不等式问题的题型与方法(文科
- 格式:doc
- 大小:1.55 MB
- 文档页数:17
兰陵一中2017届一轮复习文科数学教学案高三( )班 姓名________________ 编号:8§5.4 基本不等式及其应用1.基本不等式:设a >0,b >0 ,则ab _________a +b 2,当且仅当__________时取等号. 2.几个重要的不等式(1)a 2+b 2≥_____(a ,b ∈R ); (2)b a +a b ≥_____(a ,b 同号);(3)ab ≤________≤ a 2+b 22 (a ,b ∈R ). 3.利用基本不等式求最值问题已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当_____时,x +y 有_____值是_____.(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当_____时,xy 有_____值是_____.(简记:和定积最大) 利用基本不等式求最值要注意满足三个条件:____________________________.1.若a >0,b >0,且a +b =4,则下列不等式恒成立的是( )A.1ab ≤14B.1a +1b≤1 C.ab ≥2 D .a 2+b 2≥8 2.设x ,y ∈R ,a >1,b >1,若a x =b y =3,a +b =23,则1x +1y的最大值为( ) A .2 B.32 C .1 D.123. 已知x >0,y >0,且1x +2y=1,则x +y 的最小值是________. 4.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________.(单位:元)5. 已知函数f (x )=x +p x -1(p 为常数,且p >0),若f (x )在(1,+∞)上的最小值为4,则实数p 的值为________.例1. (1)已知x <54,求f (x )=4x -2+14x -5的最大值; (2)已知x 为正实数且x 2+y 22=1,求x 1+y 2的最大值; (3)求函数y =x -1x +3+x -1的最大值.【跟踪练习1】(1)已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A.13 B.12 C.34 D.23(2)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A .1+ 2 B .1+ 3 C .3 D .4例2 (1)已知x >0,y >0且x +y =1,则8x +2y的最小值为________. (2)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【跟踪练习2】(1)若两个正实数x ,y 满足2x +1y=1,并且x +2y >m 2+2m 恒成立,则实数m 的取值范围是( )A .(-∞,-2)∪[4,+∞)B .(-∞,-4]∪[2,+∞)C .(-2,4)D .(-4,2)(2)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________例3. (1)已知f (x )=32x -(k +1)3x +2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( )A .(-∞,-1)B .(-∞,22-1)C .(-1,22-1)D .(-22-1,22-1)(2)已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.【跟踪练习3】已知a >0,b >0,若不等式m 3a +b -3a -1b≤0恒成立,则m 的最大值为________.1.下列不等式一定成立的是( )A .lg(x 2+14)>lg x (x >0)B .sin x +1sin x≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 2.若a >0,b >0,且ln(a +b )=0,则1a +1b的最小值是( ) A.14B .1C .4D .8 3.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( )A.22B .2 2 C. 2 D .2 4.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当z xy取得最小值时,x +2y -z 的最大值为( ) A .0 B. 98 C .2 D. 945.若2x +2y =1,则x +y 的取值范围是( )A .[0,2]B .[-2,0]C .[-2,+∞)D .(-∞,-2]6.设x ,y ∈R ,且xy ≠0,则(x 2+1y 2)(1x2+4y 2)的最小值为________. 