山东省XX市2018-2019学年七年级上期末数学试卷(含答案解析)
- 格式:doc
- 大小:329.00 KB
- 文档页数:18
2018~2019学年七年级数学上册第一学期期末试卷一、选择题1、若( )﹣(﹣2)=3,则括号内的数是( )A .﹣1B .1C .5D .﹣5 2、下列所有数中,最大的数是( )A .—4B .0C .—1D .3 3、若|m -3|+(n +2) 2=0,则m +2n 的值为( ).A .-4B .- 1C .0D .4 4、雨滴滴下来形成雨丝属于下列哪个选项的实际应用( )A .点动成线B .线动成面C .面动成体D .以上都不对 5、下列各组数中,互为相反数的是( )A .3与B .(﹣1)2与1C .﹣14与(﹣1)2D .2与|﹣2|6、的倒数是( )A .3B .C .-D .﹣3 7、下图中哪个图形经过折叠后可以围成一个棱柱( )A .B .C .D .8、代数式a 2﹣b1的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 的平方与b 的差的倒数 C .a 的平方与b 的倒数的差 D .a 与b 的差的平方的倒数 9、如图所示的立体图形是由几个小正方体组成的一个几何体,这个几何体从上面看到的形状图是( )……○…………○……A.B.C.D.10、下列各组代数式中,是同类项的共有()(1)32与23(2)﹣5mn与(3)﹣2m2n3与3n3m2(4)3x2y3与3x3y2A.1 组B.2 组C.3 组D.4 组二、填空题11、地球上陆地的面积约为149000000平方千米,把数据149000000用科学记数法表示为。
12、小明今年m岁,5年前小明_____岁。
13、中,底数是_____,指数是_____。
14、一个正方体的六个面上分别标有1、2、3、4、5、6,根据图中从各个方向看到的数字,解答下面的问题:“?”处的数字是_____。
三、计算15、计算:(1)(﹣32)﹣(﹣27)﹣(﹣72)﹣87 (2)16、求代数式的值(1)6x+2x2﹣3x+x2+1,其中 x=﹣5;(2)2(a2b+ab2)﹣2(a2b﹣1)﹣2ab2﹣2,其中 a=﹣2,b=2。
6542312018-2019学年上数学期末测试卷(试卷满分120,试题118分,卷面2分)一、选择题(每题2分,共12分) 1、下列各数中,是负数的是( ):(A)-(-3) (B)-∣-3∣ (C)(-3)2 (D)∣-3∣2、如果+20%表示增加20%,那么-6%表示( ).A .增加14%B .增加6%C .减少6%D .减少26% 3、如果2()13⨯-=,则“”内应填的实数是( )A .32B .23C .23-D .32-4、下面说法中错误的是( ). A .368万精确到万位 B .2.58精确到百分位C .0.0450有4个有效数字D .10000保留3个有效数字为1.00×1045.下列图形(如图所示)经过折叠不能围成正方体的是( )ABCD6、钟表8时30分时,时针与分针所成的角的度数为( ) (A )30° (B )60° (C )75° (D )90°二、填空题(每题3分,共24分)7、我市某天最高气温是11℃,最低气温是零下3℃,那么当天的最大温差是___℃.8、多项式132223-+--x xy y x x 是_______次_______项式9、近似数3.1×105精确到________位,有________个有效数字.10、方程-x-12a=-3的解是-4,则a=_________.11、如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 .(用含m ,n 的式子表示)12、如图,将硬纸片沿虚线折起来,便可做成一个正方体,这个正方体,这个正方体的2号面的对面是________号面.13、一个角的补角比它的余角的3倍大10°,则这个角等于________.14、按规律填数:1741035221--,,, _________。
三、解答题(每题5分,共20分)15、计算:414(81)2(2)49-⨯-⨯-. A B mnx16、解方程:1231337x x -+=-17、 2(a 2b+ab 2)- [2ab 2 -(1-a 2b)] -2,其中a=-2,b=2118、已知一个角的余角是这个角的补角的41,求这个角.四、解答题(每题7分,共28分) 19、已知关于x 的方程3(2)x x a -=-的解比223x a x a +-=的解小52,求a 的值.20、跑的快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?21、已知:22321A x xy x =+--,21B xxy =-+-(1)求3A +6B 的值;(2)若3A +6B 的值与x 的值无关,求y 的值。
2018-2019学年七年级(上)期末数学试卷一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定4.(3分)如图,几何体的左视图是()A.B.C.D.5.(3分)下列运算结果为正数的是()A .﹣32B .﹣3÷2C .﹣1+2D .0×(﹣2018) 6.(3分)若方程(a ﹣3)x |a |﹣2﹣1=5是关于x 的一元一次方程,则a 的值为( ) A .±2 B .3 C .±3 D .﹣37.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是( ) A .两点确定一条直线B .直线比曲线短C .两点之间直线最短D .两点之间线段最短8.(3分)下列解方程变形正确的是( )A .若5x ﹣6=7,那么5x=7﹣6B .若,那么2(x ﹣1)+3(x +1)=1C .若﹣3x=5,那么x=﹣D .若﹣,那么x=﹣39.(3分)若3a 2+m b 3和(n ﹣2)a 4b 3是同类项,且它们的和为0,则mn 的值是( )A .﹣2B .﹣1C .2D .110.(3分)若x=4是关于x 的方程2x +a=1的解,则a 的值是( )A .﹣4B .﹣7C .7D .﹣911.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB ,则线段AB 盖住的整点个数有( ) A .2018或2019 B .2017或2018 C .2016或2017 D .2019或202012.(2分)已知(b +1)4与|3﹣a |互为相反数,则b a 的值是( )A .﹣3B .3C .﹣1D .113.(2分)若x=2时,代数式ax 4+bx 2+5的值是3,则当x=﹣2时,代数式ax 4+bx 2+7的值为( )A .﹣3B .3C .5D .714.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x 颗,则可得方程为( )A .B .2x +8=3x ﹣12C .D . =15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a >b ),则a ﹣b 的值为( )A.6B.8C.9D.1216.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×1020189.9×102017.