滑坡治理及监测综述
- 格式:doc
- 大小:24.00 KB
- 文档页数:5
西宁山体滑坡整治情况汇报近年来,西宁市山体滑坡频发,给当地居民的生命财产安全带来了严重的威胁。
为了有效整治山体滑坡,保障人民生命财产安全,市政府高度重视,采取了一系列有效措施,取得了显著成效。
一、加强监测预警体系建设。
针对西宁市山体滑坡多发的特点,我们加大了监测预警体系的建设力度。
在山体滑坡易发区域,我们建设了多个监测点,实时监测地质变化情况,一旦发现异常情况,能够及时发出预警信号,做好疏散转移工作,最大限度地减少人员伤亡和财产损失。
二、加强山体治理工作。
针对已经发生的山体滑坡,我们采取了有效的治理措施。
通过植被的恢复和加固、地质体的加固和加固,以及排水排渣等综合治理措施,有效地减少了山体滑坡的发生频率和规模,为当地居民的生命财产安全提供了有力的保障。
三、加强宣传教育。
为了增强居民的山体滑坡防范意识和自救能力,我们加强了宣传教育工作。
通过开展山体滑坡防范知识的宣传活动、组织居民参与山体滑坡应急演练等活动,提高了居民的自救自护能力,减少了山体滑坡事故的发生和损失。
四、加强科学研究。
我们还加强了与相关科研机构的合作,开展了一系列针对西宁市山体滑坡的科学研究工作。
通过对地质环境、气候变化等因素的深入研究,为山体滑坡的预防和治理工作提供了科学依据和技术支持。
五、加强政策法规建设。
为了加强对山体滑坡防治工作的管理和监督,我们加强了相关政策法规的建设。
制定了一系列山体滑坡防治的政策文件,明确了责任部门和责任人,加大了对违规行为的处罚力度,形成了良好的治理氛围。
综上所述,通过多年的努力,西宁市山体滑坡整治工作取得了明显成效。
但是,我们也清醒地意识到,山体滑坡防治工作任重道远,需要我们继续保持高度的警惕和努力。
我们将继续加大投入,加强监测预警、加强治理工作、加强宣传教育、加强科学研究和加强政策法规建设,全力以赴,为西宁市山体滑坡的整治工作贡献力量,确保人民生命财产安全。
长江三峡库区重庆市万州区康家坡滑坡治理工程监测总结报告一、概况及项目来源康家坡滑坡位于重庆市万州城区的古滑坡枇杷坪的中西部,与西面黄泥包滑坡相距120m,北为油脂公司,东邻石油站、食品罐头厂,南抵长江并与一马路相通。
滑坡区房屋建筑非常密集,现有万一中、石油站、油脂公司炼油厂等重要企事业单位。
其地形北高南低,分布高程132~215m,横向上东部高、西部略低,高差12.5m;该滑坡东西宽450m,南北长400m,滑坡体平均厚约20m,体积约360×104m3,为大型松散堆积层滑坡。
据工程地质勘察,康家坡滑坡的滑体主要为粉质黏土夹碎块石及碎块石土组成,表层分布有人工填土,滑体厚度7.1~32.8m。
滑带土以褐灰色夹白色可塑状粘性土为主,其间含泥岩角砾,具搓揉磨光现象,所见滑面平直,镜面光滑,擦痕清晰,滑带土厚度0.50~2.35m。
该滑坡为土体沿基岩面滑动,滑床为中侏罗统上沙溪庙组泥岩和砂岩组成,滑床前段为砂岩,滑床后段为泥岩局部夹砂岩组成。
据气象及水文地质调查,万州区属于亚热带季风气候,具有春早、夏热、秋雨绵绵、冬暖多雾,无霜期长,雨量充沛的特点。
年平均气温18.1℃,多年平均降雨量1191.3mm,降雨多集中在5~9月,占全年70%左右。
万州区又属于渝东局部暴雨中心,多为大雨到暴雨,最大日降雨量曾达到243.3mm(1982年7月16日),最大一次连续降雨过程曾达到488.7mm(1982年7月15~23日)。
而滑坡所属万州城区最大小时降雨量曾达到59.3mm(1988年7月2日)。