7.若对于任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是________.8.设a +b =2,b >0,则当a =________时,12|a |+|a |b取得最小值. 9.已知x >0,y >0,且2x +5y =20.(1)求u =lg x +lg y 的最大值; (2)求1x +1y的最小值.10.桑基鱼塘是某地一种独具地方特色的农业生产形式,某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块1 800平方米的矩形地块,中间挖出三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,池塘周围的基围宽均为2米,如图,设池塘所占的总面积为S 平方米.(1)试用x 表示S ;(2)当x 取何值时,才能使得S 最大?并求出S 的最大值.。
高二数学不等式的性质试题答案及解析1.根据条件:满足,且,有如下推理:(1)(2) (3) (4) 其中正确的是()A.(1)(2)B.(3) (4)C.(1) (3)D.(2) (4)【答案】B【解析】由,因为,所以,对于的值可正可负也可为0,对于(1)错误,因为,而,所以;对于(2)错误,因为,从而;对于(3)正确,因为,当时,,当时,由;对于(4)正确,因为;综上可知,选B.【考点】不等式的性质.2.设.则下列不等式一定成立的是( )A.B.C.D.【答案】D【解析】由得不到,故A错误.利用基本不等式得,故B错误;令a=-1,b=-1得,即,故C错误;,,故选D.【考点】不等式的基本性质;基本不等式。
3.若,则下列结论不正确的是()A.B.C.D.【答案】D【解析】由已知,则均正确,而故D不正确【考点】不等式的性质4.如果关于x的不等式和的解集分别为和,那么称这两个不等式为对偶不等式. 如果不等式与不等式为对偶不等式,且,则 .【答案】【解析】由题意得:不等式与为对偶不等式.,因此与同解,即与同解,所以【考点】不等式解集5.设,则下列不等式中一定成立的是A.B.C.D.【答案】A【解析】A.故A正确;B中,故B不正确,D中,故D不正确;C中当,故C不正确【考点】不等式的性质6.已知,则下列推证中正确的是()A.B.C.D.【答案】C【解析】A 当时不成立;B 当时不成立;D 当均为负值时,不成立.【考点】本题主要考查不等式的性质.7.已知,则下列说法正确的是 ( )A.若,则B.若,则C.若,则D.若,则【答案】A【解析】当时,B和D均不正确。
当时,若则。
故C不正确。
由不等式的性质可知A正确。
【考点】不等式的性质。
8.设,现有下列命题:①若,则;②若,则;③若,则;④若,则其中正确命题的序号为 .【答案】①,④【解析】因为,现有下列命题:①若即,又.所以成立,即①式成立;因为,令.所以.所以②式不成立;因为令则所以不成立.故③式不成立;因为所以又因为所以.故④式成立.【考点】1.不等式的性质.2.含绝对值的运算.3.含根式的运算.9.对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是( )A.[-2,+)B.(-,-2)C.[-2,2]D.[0,+)【答案】A【解析】对一切实数x,恒成立.当时, 恒成立.当时,因为的最大值为-2, 故【考点】恒成立问题,及参数分离法.10.若,,,则A.B.C.D.【答案】A【解析】根据题意,由于>1,,<0,0<<1那么可知其大小关系为,故选A.【考点】对数函数与指数函数的值域点评:解决的关键是根据指数函数与对数函数性质来求解范围,比较大小,属于基础题。
高三摸底测试(文科数学:集合、逻辑、函数、导数、不等式)一、 选择题(每题5分,共50分)1.设U ={1,2,3,4,5},A ={1,2,3},B ={2,3,4},则下列结论中正确的是( )A .A ⊆B B .A ∩B ={2}C .A ∪B ={1,2,3,4,5}D .A ∩(∁U B )={1}[答案] D2.命题p :∀x ∈[0,+∞),(log 32)x ≤1,则( )A .p 是假命题,﹁p :∃x 0∈[0,+∞),(log 32)x 0>1B .p 是假命题,﹁p :∀x ∈[0,+∞),(log 32)x ≥1C .p 是真命题,﹁p :∃x 0∈[0,+∞),(log 32)x 0>1D .p 是真命题,﹁p :∀x ∈[0,+∞),(log 32)x ≥1 [答案] C[解析] ∵0<log 32<1,∴y =(log 32)x 在[0,+∞)上单调递减,∴0<y ≤1,∴p 是真命题;∀的否定为“∃”,“≤”的否定为“>”,故选C.3.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=( )A .-1B .1C .-2D .3 4. 曲线xy e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( )A.294eB.22eC.2eD.22e5.