作原理 Fig·1 Circuit diagram of CVT CVT的原理结构见图1,电磁单元的中间变压器T的中压连线(图中B点)分有、无引出线两大类。T和补偿电抗器L、阻尼电阻Z都组装在低压分压电容器C2下面的油箱内共同组成一基本电容分压器单元(虚线框);C1为高压电容。 2.2变频介损仪的原理及分类 基于电子及微处理器技术、变频抗干扰技术、数字滤波技术的变频介损仪施加一定频率的电压于试品和标准电容器上,比较二者电流的大小、相位来确定试品电容量和介损。 图2中,R1和R2分别为数字介损电桥机内标准电容回路及被试品回路的采样电阻;CN为标准电容器的等值电容;Rx和Cx分别为被试品的等值电阻和等效电容。将采样电阻的电压与的波形进行分析计算后,即可求得与的相位差δx,同时可以计算被试品的介损系数及的阻性和容性分量。 由图2知: 式中j—复数因子,表示电流相位超前电压90°; f—介损电桥的电源输出频率; m—被试品电流的电容分量和标准电容回路电流的比例系数。 由图2所示的被试品等效电路可知其介质损耗系数:

第二部分电压互感器的介损试验

二电压互感器的介损试验 测量电压互感器绝缘(线圈间、线圈对地)的tgδ,对判断其是否进水受潮和支架绝缘是否存在缺陷是一个比较有效的手段。其主要测量方法有,常规试验法、自激磁法、末端屏蔽法和末端加压法,必要时还可以用末端屏蔽法测量支架绝缘的介质损耗因数tgδ。 1电压互感器本体tgδ的测量 (1)常规试验法 串级式电压互感器为分级绝缘,其首端“A”接于运行电压端,而末端“X”运行时接地,出厂试验时,“X端”的交流耐压一般为5千伏,因此测量线圈间或线圈对地的tgδ应根据其结构特点选取试验方法和试验电压值。 常规试验法(常规法)如图2-7所 示。测量一次线圈AX与二、三次线圈ax、 a D X D 及AX与底座和二次端子板的综合绝缘 tgδ,包括线圈间、绝缘支架、二次端子板绝缘的tgδ。由串级式互感器结构可知,下铁心下芯柱上的一次线圈外包一层0.5毫米厚 的绝缘纸后绕三次线圈(亦称辅助二次线圈)a D X D 。常规法测量时,下铁心与一次线圈等 电位,故为测量tgδ的高压电极。其余为测

图2-7 量电极。其极间绝缘较薄,因此电容量相对较大,即测得的电容量和tgδ中绝大部分是 一次线圈(包括下铁心)对二次线圈间电容量和tgδ。当互感器进水受潮时,水分一般 沉积在底部,且铁心上线圈端部易于受潮。所以常规法对监测其进水受潮还是比较有效 的。因此通过常规法试验对其绝缘状况作出初步判断,并在这一试验基础上进行分解试 验,或用其他方法进一步试验,便可具体地分析出绝缘缺陷的性质和部位。常规法试验 时,考虑到接地末端“X”的绝缘水平和QS1电桥的测量灵敏度,试验电压一般选择为 2~3千伏。不同试验接线所监测的绝缘部位如表2-1示所。 表2.-1所列的测量接线都受二次端子板的影响,而且不能准确地测量出支架的 tgδ。如果二次端子板绝缘良好,则可按表2.-2-1中序号5、6两种试验近似估算出支架 的介质损。但最好用序号1、2两次试验结果结果计算出支架的tgδ。不过上述两种计算 支架tgδ的方法都受二次端子的影响。 表2-1中序号1~7测量的电容量和介质损分别为C 1~C 7 和tgδ 1 ~tgδ 7 ,支架的 电容量和介质损分别为C 支、tgδ 支 。 表2-1 电压互感器tgδ的测量接线

电流互感器检测项目及试验

一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图1.1 电压互感器原理 2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F (F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。

图1.2 电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2 或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a 所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。 (2)电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。 (3)电压互感器正常运行时,严禁将一次绕组的低压端子打开,严禁将二次绕组短路;电流互感器正常运行时,严禁将二次绕组开路。 5.电压互感器型号意义 第一个字母:J—电压互感器。 第二个字母:D—单相;S—三相;C—串级式;W—五铁芯柱。 第三个字母:G—干式,J—油浸式;C—瓷绝缘;Z—浇注绝缘;R—电容式;S—三相;Q-气体绝缘 第四个字母:W—五铁芯柱;B—带补偿角差绕组。连字符后的字母:GH—高海拔地区使用;TH—湿热地区使用。

电容式电压互感器试验内容及方法..

