初二上册数学知识点总结:第二章实数
- 格式:doc
- 大小:14.00 KB
- 文档页数:2
初二数学上册知识点总结第一章勾股定理1、探索勾股定理①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c 分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗①如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形3、勾股定理的应用第二章实数1、认识无理数①有理数:总是可以用有限小数和无限循环小数表示②无理数:无限不循环小数2、平方根①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根②特别地,我们规定:0的算数平方根是0③平方根:一般地,如果一个数x的平方等于a,即x2=a。
那么这个数x就叫做a的平方根,也叫做二次方根④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数3、立方根①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。
③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数4、估算①估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数①实数:有理数和无理数的统称②实数也可以分为正实数、0、负实数③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数②=(a≥0,b≥0),=(a≥0,b>0)③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式第三章位置与坐标1、确定位置①在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。
第二章:实数知识梳理【无理数】1. 定义:无限不循环小数的小数叫做无理数;注:它必须满足“无限"以及“不循环”这两个条件。
2. 常见无理数的几种类型:(1)特殊意义的数,如:圆周率π以及含有π的一些数,如:2—π,3π等;(2)特殊结构的数(看似循环而实则不循环):如:2。
010 010 001 000 01…(两个1之间依次多1个0)等。
(3)无理数与有理数的和差结果都是无理数。
如:2—π是无理数 (4)无理数乘或除以一个不 为0的有理数结果是无理数。
如2π,(5)开方开不尽的数,如:39,5,2等;应当要注意的是:带根号的数不一定是无理数,如:9等;无理数也不一定带根号,如:π)3.有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
例:(1)下列各数:①3。
141、②0。
33333……、③75-、④π、⑤252.±、⑥32-、⑦0。
3030003000003……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有____;是无理数的有___.(填序号) (2)有五个数:0.125125…,0。
1010010001…,—π,4,32其中无理数有 ( )个 【算术平方根】:1. 定义:如果一个正数x 的平方等于a,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a",其中,a 称为被开方数。
例如32=9,那么9的算术平方根是3,即39=。
特别规地,0的算术平方根是0,即00=,负数没有算术平方根2。
算术平方根具有双重非负性:(1)若a 有意义,则被开方数a 是非负数。
(2)算术平方根本身是非负数。
3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根.因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。
第二章 实数1、1-25的平方:12=122=432=942=1652=2562=3672=4982=6492=81102=100112=121122=144132=169142=196152=225162=256172=289182=324192=361202=400212=441222=484232=529242=576252=6252、1-10的立方:13=123=833=2743=6453=12563=21673=34383=51293=729103=10003、实数的分类:4、判断无理数的方法:① 带π的② 无限不循环的小数③ 带根号并且开不出来的5、算数平方根:算数平方根的定义:一般地,如果一个正数 x的平方等于 a,即 x2=a,那么这个正数 x就叫做 a的算术平方根. 0 的算术平方根是 0.(a≥0)符号表示: √a,表示求a的算术平方根,即 求谁 (非负数)的平方等于a.6、平方根:平方根的定义:一般地,如果一个数 x的平方等于 a,即x2 = a,那么这个数 x就叫做 a的平方根(或二次方根)。