若x x x f 1)(-=,则方程x x f =)4(的根是( )A .21B .21- C .2 D .2-6.函数a ax x f 213)(-+=,在区间)1,1(-上存在一个零点,则a 的取值范围是 ( )A .511<<-a B .51>a C .51>a 或1-<a D .1-<a7.若b a lg ,lg 是方程01422=+-x x 的两个实根,则ab 的值等于()A .2B .21C .100D .10 8.函数)(x f y =的图象与)1(log 21x y -=的图象关于直线x y =对称,则)(x f =( )A .x-+21 B .x 21+ C .x 21- D .x--219. 定义在R 上的可导函数f (x ),已知y =e f′(x)的图象如下图所示,则y =f (x )的增区间是( )A .(-∞,1)B .(-∞,2)C .(0,1)D .(1,2)10.已知偶函数()f x 在区间单调递增,则满足2)()f x f x +<的x 取值范围是 ( ) A.(2,)+∞ B.(,1)-∞- C.[2,1)(2,)--+∞ D.(1,2)-二、填空题(每题5分,共20分) 11. 函数1()x f x +=的定义域是 . 12.奇函数)(x f 定义域是)32,(+t t ,则=t13.已知函数f (x )的导函数为f ′(x ),且满足f (x )=3x 2+2xf ′(2),则f ′(5)=________. 14.已知等差数列{}n a ,199,a a 是函数2()1016f x x x =-+的两个零点,则50208012a a a ++=__. 三、解答题(共80分)15.(12分)设A B a x a x x B x x x A ⊆=-+++==+=若},01)1(2{},04{222,求实数a 的取值范围。
考向22 不等式性质与基本不等式1.(2022年甲卷理科第12题)12.已知3132a =,1cos 4b =,14sin 4c =,则 A .c b a >> B .b a c >>C .a b c >>D .a c b >>【答案】A【解析】构造函数21()1cos 2h x x x =--,0,2x π⎡⎤∈⎢⎥⎣⎦,则()()sin g x h x x x '==-+,()1cos 0g x x '=-+所以()(0)0g x g =,因此,()h x 在0,2π⎡⎤⎢⎥⎣⎦上递减,所以1()(0)04h a b h =-<=,即a b <. 另一方面,114sintan 4411cos 44c b ==,显然0,2x π⎛⎫∈ ⎪⎝⎭时,tan x x >, 所以114sintan 44111cos 44c b ==>,即b c <.因此c b a >>. 2.(2022年甲卷文科第12题)12.已知910m =,1011m a =-,89m b =-,则 ( )A .0a b >>B .0a b >>C .0b a >>D .0b a >> 【答案】A【解析】由910m =,可得9log 10(11.5)m =∈ ,.根据a ,b 的形式构造函数()1m f x x x =-- (1x >), 则1()1m f x mx -'=-,令()0f x '=,解得110mx m -=,由9log 10(11.5)m =∈ ,知0(0)x ∈ 1,. ()f x 在(1) +∞,上单调递增,所以(10)(8)f f >,即a b >,又因为9log 10(9)9100f =-=,所以0a b >>,答案选A .3.(2022年新高考1卷第7题)设0.10.1e =a ,19b =,ln0.9c =-,则A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C【解析】令e =x a x ,1xb x=-,ln(1)c x =--, ① ln ln ln [ln ln(1)]-=+---a b x x x x , ln(1),(0.0.1]y x x x =+-∈;1'1011x y x x-=-=<--, 所以0y ,所以ln ln 0-a b ,所以b a > ②e ln(1),(0,0.1]-=+-∈x a c x x x ,1(1)(1)e 1'e e 11+--=+-=--x xxx x y x x x, 令()(1)(1)1x k x x x e =+--,所以2'()(12)e 0=-->x k x x x , 所以()(0)0k x k >>,所以'0y >,所以0a c ->,所以a c >.4.