电容式电压互感器试验内容及方法 第一章绪论 电压互感器作为一种电压变换装置(Transformer)是电力系统中不可或缺的设备,它跨接于高压与零线之间,将高电压转换成各种仪表的工作电压,(国标规定为100/√3和100V),电压互感器的主要用途有:1)用做商业计量用。主要接于变电站的线路出口和入口上,常用于网与网、站与站之间的电量结算用,这种用途的互感器一般要求0.2级计量精度,互感器的输出容量一般不大;2)用做继电保护的电压信号源。这种互感器广泛应用于电力系统的母线和线路上,它要求的精度一般为0.5级及3P级,输出容量一般较大;3)用做合闸或重合闸检同期、检无压信号用,它要求的精度一般为1.0、3.0级,输出容量也不大。现代电力系统,电压互感器一般可做到四线圈式,这样,一台电压互感器可集上述三种用途于一身。 电容式电压互感器(Capacitor Voltage Transformers,简称“CVT”)是50年代开始研制生产,经过科技人员不懈的努力,我国的电容式电压互感器技术已达到国际先进水平,但在生产、试验研究、以及使用过程中存在很多问题。本文拟从电容式电压互感器的各种试验基本原理入手,着重说明电容式电压互感器基本试验方法,检验的目的以及在现场使用、现场检验方面存在的问题怎样通过试验的手段来判断等问题,以使产品设计、试验、销售、服务和运行部门的专业人员对其有一个比较全面的了解。 第二章电容式电压互感器试验要求 §1.基本试验条件 1.1试验的环境条件 为了保证试验的准确性、可靠性,所有试验应在一定条件下进行,试验时应注意试验环境条件并做好记录。试验环境条件分为两种,一种为人工环境,这种情况下,一般在产品标准中都作了具体规定;另一种为自然环境条件,这种情况下,试验条件一般应遵循以下几条规律。 a) 环境温度,应在+5~+35 ℃范围内。 b) 试品温度与环境温度应无显著差异。试品在不通电状态下在恒定的周围空气温度中放置了适当长的时间后,即认为与周围空气温度相同。 c) 试验场所不得有显著的交直流外来电磁场干扰。 d) 试验场所应有单独的工作接地可靠接地,应有适当的防护措施和安全措施。 e) 试品与接地体或邻近物体的距离一般应大于试品高压部分与接地部分最小空气距离的1.5倍。

电流互感器检测项目及试验

电流互感器检测项目及 试验 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图电压互感器原理

2.电流互感器的原理 在原理上也与变压器相似,如图所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或 P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。

电压互感器绝缘试验标准化作业指导书

电压互感器绝缘试验标准化作业指导书 1.范围 本作业指导书适用于电磁式电压互感器绝缘试验,规定了预防性试验项目的引用标准、仪器设备要求,作业程序和方法,试验结果判断方法和试验注意事项等。 2.规范性引用文件 华北电网有限公司《电力设备交接和预防性试验规程》 3.试验项目及程序 3.1电磁式电压互感器绝缘试验包括以下试验项目: a)绕组的直流电阻测量; b)绕组的绝缘电阻测量; c)介质损失测量; 3.2试验程序 3.2.1应在试验开始之前检查试品的状态并进行记录,有影响试验进行的异常状态的要研究,并向有关人员请示调整试验项目。 3.2.2详细记录试品的铭牌参数。 3.2.3一般情况下,应先进行低压试验,再进行高压试验。应在绝缘电阻测量之后再进行介质损耗测量。 3.2.4试验后要将试品的各种接线、盖板等进行恢复。 4.试验方法及主要设备要求 4.1绕组的直流电阻测量 4.1.1使用仪器 测量二次绕组一般使用双臂电桥,测量一次绕组使用单臂电桥。或ZGY-3多功能直流电阻测试仪 4.1.2试验结果判断依据 与出厂值比较应无明显差别。 4.1.3注意事项 试验时应记录环境温度。 4.2绕组的绝缘电阻测量 4.2.1使用仪器 2500V绝缘电阻测试仪或电动兆欧表。 4.2.2测量要求 测量一次绕组和二次绕组的绝缘电阻。测量时各非被试绕组、底座、外壳均应接地。4.2.3试验结果判断依据 绕组绝缘电阻不应低于出厂值百分之六十。 4.2.4注意事项 试验时应记录环境湿度,测量二次绕组绝缘电阻的时间建议持续一分钟。 4.3介质损失值测量 固体绝缘电磁式电压互感器以及额定电压小于20KV的电磁式电压互感器一般不进行介质损失值测量。 4.3.1使用仪器 现场用测量仪器应选择具有一定抗干扰能力的,如JSY-03介质损测试仪。