0 的平方根是 0.(a≥0)符号表示: ±√a,表示求a的平方根,即 求谁的平方等于a.平方根的性质:①正数有两个平方根,它们互为相反数;0 的平方根还是 0;负数没有平方根.②双重非负性:a≥0,√a≥0③7、立方根:立方根的定义:一般地,如果一个数x 的立方等于a ,即x 3= a , 那么这个数x 就叫做a 的立方根(也叫做三次方根). 0的立方根是0 .(a 为任意数)。
符号表示:3√a ,表示求a 的立方根,即 求谁的立方等于a.立方根的性质:①正数的立方根是正数;负数的立方根是负数;0的立方根是0.②8、必考题:①√81的算数平方根是 3 . ②√16的平方根是 ±2 . ③√64的立方根是 2 .9、非负数有:( )2 ≥0, | | ≥0, √❑ ≥0几个非负数相加等于0,如( )2 + | | + √❑ = 0,说明里面都是0.10、两个答案的有:平方、平方根、绝对值,如:①若a 2 =4,则a= ±2 (两种情况!) ②若 |a | =4,则a= ±4 (两种情况!)③4的平方根是 ±2 (两种情况!)11、比大小:¿1¿GG 3¿GGGGGGGGGGG ①√❑和数字,比较它们的平方¿2¿GG 3¿GGGGGGGGGGG ②3√❑和数字,比较它们的立方③√❑和3√❑,比较它们的6次方④2√3和3√2,比较它们的平方⑤√3−12和12,分母相同比分子12、相反数、绝对值、倒数:相反数:①只有符号不同的两个数叫做相反数。
北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
八年级上册数学第二章知识点总结一、实数的概念与分类。
1. 有理数与无理数。
- 有理数:整数和分数统称为有理数。
整数包括正整数、零、负整数;分数包括有限小数和无限循环小数。
例如,2,-3,(1)/(2),0.25(有限小数,可化为(1)/(4)),0.3̇(无限循环小数,可化为(1)/(3))都是有理数。
- 无理数:无限不循环小数叫做无理数。
常见的无理数有三类:一是开方开不尽的数,如√(2),sqrt[3]{3}等;二是含有π的数,如π,2π等;三是有规律但不循环的无限小数,如0.1010010001·s(每两个1之间依次多一个0)。
2. 实数的分类。
- 按定义分类:实数可分为有理数和无理数。
有理数又可分为整数(正整数、零、负整数)和分数(正分数、负分数);无理数就是无限不循环小数。
- 按正负性分类:实数可分为正实数(正有理数、正无理数)、零、负实数(负有理数、负无理数)。
二、平方根、算术平方根与立方根。
1. 平方根。
- 定义:如果一个数x的平方等于a,即x^2=a,那么这个数x叫做a的平方根(或二次方根)。
例如,因为(±2)^2=4,所以±2是4的平方根。
- 表示方法:正数a的平方根记为±√(a),读作“正负根号a”。
- 性质:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
2. 算术平方根。
- 定义:正数a的正的平方根叫做a的算术平方根,记为√(a),0的算术平方根是0。
例如,4的算术平方根是√(4) = 2。
- 性质:算术平方根√(a)具有双重非负性,即a≥slant0且√(a)≥slant0。
3. 立方根。
- 定义:如果一个数x的立方等于a,即x^3=a,那么这个数x叫做a的立方根(或三次方根)。
例如,因为2^3=8,所以2是8的立方根。
- 表示方法:a的立方根记为sqrt[3]{a}。
- 性质:正数的立方根是正数,负数的立方根是负数,0的立方根是0。
第二章《实数》知识点梳理及题型解析一、知识归纳(一)平方根与开平方1.平方根的含义如果一个数的平方等于a,那么这个数就叫做 a 的平方根。
即 x2 a ,x叫做a的平方根。
2.平方根的性质与表示⑴表示:正数 a 的平方根用 a 表示, a 叫做正平方根,也称为算术平方根, a 叫做a的负平方根。
⑵一个正数有两个平方根: a (根指数2省略)0 有一个平方根,为0,记作0 0 ;负数没有平方根⑶ 平方与开平方互为逆运算开平方:求一个数 a 的平方根的运算。