一般前期累计连续降雨量280mm,日平均降雨量强度140mm,是诱发大、中型滑坡的临界降雨值。
康家坡滑坡区内地下水以松散岩类孔隙水为主,地下水位埋深0.50~8.70m,渗透系数为0.009~0.181m/d。
滑坡区砂岩为透水层,泥岩为隔水层,滑坡堆积层为弱含水层水量不均且较频繁。
工程治理措施:依据康家坡滑坡的现状,以及长江三峡库区建设的库水位在175m至145m之间变动时滑坡体的稳定影响分析,确定整治方案为地表排水工程、支挡工程(抗滑桩、锚索抗滑桩工程)及桩前护坡工程。
山体滑坡处理总结报告(一)引言概述:山体滑坡是一种常见的自然灾害,严重威胁人们的生命和财产安全。
为了有效应对山体滑坡事件,本报告总结了我们在山体滑坡处理方面的经验和教训。
本报告将从五个大点着手,包括滑坡预警与监测、滑坡风险评估、滑坡处理方法、复杂滑坡案例分析以及应对策略。
通过这些措施,我们希望能够使山体滑坡事故的发生率降低,并提高我们应对山体滑坡的能力。
正文内容:1. 滑坡预警与监测:- 安装合适的监测设备,如倾角仪、地下水位仪等,以及定期进行设备检修和维护。
- 建立滑坡预警系统,及时监测并预警可能发生滑坡的山区,并与当地政府和居民建立有效的沟通渠道。
2. 滑坡风险评估:- 开展地质勘察工作,详细了解山体的地质构造和地质背景。
- 分析山体滑坡的潜在原因,如水分饱和、土壤松动等,并评估滑坡的可能性和危害程度。
3. 滑坡处理方法:- 采取合适的工程措施,如土体加固、排水系统建设等,以减轻山体的滑坡风险。
- 开展植被恢复工作,通过植被的保护和重建来稳定土壤,防止再次发生滑坡。
4. 复杂滑坡案例分析:- 分析一些复杂滑坡案例的原因和处理方法,如地质构造复杂、滑坡规模庞大等。
- 总结这些案例的经验教训,以便在将来的滑坡事件中更好地应对复杂的情况。
5. 应对策略:- 加大对山体滑坡处理方面的科学研究力度,不断提高我们对滑坡发生机理的认识和应对能力。
- 加强滑坡事故应急预案的制定和演练,提高应对滑坡事件的效率和响应能力。
总结:本报告总结了山体滑坡处理方面的经验和教训,包括预警与监测、风险评估、处理方法、复杂案例分析以及应对策略。
通过采取这些措施,我们可以更好地预防和应对山体滑坡事件,保障人们的生命和财产安全。
然而,鉴于山地环境的复杂性和多变性,我们需要不断加强研究和实践,以提升我们的滑坡处理能力。
滑坡的整治措施与滑坡的监测汇报人:目录•滑坡的整治措施•滑坡的监测技术•滑坡的预防措施•滑坡的应急处置01滑坡的整治措施修建在滑坡体外围,用以阻止水流入滑坡体,减少地表水对滑坡的渗透压力。
截水沟排水沟水平钻孔疏干设置在滑坡体内,引导滑坡体内的地下水和地表水排出,降低水对滑坡的静水压力。
在滑坡体内部钻孔,将地下水导出,降低地下水位,有效防止滑坡发生。
030201排水措施将滑坡体上部和后部的土体削去一部分,减小下滑力,同时将削下的土体堆在滑坡前部,增加抗滑力。
削坡在滑坡前部堆载土石,增加滑坡的抗滑力,同时减小下滑力。
反压削坡与反压工程一种常见的挡土墙形式,具有较高的抗滑性能和稳定性。
钢筋混凝土挡土墙用石头堆砌而成的挡土墙,具有就地取材、施工简单等优点。
石挡土墙将钢板桩打入滑坡体中,形成一道挡土墙,具有施工速度快、对环境影响小等优点。
钢板桩挡土墙挡土墙工程将钢绞线或高强度钢丝绳穿过滑坡体内部,通过张拉和固定在稳定地层中,增加滑坡体的稳定性。
用钢筋混凝土或钢制成的杆状物,通过粘结力与岩土体锚固在一起,增加岩土体的稳定性。
锚索与锚杆工程锚杆锚索抗滑桩工程•抗滑桩:一种常见的滑坡整治措施,通过在滑坡体中设置桩体,将滑坡体的下滑力传递到稳定地层中,增加滑坡体的稳定性。