(2022年新高考2卷第12题)对任意22,,1x y x y xy +-=,则A .1x y +≤B .2x y +≥-C .222x y +≤ D .221x y +≥【答案】BC【解析】由221x y xy +-=得2212y x y ⎫⎛⎫-+=⎪ ⎪⎪⎝⎭⎝⎭令cos sin cos 23sin ??23y x x y y θθθθθ⎧⎧-==+⎪⎪⎪⎪⇒⎨⎪==⎪⎪⎩⎩故[]cos 2sin 2,26x y πθθθ⎛⎫+=+=+∈- ⎪⎝⎭,故A 错,B 对;2222cos sin 33x y θθθ⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭()14242 2cos 2sin 2,2,333333θθθϕ⎡⎤=-+=-+∈⎢⎥⎣⎦(其中tan 3ϕ=), 故C 对,D 错.5. (2022年北京卷第11题)函数1()f x x =+_________.【答案】()(],00,1-∞⋃ 【解析】因为()1f x x =100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠, 故函数的定义域为()(],00,1-∞⋃;故答案为:()(],00,1-∞⋃6.(2022年乙卷理科第14题)已知1x x =和2x x =分别是函数)10(2)(2≠>-=a a ex a x f x 且的极小值点和极大值点,若21x x <,则a 的取值范围是___________ 【答案】⎪⎭⎫ ⎝⎛e 1,0【解析】()()ex a a x f x-=ln 2'至少要有两个零点1x x =和2x x =,我们对其求导,()()e a a x f x 2ln 22''-=,(1)若1>a ,则()x f''在R 上单调递增,此时若()00''=x f ,则()x f '在()0,x ∞-上单调递减,在()+∞,0x 上单调递增,此时若有1x x =和2x x =分别是函数)10(2)(2≠>-=a a ex a x f x 且的极小值点和极大值点,则21x x >,不符合题意。
高考数学最新真题专题解析—等式与不等式考向一 基本不等式的应用【母题来源】2022年新高考全国II 卷【母题题文】若x ,y 满足221+-=x y xy ,则( )A. 1x y +≤B. 2x y +≥-C. 222x y +≤D. 221x y +≥ 【答案】BC【试题解析】因为22222a b a b ab ++⎛⎫≤≤⎪⎝⎭(,a b R ),由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y ⎛⎫-+= ⎪⎝⎭,设3cos sin 2y x y θθ-==,所以cos ,33x y θθθ=+=,因此2222511cos sin cos 12cos 233333x y θθθθ=θ-θ+=+++42π2sin 2,23363θ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦,所以当3333x y ==-时满足等式,但是221x y +≥不成立,所以D 错误.故选:BC .【命题意图】本题考查基本不等式及其应用,属于中高档题目.【命题方向】这类试题在考查题型上主要以选择、填空题的形式出现.试题难度有易有难,是历年高考的热点,考查学生的基本运算能力.常见的命题角度有:(1)利用不等式比较大小;(2)利用不等式求最值;(3)基本不等式成立的条件 【得分要点】(1)对原不等式进行化简、变形;(2)符合基本不等式的条件“一正、二定、三相等”,用基本不等式求解; (3)判断等号成立的条件; (4)利用“1”的合理变换是解题.考向二 线性规划【母题来源】2022年高考全国乙卷(文科)【母题题文】若x ,y 满足约束条件2,24,0,x y x y y +≥⎧⎪+≤⎨⎪≥⎩则2z x y =-的最大值是( )A. 2-B. 4C. 8D. 12【答案】C【试题解析】由题意作出可行域,如图阴影部分所示, 转化目标函数2z x y =-为2y x z =-,上下平移直线2y x z =-,可得当直线过点()4,0时,直线截距最小,z 最大,所以max 2408z =⨯-=.故选:C.【命题意图】本题考查线性规划及其应用,属于比较容易题目.【命题方向】这类试题在考查题型上主要以选择、填空题的形式出现.试题难度较小,是历年高考的热点,考查学生的基本作图能力和运算能力. 常见的命题角度有:(1)线性规划求最值;(2)利用线性规划求参数的值;【得分要点】1.正确画出可行域;2.确定目标函数平移的方向决定取得最大值或最小值。