电流互感器试验报告

电流互感器试验报告 电气设备试验报告大唐淮南洛河发电厂一期烟气脱硫工程 电流互感器试验报告 安装环境 安装位置电控楼一楼6KVII段2#脱硫增压风机旁路电流互感器设备名称电流互感器试验性质交接试验日期 2008-06-13 天气睛温度 26.2? 湿度66% 试验标准 GB 50150-1991-8 铭牌 型号 LZZBJ9-10A2G 额定电压 6KV 次级线圈编号准确度级容量,VA, 生产日期 2008.4 电流比 200/5 1S-1S0.5 20 12 生产厂家中国.大连第一互感器有限公司 2S-2S 5P20 15 12 A C 出厂编号 080480448 080480499 绝缘电阻测量:,MΩ, 仪器:2500V兆欧表(PC27-5G) 500兆欧表(PC27-1G) 试验项目 A C 初级对次级及地 2500 2500 次级对地 500 500 直流电阻测量及极性检查仪器:直流电阻快速测试仪、HQ2000互感器特性综合测试仪试验项目 A C 直流电阻(mΩ) 0.154 0.120 极性减极性减极性 励磁特性测量仪器:HQ2000互感器特性综合测试仪、标准电压表(0.5级 D26-V 805.60) 标准电流表(0.5级 D26-A 1130.5) 试验项目 A C 电流(A) 1 2 3 4 5 1 2 3 4 5 1S-1S 23.7 23.9 24.2 24.8 25.2 23.5 23.8 24.9 25.0 25.1 12电压(V) 2S-2S 85.2 88.4 91.8 93.6 95.0 82.6 87.9 92.8 95.7 96.2 12 电流比测量仪器:HQ2000互感器特性综合测试仪标准电流表(0.5级 D26-A 1130.5) 试验项目 A C 初级加电流(A) 40 80 120 160 200 40 80 120 160 200

电流互感器绝缘电阻试验

https://www.doczj.com/doc/905774147.html, 电流互感器绝缘电阻试验 电流互感器一次绕组有两个并列的线圈,一个线圈的两端是C1、P1,另一个线圈的两端是C2、P2,平时端子C1、C2通过连接片连接。将电流互感器一次绕组端子P1、P2短接后接至DMG2671绝缘电阻表“L”端,绝缘电阻表“E”端接地,电流互感器的二次绕组及末屏短路接地。 接线经检查无误后,按下绝缘电阻表开机按钮,读取仪表表头上的数值,并做好记录。完成测量后,应先断开接至被试电流互感器高压端的连接线,再按下绝缘电阻表的关机按钮,然后对电流互感去测试部位短接放电。

https://www.doczj.com/doc/905774147.html, 测量互感器绝缘电阻的注意事项: (1)每次试验应选用相同电压、相同型号的绝缘电阻测试仪。 (2)测量时宜使用高压屏蔽线且屏蔽线接地。若无高压屏蔽线,测试线不要与地线缠绕,应尽量悬空。测试线不能用双股绝缘线和绞线,应用单股线分开单独连接,以免因绞线绝缘不良而引起误差。 (3)试验人员之间应分工明确,测量时应配合默契,测量过程中要大声呼唱。(4)测量时应在天气良好的情况下进行,且空气相对湿度不高于80%。若遇天气潮湿、互感器表面脏污,则需要进行“屏蔽”测量,屏蔽式在互感器套管中上部表面用软质裸铜线紧密缠绕若干圈,引至绝缘电阻表的屏蔽端(“G”端),以消除表面泄漏的影响。 (5)禁止在有雷电或邻近高压设备时使用绝缘电阻表,以免发生危险。 (6)测量电流互感器末屏绝缘的绝缘电阻、串级式电压互感器一次然组绝缘电阻、电容式电压互感器主电容C1、分布电容C2及中间变压器的绝缘电阻后,切记做好末屏、“X”端、“δ”端的接地。 (7)在将末屏接地解开时,应解开“接地端”,不要解开“末屏端”,以免造成末屏芯线断裂或渗油。 (8)在测量电流互感器末屏绝缘电阻时,绝缘电阻表“L”端测试线搭在电流互感器“末屏端”后,观察有无充电现象,放电时注意观察有无“火花” 或“放电”声。