02滑坡的监测技术简易监测技术通过定期观测滑坡体上的观测点,记录位移、倾斜、裂缝等变化情况,评估滑坡的活动状态。
土体电阻法通过测量滑坡体不同深度土壤的电阻值,了解土壤含水量和位移情况,判断滑坡的发展趋势。
光纤传感技术利用光纤传感器对滑坡体的位移、应力、温度等参数进行实时监测,具有高精度、抗干扰等特点。
数据采集与处理系统通过安装传感器、数据采集设备和处理软件,实现滑坡数据的实时采集、传输和处理,提高监测效率和准确性。
自动化监测技术利用高精度GPS设备对滑坡体的位移、倾斜等进行实时监测,具有高精度、远程监控等特点。
高精度GPS测量通过将GPS接收机安装在固定基准点和滑坡体上,比较两者之间的位置差异,实现滑坡体的实时监测。
滑坡研究现状综述滑坡研究现状综述滑坡是一种非常常见的地质灾害,它造成的危害可想而知,它影响甚广,因此,防治滑坡成为一个重大的课题。
本文对近年来国内外滑坡研究的最新进展进行总结,以便更好地掌握滑坡防治的理论依据。
一、滑坡发育的构造环境1、滑坡发育的地质环境滑坡发育的地质环境复杂多样,受地质条件影响较大,因而大量研究表明,滑坡的发育与山脉构造活动、断裂破坏、地壳变形和沉积作用的关系密不可分。
构造活动主要包括构造控制、构造因素和构造过程3方面。
滑坡发育与地质构造的交互作用十分明显,主要表现为:第一,构造运动引起悬崖、断崖、混合体系、崩落体系和地质构造特征的变化,从而诱发滑坡发育;第二,构造形成的滑坡引起活动破坏,对地质构造进行影响,从而构筑出滑坡的构造环境;第三,构造上受到滑坡作用的构造特征可以反映滑坡发育的性质和机理。
2、滑坡发育的地形环境滑坡发育的地形环境特征主要有河流交错、陡坡特征、水文作用、风蚀侵蚀等环境因素。
这些环境因素都对滑坡发育有了较大影响,例如河流交错会加速地质构造破坏和岩体局部破碎,从而促进滑坡发育;陡坡环境易于形成断崖和悬崖,促进滑坡发育;水文作用、风蚀侵蚀会在岩石表面形成大量抗滑特性不同的非对称微槽,形成破碎带,从而促进滑坡发育。
二、滑坡发育机理滑坡的发育是一个复杂的动态过程,主要表现为岩体在地质构造和水文作用的叠加作用下发生破坏的过程。
滑坡机理的研究从两个层面着手:一是地质工程学就滑坡的发育分类研究,主要涉及滑坡类型、发育类型和形成机理的研究;二是物理地质学就滑坡发育过程的研究,主要涉及岩石稳定性、岩石微观破坏机理和滑坡活动机制研究。
(1)岩石稳定性研究滑坡发育的前提是岩石存在某种不稳定性,因此,岩石稳定性是滑坡发育的关键。
稳定性问题主要有3个方面:一是岩体稳定性,即岩体破坏时的坡度和坡向;二是地形稳定性,即地形变化及其对坡面稳定的影响;三是滑脱稳定性,即滑脱在滑动过程中的循环变化及其发育稳定性的影响。
目录•滑坡的整治措施•滑坡的监测技术•滑坡的预防措施•滑坡的应急处置滑坡的整治措施01截水沟修建在滑坡体外围,用以阻止水流入滑坡体。
02排水沟用于将滑坡体内的水引出,防止水在滑坡体内积聚。
03地下排水通过设置地下排水系统,如排水孔、排水廊道等,将滑坡体内的水排出。
排水措施0102削坡将滑坡体的坡度削减,以减小下滑力。
反压将部分滑坡体反压回原位,以增加抗滑力。
削坡与反压工程采用钢筋混凝土等材料,具有较高的强度和刚度。
采用木材、土石等材料,具有较好的柔性和适应性。
刚性挡土墙柔性挡土墙挡土墙工程锚索将钢索穿过滑坡体,一端固定在稳定岩层中,另一端与建筑物或结构物相连,以提高稳定性。
锚杆将钢筋混凝土杆植入滑坡体,通过固定在杆端的锚索将滑坡体的稳定性提高。