《利用导数解决不等式问题》专题一、相关知识点1.利用导数证明不等式成立问题的常用方法(1)直接将不等式转化成某个函数最值问题若证明f(x)<g(x),x∈(a,b),可以构造函数F(x)=f(x)-g(x),如果F′(x)<0,则F(x)在(a,b)上是减函数,同时若F(a)≤0,由减函数的定义可知,x∈(a,b)时,有F(x)<0,即证明了f(x)<g(x).(2)将待证不等式转化为两个函数的最值进行比较证明在证明不等式中,若待证不等式的变形无法转化为一个函数的最值问题,可借助两个函数的最值证明,如要证f(x)≥g(x)在D上成立,只需证明f(x)min≥g(x)max即可.2.不等式在某个区间上恒成立(存在性成立)问题的转化途径(1)f(x)≥a恒成立⇔f(x)min≥a;存在x使f(x)≥a成立⇔f(x)max≥a.(2)f(x)≤b恒成立⇔f(x)max≤b,存在x使f(x)≤b成立⇔f(x)min≤b.(3)f(x)>g(x)恒成立⇔F(x)=f(x)- g(x),F(x)min>0.(4)①任意x1∈M,任意x2∈N,f(x1)>g(x2)⇔f(x1)min>g(x2)max;②任意x1∈M,存在x2∈N,f(x1)>g(x2)⇔f(x1)min>g(x2)min;③存在x1∈M,存在x2∈N,f(x1)>g(x2)⇔f(x1)max>g(x2)min;④存在x1∈M,任意x2∈N,f(x1)>g(x2)⇔f(x1)max>g(x2)max.题型一证明不等式1、已知函数f(x)=x+a e x(a∈R).(1)讨论函数f(x)的单调性;(2)当x<0,a≤1时,证明:x2+(a+1)x>xf′(x).2、已知函数f (x )=a e x -ln x -1.证明:当a ≥1e时,f (x )≥0.3、设函数f (x )=ax 2-(x +1)ln x ,曲线y =f (x )在点(1,f (1))处切线的斜率为0.(1)求a 的值;(2)求证:当0<x ≤2时,f (x )>12x .4、已知函数f (x )=ax 2+x -1e x. (1)求曲线y =f (x )在点(0,-1)处的切线方程;(2)证明:当a ≥1时,f (x )+e≥0.5、设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数;(2)证明:当a >0时,f (x )≥2a +a ln 2a.6.已知函数f (x )=ln x +a x,a ∈R. (1)讨论函数f (x )的单调性;(2)当a >0时,证明f (x )≥2a -1a.7.已知函数f (x )=ln x +ax 2+(2a +1)x .(1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a-2.8、已知函数f(x)=x2-(a-2)x-a ln x(a∈R).(1)求函数y=f(x)的单调区间;(2)当a=1时,证明:对任意的x>0,f(x)+e x>x2+x+2.9、已知函数f(x)=a ln x-bx-3(a∈R且a≠0).(1)若a=b,求函数f(x)的单调区间;(2)当a=1时,设g(x)=f(x)+3,若g(x)有两个相异零点x1,x2,求证:ln x1+ln x2>2.10、已知函数f(x)=ln x,g(x)=x+m(m∈R).(1)若f(x)≤g(x)恒成立,求实数m的取值范围;(2)已知x1,x2是函数F(x)=f(x)-g(x)的两个零点,且x1<x2,求证:x1x2<1.题型二 解决不等式恒成立问题1、若不等式2x ln x ≥-x 2+ax -3对x ∈(0,+∞)恒成立,则实数a 的取值范围是( )A .(-∞,0)B .(-∞,4]C .(0,+∞)D .[4,+∞)2、已知函数f (x )=x +4x,g (x )=2x +a ,若任意x 1∈⎣⎡⎦⎤12,1,存在x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围是________.3、已知函数f (x )=e x -ln (x +3),则下面对函数f (x )的描述正确的是( )A .∀x ∈(-3,+∞),f (x )≥13B .∀x ∈(-3,+∞),f (x )>-12C .∃x 0∈(-3,+∞),f (x 0)=-1D .f (x )min ∈(0,1)4、定义在实数集上的函数f (x )=x 2+x ,g(x )=13x 3-2x +m . (1)求函数f (x )的图象在x =1处的切线方程;(2)若f (x )≥g(x )对任意的x ∈[-4,4]恒成立,求实数m 的取值范围.5、已知函数f (x )=ln x ,g (x )=x -1.(1)求函数y =f (x )的图象在x =1处的切线方程;(2)证明:f (x )≤g (x );(3)若不等式f (x )≤ag (x )对任意的x ∈(1,+∞)均成立,求实数a 的取值范围.6、设f (x )=a x+x ln x ,g (x )=x 3-x 2-3. (1)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围.7、已知函数f (x )=2a -x 2e x (a ∈R). (1)求函数f (x )的单调区间;(2)若任意x ∈[1,+∞),不等式f (x )>-1恒成立,求实数a 的取值范围.8、已知函数f (x )=ax -1-x ln x ,(1)若函数f (x )≤0恒成立,求实数a 的取值范围;(2)当a =1时,设函数g (x )=xf (x ),在x =x 0处取到极小值,求证:-19<g (x 0)<-332.