电压互感器试验报告

工程名称新余市生活垃圾焚烧发电项目高低 压配电室 试验日期2015.07.03 装设单元2# 电压互感器柜型号JDZX11-10C 制造厂家大连华厦泰克电气集团有限公司出厂日期2014.08 额定电压(kV) 10.5/ 3 /0.1/ 3 /0.1/3 最大容量(VA) 400 准确等级AN :0.5 an:6P dadn:/ 容量(VA) / 环境温度(℃)30 天气晴相对湿度(%)65 出厂编号 A 相:14085136 B 相:14085135 C 相:14085134 试验依据依据规范GB50150-2006 1 绝缘电阻测量: 使用仪器:兆欧表设备编号:5209-8004 型号:3122 接线方式Ⅰ/E an /E dadn /E an/ I da/ I dadn/an 绝缘电阻(MΩ) 备注 结论A 相100000 50000 60000 35000 30000 40000 B 相100000 50000 60000 35000 30000 40000 C 相100000 50000 60000 35000 30000 40000 一、二次绕组间绝缘电阻>1000M Ω;一次绕组对铁芯绝缘电阻 合格 >500M Ω;二次绕组对铁芯绝缘电阻>1000M Ω。 2 介质损耗及电容量测量: 使用仪器:/ 型号:/ 编号:/ 相别接线方式A 相/ 试验电压 / (kV) tgδ(%) / Cx (pF ) / B 相/ / / / C 相/ / / / 备注35kV 及以上电压互感器tgδ不大于出厂试验值的130% 。 结论 3 绕组及熔断器直流电阻测量: 使用仪器:直阻电桥设备编号:5210-8017 型号:JY44 相别 A B C 一次绕组阻值(Ω)596.8 602.1 591.9 1a1n (Ω)0.0780 0.0788 0.0774 2a2n (Ω)0.1596 0.1630 0.1549 dadn (Ω)0.1574 0.1556 0.1566 熔断器阻值(Ω)7.3 7.2 7.1

电容式电压互感器绝缘试验-2004

电容式电压互感器绝缘试验作业指导书 1范围 本作业指导书适用于电容式电压互感器(CVT)绝缘试验,规定了交接验收试验、预防性试验、大修后试验项目的引用标准、仪器设备要求、作业程序和方法、试验结果判断方法和试验注意事项等。该试验的目的是判定电容式电压互感器的绝缘状况,能否投入使用或继续使用。制定本指导书的目的是规范试验操作、保证试验结果的准确性,为设备运行、监督、检修提供依据。被试设备所涉及的其它试验如准确级检定试验不在本指导书范围内。 2规范性引用文件 下列文件中的条款通过本作业指导书的引用而成为本作业指导书的条款。凡是注日期的引用文件,其随后所有的修改单或修订版均不适用于本作业指导书,然而,鼓励根据本作业指导书达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本作业指导书。 GB4703 电容式电压互感器 JB/T8169 耦合电容器及电容分压器 GB50150 电气装置安装工程电气设备交接试验标准 DL/T727 互感器运行检修导则 3安全措施 3.1为保证人身和设备安全,应严格遵守安全规程DL408-91《电业安全工作规程(发电厂和变电所电气部分)》中有关规定; 3.2为保证人身和设备安全,在进行绝缘电阻测量后应对试品充分放电; 3.3在进行tgδ及电容量测量时,应注意高压测试线对地绝缘问题; 3.4在进行交流耐压试验和局部放电测试等高电压试验时,要求必须在试验设备及被试品周围设围栏并有专人监护,负责升压的人要随时注意周围的情况,一旦发现异常应立刻断开电源停止试验,查明原因并排除后方可继续试验。 4试验项目及程序 电容式电压互感器(CVT)绝缘试验包括以下试验项目: a)中间变压器一次、二次绕组的直流电阻测量 b)各电容器单元及中间变压器各部位绝缘电阻测量 c)电容器各单元的电容量及tgδ测量 d)交流耐压试验与局部放电测试 应在试验开始之前检查试品的状态并进行记录,有影响试验进行的异常状态时要研究、并向有关人员请示调整试验项目。 详细记录试品的铭牌参数。 试验后要将试品的各种接线、盖板等进行恢复。 应根据交接或预试等不同的情况依据相关规程规定从上述项目中确定本次试验所需进行的试验项目和程序。 一般情况下,应先进行低电压试验再进行高电压试验;应在绝缘电阻测量之后再进行tgδ及电容量测量,这两项试验数据正常的情况下方可进行试验电压较高的局部放电测试和交流耐压试验;交流耐压试验后宜重复进行局部放电测试和介损及电容量测量,以判断耐压试验前后试品的绝缘有无变化。推荐