锚索工程锚喷护坡工程锚杆喷射混凝土在滑坡体表面设置锚杆,然后喷射混凝土以固定滑坡体。
喷射钢纤维混凝土采用含有钢纤维的混凝土进行喷射,以提高滑坡体的强度和稳定性。
滑坡的监测技术观测点设置01在滑坡体及周边设置观测点,定期观测地面变形情况。
02数据记录与分析记录观测数据,分析变形趋势,预测滑坡发生可能性。
03预警系统根据观测数据建立预警系统,及时发现并应对可能发生的滑坡。
地面变形观测数据记录与分析记录检测数据,分析应力变化情况,判断滑坡发生可能性。
应力状态检测通过应力传感器等设备检测滑坡岩土体的应力状态。
预警阈值设定根据历史数据设定预警阈值,及时发现并应对可能发生的滑坡。
岩土体应力测试在滑坡体及周边设置水位监测井,定期观测地下水位变化情况。
水位监测井设置数据记录与分析预警系统记录观测数据,分析水位变化趋势,预测滑坡发生可能性。
根据观测数据建立预警系统,及时发现并应对可能发生的滑坡。
030201地下水位观测在滑坡体内部设置孔隙水压力传感器,定期观测孔隙水压力变化情况。
压力传感器设置记录观测数据,分析孔隙水压力变化趋势,预测滑坡发生可能性。
数据记录与分析根据观测数据建立预警系统,及时发现并应对可能发生的滑坡。
山体滑坡情况汇报治理措施近年来,我国山区地质灾害频发,其中山体滑坡成为了一大隐患。
山体滑坡不仅给人们的生命财产安全带来了威胁,也给当地的经济发展和社会稳定带来了不小的影响。
因此,及时了解山体滑坡情况,并采取有效的治理措施至关重要。
一、山体滑坡情况汇报。
根据最新的调查数据显示,我国山区地质灾害中,山体滑坡占比较大,尤其是在雨季和地震后容易发生。
山体滑坡不仅造成了土地的沉降和破坏,还会导致山体崩塌,危及周边居民的生命财产安全。
在过去的几年中,各地山体滑坡频发,给当地居民带来了不小的困扰。
二、治理措施。
1. 加强监测预警,针对山体滑坡的发生,我们需要加强对山体的监测预警工作。
利用现代化的地质灾害监测设备,对潜在滑坡点进行实时监测,一旦发现异常情况,立即启动预警机制,通知周边居民进行疏散避险。
2. 加强土地整治,对于已经发生滑坡的地区,需要进行土地整治工作。
通过植被的植被恢复和地质修复,加固滑坡地带的土地,减少土壤的流失和沉降,从根本上减少山体滑坡的发生。
3. 完善应急预案,针对山体滑坡,我们需要制定完善的应急预案。
一旦发生山体滑坡,需要有清晰的处置流程和应急救援方案,确保在最短的时间内组织救援力量,最大限度地减少人员伤亡和财产损失。
4. 加强宣传教育,山体滑坡是一种自然灾害,但也可以通过宣传教育的方式,让更多的人了解山体滑坡的危害和预防知识。
通过举办讲座、宣传海报等形式,提高居民的自我防范意识,减少山体滑坡带来的伤害。
5. 加强政府管理,政府需要加强对山区地质灾害的管理和监督,加大投入力度,加强山区地质灾害的防治工作。
同时,建立健全的地质灾害应急处置机制,提高山区地质灾害的应对能力。
三、结语。
山体滑坡是一种常见的自然灾害,对人们的生命财产安全造成了威胁。
只有通过加强监测预警、加强土地整治、完善应急预案、加强宣传教育和加强政府管理等多种措施的综合施策,才能有效地减少山体滑坡带来的危害,保障人们的生命财产安全。
国内外滑坡防治与研究现状综述滑坡是一种常见的地质灾害,对于人类的生命和财产安全构成了威胁。
为了探究滑坡发生的原因和机理,很多国内外学者和科研机构进行了深入的研究和探索,并取得了一定的成果。
自20世纪60年代以来,我国逐渐重视地质灾害研究和防治工作,滑坡问题也得到了越来越多的关注。