题型三 不等式存在性成立问题1、设函数f (x )=(x -a )2+(3ln x -3a )2,若存在x 0,使f (x 0)≤910,则实数a 的值为( ) A.110 B.14 C.12D .12、已知函数f (x )=x |x 2-a |,若存在x ∈[1,2],使得f (x )<2,则实数a 的取值范围是____3、已知函数f (x )=ax -e x (a ∈R),g (x )=ln x x. (1)求函数f (x )的单调区间;(2)∃x 0∈(0,+∞),使不等式f (x )≤g (x )-e x 成立,求a 的取值范围.4、已知函数f (x )=x -(a +1)ln x -a x (a ∈R),g (x )=12x 2+e x -x e x . (1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)恒成立,求a 的取值范围.。
专题三:不等式问题的题型与方法(文科)一、考点回顾1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。
2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识.3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。
在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络二、 经典例题剖析 1.有关不等式的性质此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起例1.(2006年江西卷)若a >0,b >0,则不等式-b <1x<a 等价于( ) A .1b -<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1b D.x <1b -或x >1a解析:-b <1x <a 等价于-b <1x <0或0<1x <a 等价于x <1b -或x >1a答案:D点评:注意不等式ba b a 11>⇔<和适用条件是0>ab 例2.(2007年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( )A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2()2c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。
例3.(2007年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x<0时, -x ≥ax ,∴a ≥-1,综上得11a -≤≤,即实数a 的取值范围是a ≤1,选B 。
2. 有关不等式的解法此类问题在高考中选择题,填空题及解答题中均有出现,并且这几年考查也为较为平凡,要求掌握几种简单的不等式的解法,如分式不等式,高次不等式,无理不等式及含有绝对值的不等式的解法,特别要注意含参数不等式,这类问题经常一集合结合在一起出现在解答题中。
例4.(2007年安徽)解不等式(|31|1)(sin 2)x x --->0解析:因为对任意x ∈R ,sin 20x -<,所以原不等式等价于3110x --<.即311x -<,1311x -<-<,032x <<,故解为203x <<. 所以原不等式的解集为203x x ⎧⎫<<⎨⎬⎩⎭点评:本题将绝对不等式与三角函数知识结合起来考查,属中档题例5.(2007年湖北卷)设P 和Q 是两个集合,定义集合{}|P Q x x P x Q -=∈∉,且,如果{}2|log 1P x x =<,{}|21Q x x =-<,那么P Q -等于( )A.{}|01x x <<B.{}|01x x <≤C.{}|12x x <≤D.{}|23x x <≤解析:先解两个不等式得{}02P x x =<<,}{13Q x x =<<。
由P Q -定义选B 答案:B点评:本题通过考察两类简单不等式的求解,进一步考察对集合的理解和新定义的一种运算的应用,体现了高考命题的创新趋向。
此处的新定义一般称为两个集合的差。
注意点:对新定义理解不全,忽略端点值而误选A,以及解{}2|log 1P x x =<时出错。