a2a a 020 )a ==a a(aa a 0⑷ a 的双重非负性a0且a0(应用较广)例:x 4 4 x y 得知 x 4, y 0⑸如果正数的小数点向右或者向左移动两位,它的正的平方根的小数点就相应地向右或向左移动一位。
区分: 4 的平方根为____4 的平方根为____4____完全平方类4=2933.计算 a 的方法非完全平方类=77精确到某位小数* 若a b 0 ,则a b(二)立方根和开立方1.立方根的定义如果一个数的立方等于 a ,呢么这个数叫做 a 的立方根,记作 3 a.2.立方根的性质任何实数都有唯一确定的立方根。
正数的立方根是一个正数。
负数的立方根是一个负数。
0的立方根是0.3.开立方与立方开立方:求一个数的立方根的运算。
333 a3a3a3 a (a取任何数)aa*0的平方根和立方根都是0本身。
(三)推广:n 次方根1.如果一个数的n次方(n是大于1的整数)等于a,这个数就叫做a的n次方根。
当n 为奇数时,这个数叫做 a 的奇次方根。
当n 为偶数时,这个数叫做 a 的偶次方根。
2. 正数的偶次方根有两个:n a ;0的偶次方根为0:n 0 0 ;负数没有偶次方根。
正数的奇次方根为正。
0的奇次方根为0。
负数的奇次方根为负。
(四)实数1.实数:有理数和无理数统称为实数实数的分类:① 按属性分类:② 按符号分类2.实数和数轴上的点的对应关系:实数和数轴上的点一一对应,即每一个实数都可以用数轴上的一个点表示.数轴上的每一个点都可以表示一个实数.2的画法:画边长为 1 的正方形的对角线在数轴上表示无理数通常有两种情况:①尺规可作的无理数,如2②尺规不可作的无理数,只能近似地表示,如π,1.010010001⋯⋯思考:( 1)-a2一定是负数吗?-a 一定是正数吗?( 2)大家都知道是一个无理数,那么-1在哪两个整数之间?(3)15 的整数部分为a, 小数部分为 b,则 a=, b=。
关于初二数学第二章知识点数学课本中介绍了大量的数学专题知识,尤其是应用题局部,是所有年级所有竞赛考试中必考的重点知识。
学生一定要在各个应用题专题学习的初期打下良好的根底。
下面小编为大家带来关于初二数学第二章知识点,希望大家喜欢!初二数学第二章知识点一、实数的概念及分类1、实数的分类一是分类是:正数、负数、0;另一种分类是:有理数、无理数将两种分类进行组合:负有理数,负无理数,0,正有理数,正无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环〞这一时之,归纳起来有四类:(1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,那么有a+b=0,a=—b,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,假设|a|=a,那么a≥0;假设|a|=-a,那么a≤0.3、倒数如果a与b互为倒数,那么有ab=1,反之亦成立。
倒数等于本身的数是1和-1.零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
数学学习方案为了搞好期末复习,针对学生实际特制定如下复习方案:一、总体思想:我教七年级两个班进行全面复习,查漏补缺;先章后总,循序渐进;先概念,后题目;一步一个脚印;重根底,抓重点;知识归类,形成体系;紧抓课本,适当拓展;加强个别学生的辅导。
二、学情分析:七年级学生年龄小,理解能力不强,自控能力弱。
八年级第二章实数知识点第一节正数和负数实数分为正数、负数和零。
当数比一定的基准数“大”或“小”时,它就成为正数或负数。
当两个正数相加时,和仍为正数;当两个负数相加时,和也为负数;当正数和负数相加时,当它们的绝对值相等时,和为0,即一个正数和与它相等的负数相加等于0。
正数、负数之间也可以进行减法和乘法运算,当一个数乘以正数时,积还是正数;当一个数乘以负数时,积为负数。
第二节绝对值绝对值是指一个实数到0的距离,即 $|a|$ 的等于 $a$ 或 $-a$ 中,距离0更近的那个数。
绝对值的计算公式如下:$|a|$ =$ \begin{cases}a , a\geq0\\ -a , a<0\end{cases}$第三节有理数和无理数所有小数,可以表示成有限小数或无限循环小数的数都是有理数,例如 $\frac{1}{2}$、 $0.75$和$-0.3$等。
无法表示成有限小数或无限循环小数的数称为无理数。
常见的无理数有 $\sqrt{2}$、$\pi$和$e$等,无理数可以用无限不循环小数表示。
第四节数轴和坐标数轴是一个直线,用于表示实数。
数轴的一个固定点称为原点$O$。