在滑坡研究方面,我国学者主要从以下几个方面进行了探讨:1. 滑坡地质机理研究通过对滑坡形态、地质构造、地质物理特征以及工程构造等方面进行分析和研究,学者们深入探究了滑坡发生的内在机理和原因。
例如,岩土力学分析、地质勘察和地形测量等技术手段被广泛应用于滑坡地质机理研究中。
同时,大量的实验室模拟和现场观测也能够帮助学者们研究滑坡地质机理,并为滑坡防治提供了科学依据。
2. 滑坡预测与防治滑坡预测与防治研究是我国滑坡研究的重要方面,这不仅可以为人们提供及时的预警与应对,减少灾害造成的损失,同时还有助于保障人民生命财产安全和社会基础设施建设的稳定。
因此,滑坡预测和防治是国家防灾减灾工作中的重要内容。
我国的滑坡预测与防治研究主要从地质勘察、滑坡灾害风险评估、监测预测、防治技术和管理制度等方面入手,尤其是滑坡监测技术已迅速发展。
近几年来,高分辨率遥感技术、GPS定位技术、数字测量技术等先进技术广泛应用到滑坡监测与预测中,这些技术的进步为人们提供了更为精准的滑坡监测预测方法,为滑坡防治提供了有力的技术支持。
国外滑坡研究较早,相对于我国,国外的滑坡研究更为深入和复杂。
目前,国外滑坡研究主要有以下几个方面:国外学者对滑坡的形态、地质构造、地貌地质、岩土结构和应力耦合制约等方面进行了广泛的研究,提出了大量有关滑坡地质机理的理论与观点,并通过现场实践和数值模拟不断深化和完善相关理论。
国内外已有多种滑坡预测方法,包括数据驱动方法、物理问答方法、过程驱动方法等等。
在防治工作方面,国外学者主要采用预防措施和干预措施两大类。
其中,预防措施主要包括环境治理、工程防护和社会管理等方面,而干预措施主要包括土木工程、生物工程和地质工程等方面,这些措施的主要目的是保护人员安全和保护财产安全。
滑坡治理及监测方案研究摘要:滑坡作为边坡失稳最为长见的地质灾害,给世界经济建设和人民财产安全造成严重损失。
目前过内外地对滑坡的治理及监测工作进行了大量的研究。
本文对比分析了国内外滑坡的治理,监测方案。
滑坡的治理方法主要有:抗滑桩、清方减重、加载反压和排水工程。
滑坡的监测方案主要有:地表变形监测、深部位移监测、地下水位监测、孔隙水压力监测、抗滑桩监测。
关键字:滑坡治理监测1、引言滑坡是指斜坡上的土体或者岩体,受河流冲刷、地下水活动、雨水浸泡、地震及人工切坡等因素影响,在重力作用下,沿着一定的软弱面或者软弱带,整体地或者分散地顺坡向下滑动的自然[1]。
从本质上讲,滑坡是土体或岩体在重力势能的作用下遵循由高处向地处运动规律的自然现象,但是,如果滑坡的发生对集体或个人的财产、人身安全构成损失,那么就将这种自然现象称为滑坡灾害[2、3]。
滑坡灾害作为边坡失稳最为常见的地质灾害,给世界经济建设和人民财产安全造成严重损失。
特别是20世纪以来,随着世界范围内开采矿山,修筑道路等一系列的活动的影响,人们的生命、财产安全越来越多的受到滑坡灾害影响着。
据有关资料统计[4-8]:前捷克斯洛伐克有滑坡9164处,占地6万公顷;意大利受滑坡威胁的面积占全国土地面积的三分之一;瑞士四万平方公里的国土面积中,山区占70%以上,己调查的体积大于1 km3的特大型滑坡就有几十处;亚美尼亚有各种规模不等的滑坡3500多处。
对滑坡变形的发展变化趋势进行监测,掌握滑坡发展变化的规律,及时制定出有针对性的整治措施,一方面可有效地避免由此带来的重大损失,另一方面也有助于对滑坡灾害进行预测预防问题进行专门研究,对治理后滑坡稳定性研究可以评估治理工程的好坏,同时可以确保人民生命的安全。
因而对滑坡的治理和监测既具有重要的工程价值又具有较高的理论意义。