10kV电流互感器试验2

安装位置:+AH415 线路备用设备名称:10kV电流互感器 试验日期:2012年10月19日温度:22℃湿度:60 % 一、铭牌 型号:LZZBJ9-10A1 户内50Hz 额定绝缘水平(kV) 12/42/75 GB1208-2008 出现端子标号1S1,1S2 2S1,2S2 额定电流比(A) 1000/1 1000/1 额定输出(VA) 15 15 准确等级0.5 10P20 短时热电联1S 21KA 额定动稳定电流52.5KA 出厂编号:A:1301253 C:1301256 零序: 型号:LXK-Φ240 频率:50Hz 电流比:50/1 额定输出:2VA 准确等级:10P5 出厂日期:2013年1月出厂编号:0351 厂家:中国大连第二互感器集团有限公司 二、试验数据: 2.1、绝缘电阻试验:(单位:MΩ) 试验端号 A C 0 一次对二次及地8210 7120 6050 1S-2S 3530 3040 3300 二次对地8410 8340 9030 使用设备绝缘摇表 2.2、变比和极性试验: 相 别 端子号实测变比值铭牌值实测值与铭牌值的误差(%) 极性 A相1S1-1S2 1000.1 1000/1 0.01 减2S1-2S2 999.6 1000/1 -0.04 减

C相1S1-1S2 998.9 1000/1 -0.11 减2S1-2S2 1000.2 1000/1 0.02 减 O S1-S2 50.1 50/1 0.20 减 2.3、二次直流电阻试验:(单位:Ω)注:数据已换算至同一温度试验端子号 A C O 1S1-1S2 3.707 3.659 0.143 2S1-2S2 6.411 6.424 —— 使用设备互感器测试仪 2.4、伏安特性试验: 被测绕组相别试验数据 2S1-2S2 A相 电流(A)0.1 0.2 0.3 0.4 0.5 电压(V)371 426 441 448 453 C相 电流(A)0.1 0.2 0.3 0.4 0.5 电压(V)411 437 447 453 457 使用设备互感器测试仪 2.5交流耐压试验: 相别耐压值(V) 耐压时间(S) 结果 一次A相33000 60 合格B相33000 60 合格C相33000 60 合格 二次A相2000 60 合格B相2000 60 合格C相2000 60 合格 使用设备试验变压器、调压器 三、试验结论: 以上试验均符合中华人民共和国国家标准《电气装置安装工程电气设备交接试验标准》GB50150—2006的相关规定及有关说明书,符合标准要求。

互感器实验报告

综合性、设计性实验报告 实验项目名称电流互感器与电压互感器的接线方式 所属课程名称工厂供电 实验日期2014年10月31日 班级电气11-14班 学号05 姓名刘吉希 成绩 电气与控制工程学院实验室 一、实验目的 了解电流互感器与电压互感器的接线方法。 二﹑原理说明

互感器(transformer)是电流互感器与电压互感器的统称。从基本结构和工作原理来说,互感器就是一种特殊变压器。电流互感器(current transformer,缩写为 CT,文字符号为 TA),是一种变换电流的互感器,其二次侧额定电流一般为 5A。电压互感器(voltage transformer,缩写为 PT,文字符号为 TV),是一种变换电压的互感器,其二次侧额定电压一般为 100V。(一)互感器的功能主要是:(1)用来使仪表、继电器等二次设备与主电路(一次电路)绝缘这既可避免主电路的高电压直接引入仪表、继电器等二次设备,有可防止仪表、继电器等二次设备的故障影响主回路,提高一、二次电路的安全性和可靠性,并有利于人身安全。(2)用来扩大仪表、继电器等二次设备的应用范围通过采用不同变比的电流互感器,用一只 5A 量程的电流表就可以测量任意大的电流。同样,通过采用不同变压比的电压互感器,用一只 100V 量程的电压表就可以测量任意高的电压。而且由于采用互感器,可使二次仪表、继电器等设备的规格统一,有利于这些设备的批量生产。(二)互感器的结构和接线方案 电流互感器的基本结构和接线电流互感器的基本结构原理如图 3-2-1-1 所示。它的结构特点是:其一次绕组匝数很少,有的型式电流互感器还没有一次绕组,而是利用穿过其铁心的一次电路作为一次绕组,且一次绕组

相关主题
文本预览
相关文档 最新文档