数轴上任取一个有向线段$AB$,称$A$为起点,$B$为终点。
坐标就是表示实数的一种方法。
在数轴上,从原点$O$到点$A$的有向线段上任取一个点$P$,则实数$a$表示点$P$到原点的距离。
若$a>0$,则点$P$在$O$的右侧;若$a<0$,则点$P$在$O$的左侧。
若$a=0$,则点$P$在原点O上。
第五节容斥原理容斥原理是一种常用的计数方法。
当要计算多个集合的并集时,容斥原理可以用来避免重复计算。
容斥原理的表述如下:设$A_1 , A_2, \cdots ,A_n$为$n$个集合,以及它们的并集为$S$,则有:$$ |A_1 \cup A_2 \cup \cdots \cup A_n| =\sum\limits_{i=1}^{n}{|A_i|} -\sum\limits_{1 \leq i<j \leq n}{| A_i\cap A_j|} + \sum\limits_{1 \leq i<j<k \leq n}{|A_i \cap A_j \cap A_k|} - \cdots+(-1)^{n+1} |A_1 \cap A_2 \cap \cdots \cap A_n| $$例如,三个集合$A,B,C$的并集$A\cup B \cup C$的元素个数为:$$ |A \cup B \cup C | = |A| + |B| + |C| - | A \cap B | - | A \cap C | - | B \cap C| + |A \cap B \cap C| $$以上就是八年级第二章实数知识点的内容,通过学习这些知识点,我们可以更好地理解和应用数学知识。
初二数学上册第二章实数………………………………………………最新资料推荐………………………………………
1 / 8 第二章:实数
本章的知识网络结构:
知识梳理
一.数的开方主要知识点:
【1】平方根:如果一个数_ 的平方等于a ,那么,这个数_ 就叫做a 的平方根;也即,当)0(2≥=a a _ 时,我们称_ 是a 的平方根,记做:)0(≥__177;=a a _ 。
因此:
4.当a=0时,它的平方根只有一个,也就是0本身;
5.当a >0时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a _ __177;=。
6.当a <0时,也即a 为负数时,它不存在平方根。
例1.
(1)的平方是64,所以64的平方根是;
(2)的平方根是它本身。
(3)若_ 的平方根是__177;2,则_=16
(4)当_ 时,_ 23-有意义。
(5)一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少?【算术平方根】:
(1)如果一个正数_ 的平方等于a ,即a _ =2,那么,这个正数_ 就叫做a 的算术平方根,记为:“a ”,
读作,“根号a”,其中,a 称为被开方数。
特别规定:0的算术平方根仍然为0。
(2)算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。
(3)算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它
的相反数共同构成
了平方根。
因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具。
初二上册数学知识点总结:第二章实数
编者按:小编为大家收集了初二上册数学知识点总结:第二章实数,供大家参考,希望对大家有所帮助!
一、实数的概念及分类
1、实数的分类
一是分类是:正数、负数、0;
另一种分类是:有理数、无理数
将两种分类进行组合:负有理数,负无理数,0,正有理数,正无理数
2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住无限不循环这一时之,归纳起来有四类:
(1)开方开不尽的数,如等;
(2)有特定意义的数,如圆周率,或化简后含有的数,如 +8等;
(3)有特定结构的数,如0.1010010001
(4)某些三角函数值,如sin60o等
二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,
则有a+b=0,a=b,反之亦成立。
2、绝对值
在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a若|a|=-a,则a0。
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算
以上就是为大家提供的初二上册数学知识点总结:第二章实数希望能对考生产生帮助,更多资料请咨询中考频道。