2、国内外研究现状(一)滑坡的治理由于滑坡的频发性和极大的危害性,滑坡灾害治理技术的研究一直为世人所关注[9-15]欧美国家自19世纪中期就开始了对滑坡灾害治理的研究,由于早期人们对滑坡的性质和滑坡机理认识的不足,对大、中型滑坡只能做到避让,对于小型滑坡主要采用清方减重、加载反压、抗滑挡墙和排水工程进行治理,其中排水工程尤为重视。
在20世纪50~60年代,我国治理滑坡的方法主要是清方减重、加载反压、抗滑挡墙和排水工程等措施。
到第二次世界大战后,各国经济逐渐恢复和发展,对土地的利用也逐渐增多,遇到的滑坡灾害越来越多,仅采用清方减重、加载反压和排水工程等措施治理的滑坡,大部分都只是暂时处于稳定状态,随着地质条件的改变以及外界因素的触发,很多滑坡又复活了,抗滑支挡工程成为治理滑坡的迫切需要[16-18]。
随抗滑支挡作用的普遍重视,直到20世纪60年代中期,国内外最早成功的应用了抗滑桩治理边坡,由于抗滑桩具有布置灵活、施工简便以及对滑坡扰动较小等优点,得到了广泛应用。
但早期抗滑桩的设计主要是参照桩基的设计,直到70年代末,国内外许多学者才对抗滑桩的设计理论和方法开展了广泛的研究,这一时期具有代表性的学者为:刘光代等[19]用压力盒对6070年代在成昆铁路和宝成铁路几个堆积土滑坡中的抗滑桩进行了实时监测,监测结果表明作用在抗滑桩上的滑坡推力大致呈抛物线形,且推力经三到四个月后达到高峰,随后逐渐稳定。
马骥[20]对单根抗滑桩的受力条件进行了室内的模型试验研究,得出了在受力初期和后期,抗滑桩前土抗力分布图形。
Ito和Matsui[21-24]总结了口本新泻县滑坡区现场观测资料,提出了作用在滑动面以上桩体上的滑坡推力的分布有矩形状和三角形分布两种形式。
同时他们考虑桩土间的相互作用,应用土体塑性变形理论对单桩进行研究,提出了由土体的相对运动作用在抗滑桩侧上的力的计算方法。
与此同时,滑坡治理措施中地下排水措施也得到了发展,常用地下排水措施有截水沟、盲沟、倾斜钻孔排水、水平钻孔或排水廊道、截水墙、平酮、集水井、真空排水、虹吸排水和电渗排水等。
滑坡支挡工程类型也逐渐多样化,杨志法[25]等提出了纤维束导渗排水孔、层状网式钢筋石笼挡墙、预应力锚梁以及预应力抗滑桩四项边坡加固新技术,并获得了国家发明专利。
预应力锚索、锚索桩、微型桩群、普通砂浆锚杆锚固、复合挡土结构[26-31]、土锚钉、加筋土、格构锚固[32-35]、抗滑明洞以及改变土的性质等治理技术广泛应用于滑坡治理中。
(二)滑坡的监测监测是一门新兴的边缘学科,最早诞生于20世纪50年代的工程现场,随着监测技术的发展以及人们最滑坡灾害的重视,监测技术开始应用到滑坡灾害上。
最初滑坡监测技术主要是用简单的观测方法,通过人工直接观测滑坡体上地表裂缝、鼓胀、沉降、坍塌、建筑物变形及地下水变化、低温变化等现象。
这种方法对于正在发生病害的边坡进行观测较为合适。
也可结合仪器监测资料进行综合分析,用以初步判定滑坡体所处的变形阶段及中短期滑动趋势。
随着监测技术的发展以及人们最滑坡灾害的重视,监测技术开始应用到滑坡灾害上。
最初滑坡监测技术主要是用简单的观测方法,通过人工直接观测滑坡体上地表裂缝、鼓胀、沉降、坍塌、建筑物变形及地下水变化、低温变化等现象。
这种方法对于正在发生病害的边坡进行观测较为合适,也可结合仪器监测资料进行综合分析,用以初步判定滑坡体所处的变形阶段及中短期滑动趋势后来世界各国开始使用设站观测法及仪表观测方法。
设站观测法是在充分了解了现场的工程地质背景的基础上,在边坡上设立变形观测点(成线状、网络状)。
在变形区影响范围之外稳定地点设置固定观测站,使用经纬仪、水准仪、测距仪、摄影仪及全站型电子速测仪、GPS接收机等仪器定期测量变形区内网点的三维(X, Y, Z)位移变化的一种监测方法。