例6.(2007年江西卷)已知函数21(0)()2(1)x c cx x c f x k c x -+<<⎧⎪=⎨⎪+<⎩ ≤在区间(01),内连续,且29()8f c =.(1)求实数k 和c 的值;(2)解不等式()1f x >. 解析:(1)因为01c <<,所以2c c <,由29()8f c =,即3918c +=,12c =. 又因为4111022()1212x x x f x k x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤在12x =处连续,所以215224f k -⎛⎫=+=⎪⎝⎭,即1k =. (2)由(1)得:4111022()12112x x x f x x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤由()18f x >+得,当102x <<时,解得142x <<. 当112x <≤时,解得1528x <≤,所以()18f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭. 点评:本题在分段函数的背景下考查不等式的解法,巧妙地将连续结合在一起,近几年来这类以分段函数为背景下的命题很多,逐步形成了热点问题,很值得重视3.有关不等式的证明不等式的证明非常活跃,它可以和很多知识如函数、数列、三角、导数等相联系,证明时不仅要用到不等式的相关知识,还要用到相关的技能、技巧,应注意加强逻辑推理能力的训练。
例7.(2006年天津卷)已知数列{}n x 满足121x x ==并且11,(n n n n x xx x λλ+-=为非零参数,2,3,4,...).n =(I )若1x 、3x 、5x 成等比数列,求参数λ的值;(II )设01λ<<,常数*k N ∈且3,k ≥证明:*1212...().1k k k n k kn x x x n N x x x λλ++++++<∈- (I )解:由已知121,x x ==且36335244345213243,,.x x x x x xx x x x x x x x x λλλλλλ=⇒==⇒==⇒= 若1x 、3x 、5x 成等比数列,则2315,x x x =即26.λλ=而0,λ≠解得 1.λ=±(II )证明:设1,n n n x a x +=由已知,数列{}n a 是以211x x =为首项、λ为公比的等比数列,故11,n n nx x λ-+=则1112....n k n k n k n n n k n k nx x x x x x x x +++-++-+-=(3)2312.....k k kn n k n k n λλλλ-++-+--== 因此,对任意*,n N ∈1212...k k n knx x x x x x ++++++(3)(3)(3)2222...k k k k k k k k kn λλλ---+++=+++ (3)(3)222(1)(...).1k k k k k nk k knkkλλλλλλλλ---=+++=- 当3k ≥且01λ<<时,(3)201,011,k k nk λλ-<≤<-<所以*1212...().1kk k n k kn x x x n N x x x λλ++++++<∈- 点评:本题以数列的递推关系为载体,主要考查等比数列的等比中项及前n 项和公式、等差数列前n 项和公式、不等式的性质及证明等基础知识,考查运算能力和推理论证能力4.有关不等式的综合问题例8.用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h 米,盖子边长为a 米,(1)求a 关于h 的解析式;(2)设容器的容积为V 立方米,则当h 为何值时,V 最大?求出V 的最大值(求解本题时,不计容器厚度)解析 ①设h ′是正四棱锥的斜高,由题设可得⎪⎪⎩⎪⎪⎨⎧=+='⋅+12222412214h a a a h a 消去)0(11:.2>+='a h a h 解得 ②由)1(33122+==h hh a V (h >0) 得 2121)1(31=⋅=++=hh h h h h V 而 所以V ≤61,当且仅当h =h1即h =1时取等号故当h =1米时,V 有最大值,V 的最大值为61立方米 点评 本题主要考查建立函数关系式,棱锥表面积和体积的计算及用均值定论求函数的最值注意 在求得a 的函数关系式时易漏h >0例9.(2007年全国卷I )设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值。
(Ⅰ)求a 、b 的值;(Ⅱ)若对任意的[0,3]x ∈,都有2()f x c <成立,求c 的取值范围。
解析:(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.,解得3a =-,4b =. (Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<;当(23)x ∈,时,()0f x '>. 所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[]03x ∈,时,()f x 的最大值为(3)98f c =+.因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<,解得 1c <-或9c >,因此c的取值范围为(1)(9)-∞-+∞,,.点评:本题将导数、极值的应用、恒成立问题的解法交汇在一起考查,要求要有较强的运用数学知识解决问题的能力。