仪表观测法是用精密仪表对变形边坡进行地表及深部的位移、倾斜动态、裂缝相对张闭及地声、应力应变等物理参数与环境影响因素进行监测。
目前,监测仪器的类型一般可分为位移监测,地下倾斜监测、地下应力测试和环境监测四大类,是当前和今后一个时期滑坡监测发展的一个方向。
近年来发展的TDR (Time Domain Reflectometry)技术在滑坡监测上也得到了大力的应用。
随着空间技术和网络技术的飞速发展,各种先进的自动遥控监测系统相继问世,为边坡工程,特别是边坡崩塌和滑坡的自动化力学遥测创造了条件。
由于自动化程度高,可全天候连续观测,故省时、省力和安全,是当前和今后一个时期滑坡监测发展的另一个方向。
目前国际上只有荷兰、美国、日本、加拿大、韩国、香港等国家和地区在环境地质的远程监测控制传输、自动监测方面居于领先水平。
例如荷兰研制的集地下水智能遥控遥测预测、自动监视、监测数据集中处理和远程传输技术于一体的Telemetry System;日本土谷尚等人研制的LSS-Ol型滑坡自动监测系统[36]等3、结论(1)在治理方面,综观国内外在滑坡灾害减灾措施研究情况可知,虽然已形成了一系列有效的滑坡灾害治理措施,滑坡灾害治理方案的优化研究主要集中在具体单个方案的优化设计上,治理方案选择基本上是基于定性的人为凭经验选取,这样,势必会造成选择的方案不一定合理和经济,有时造成巨大的浪费。
然而,在实际工程中,往往同时有几个治理方案供选择,这时就必须对它们进行优化评价,从中选出较满意的方案。
因此,很有必要对滑坡灾害治理方案进行研究。
(2)在监测方面,目前滑坡监测的手段较多,但真正在实际工程中应用并可以得到精确数据的却比较少,而且监测的数据类型也比较单一,不能充分工程实际情况,对滑坡灾害预判和治理工作的指导程度不高。
4、参考文献[1]晏同珍,杨顺安,方云.滑坡学[M].北京:中国地质大学出版社,2000[2]王兰生,张卓元.斜坡岩体变形的基本地质力学模式[M].水文地质工程地质论丛,北京:地质出版社,1986[3]赵明阶,何春光,王多垠.边坡工程处治技术[M].人民交通出版社,2003[4]田志坤.日本滑坡防治技术现状[J].国外地质勘探技术.1990.10[5]崔政权.李宁.边坡工程一理论与实践最新进展[M].北京:中国水利水电出版社.1999[6]马永潮.浅谈日本滑坡整治的工程措施与监测系统[J].路基工程.1994. (O1):1115[7]晏同珍等.滑坡灾害与滑坡学科略论[[J].中国地质灾害与防治学报.1996.07: 2025[8]殷坤龙.瑞士滑坡及其研究概况[J].中国地质灾害与防治学报.1999.10(4):104107[9]R.E.Goodman,D.5.Kieefer.Behavior ofrock in sloPes[J]Journal of Geotechnical and Geoenvironmental Engineering,2000,8:675-654[9]R.E.Goodman,D.5.Kieefer.Behavior ofrock in sloPes[J]Journal ofGeotechnical and Geoenvironmenta l Engineering,2000,8:675一654[10]GenhuaShi,RE.Goodman.Genearlization oft wo一dimensional discontinuous deformation analysis of forward modeling[J].Int.J.for Num.and Analy.Methods in Geomech.1989,13:359一380[11]errum D.L二Progressive failure in sloPes of over consolidated Plastic clay and clay shales[J].J.5011 Mech.&Found.Div.ASCE,1967,93(SMS):3一49[12]Chowdhury R.N.,Dimitri A Grivas .Probabilitic model of Progressice failure of Slopes[J].J.Geotech.Eng.Division.ASCE,1982,108(GT6):803一819 [13]Chowdhury R.N.,Tang W H.,Sidi .Reliability model of Progressive sloPe Failure[J].Geotechnique,1 987,37(4):467一481[14]包慧明.基于RS理论的岩质路堑边坡稳定性研究[D].西安:长安大学,2003[15]祝玉学.边坡可靠性分析[M].北京:冶金工业出版社,1993[16]王恭先,滑坡防治的国内外现状[J].中国地质灾害与防治学报,1998.[17]滑坡文集编委会,滑坡文集(l一13)[M].北京:中国铁道出版社,1979一1998[18]铁道第二勘查设计院.抗滑桩设计与计算[M].北京:中国铁道出版社,1982[19]刘光代,于济民.实测滑坡推力及其变化规律[A],滑坡文集(第四集).北京:中国铁道出版社,1984: 105-115[20]马骥.单根抗滑桩受力条件的实验研究[A],滑坡文集(第五集)[C].北京:中国铁道出版社.1986: 88-96[21] Ito T, Matsui T .Methods to estimate lateral force acting on stabilizing Piles[J].Soil and foundations, 1975,15(4): 43一59[22]Ito T, Matsui T, Hong W P .Design methods for the stability analysis of the slope with landing Pier[J]. Soil andfoundations, 1979, 19(4):21一33[23] Ito T, Matsui T, Hong W P .Design methods for stabilizing piles against landslide一one row of piles[J].Soil and foundations,1981,21(1):21一37[24] Ito T, Matsui T, Hong W P .Extended design method for multi-row piles against landslide[J].Soil and foundations, 1982, 22(1): 1一13[25]杨志法,张路清,祝介旺.四项边坡加固新技术[J] .岩土力学与工程学报,200s, 24(21): 3828一3834[26]张坤勇,邹越强.复合挡土结构工作状态分析[J].安徽建筑工业学院学报(自然科学),2002, 10(3): 28-31[27]张坤勇,李凡,徐建.复合挡土结构及其在滑坡整治中的应用[J] .岩石力学与工程程学报,2001, 20(增1): 1213-1217。