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣121.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=;若a=4,则b=;②用含a的式子表示b,则b=;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm【分析】从图可知长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条,再把它们的长度相加即可.【解答】解:因为长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条.所以图中所有线段长度之和为:1×4+2×3+3×2+4×1=20(厘米).故选:B.【点评】本题考查了两点间的距离,关键是能够数出1cm,2cm,3cm,4cm的线段的条数,从而求得解.2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°【分析】根据1度等于60分,1分等于60秒解答即可.【解答】解:10°36″用度表示为10.01°,故选:C.【点评】考查了度分秒的换算,分秒化为度时用除法,而度化为分秒时用乘法.3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定【分析】结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2013年的销售收入约为50万元,2017年约为90万元,则从2013~2017年甲公司增长了90﹣50=40万元;乙公司2013年的销售收入约为50万元,2017年约为70万元,则从2013~2017年乙公司增长了70﹣50=20万元.则甲公司近年的销售收入增长速度比乙公司快.故选:A.【点评】本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.4.(3分)如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体.故选:C.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.5.(3分)下列运算结果为正数的是()A.﹣32B.﹣3÷2C.﹣1+2D.0×(﹣2018)【分析】根据各个选项中的式子,可以计算出相应的结果,从而可以解答本题.【解答】解:∵﹣32=﹣9,﹣3÷2=﹣,﹣1+2=1,0×(﹣2018)=0,∴选项C中的结果为正数,故选:C.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.6.(3分)若方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,则a的值为()A.±2B.3C.±3D.﹣3【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,∴|a|﹣2=1,a﹣3≠0,解得:a=﹣3.故选:D.【点评】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.7.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短【分析】根据线段的性质解答即可.【解答】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.【点评】本题考查的是线段的性质,即两点之间线段最短.8.(3分)下列解方程变形正确的是()A.若5x﹣6=7,那么5x=7﹣6B.若,那么2(x﹣1)+3(x+1)=1C.若﹣3x=5,那么x=﹣D.若﹣,那么x=﹣3【分析】A、运用移项的法则可以求出结论;B、根据等式的性质2去分母可以得出结论;C、运用等式的性质2化系数为1可以得出结论;D、运用等式的性质2化系数为1可以得出结论;【解答】解:A、∵5x﹣6=7,移项,得5x=7+6,故选项错误;B、∵,去分母,得2(x﹣1)+3(x+1)=6,故选项错误;C、∵﹣3x=5,化系数为1,得x=﹣,故选项错误;D、∵﹣,化系数为1,得x=﹣3,故选项正确.故选:D.【点评】本题考查了解方程步骤的运用,去分母,去括号,移项,合并同类项,化系数为1的过程的运用.9.(3分)若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2B.﹣1C.2D.1【分析】由同类项是字母相同且相同字母的指数也相同,可得m的值;根据合并同类项系数相加字母及指数不变,可得n的值;再计算mn,可得答案.【解答】解:由3a2+m b3和(n﹣2)a4b3是同类项,得2+m=4,解得m=2.由它们的和为0,得3a4b3+(n﹣2)a4b3=(n﹣2+3)a4b3=0,解得n=﹣1.mn=﹣2,故选:A.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.(3分)若x=4是关于x的方程2x+a=1的解,则a的值是()A.﹣4B.﹣7C.7D.﹣9【分析】把x=4代入已知方程后,列出关于a的新方程,通过解新方程来求a的值.【解答】解:∵x=4是关于x的方程2x+a=1的解,∴2×4+a=1,解得a=﹣7.故选:B.【点评】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.11.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB,则线段AB盖住的整点个数有()A.2018或2019B.2017或2018C.2016或2017D.2019或2020【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【解答】解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点.∵2018+1=2019,∴2018厘米的线段AB盖住2018或2019个整点.故选:A.【点评】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.12.(2分)已知(b+1)4与|3﹣a|互为相反数,则b a的值是()A.﹣3B.3C.﹣1D.1【分析】根据相反数的概念列出算式,根据非负数的性质求出a、b的值,计算即可.【解答】解:由题意得(b+1)4+|3﹣a|=0,则3﹣a=0,b+1=0,解得a=3,b=﹣1,则b a=﹣1,故选:C.【点评】本题考查的是非负数的性质和相反数,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13.(2分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.7【分析】将x=2代入ax4+bx2+5=3得16a+4b=﹣2,据此将其代入x=﹣2时ax4+bx2+7=16a+4b+7中计算可得.【解答】解:将x=2代入ax4+bx2+5=3,得:16a+4b+5=3,则16a+4b=﹣2,所以当x=﹣2时,ax4+bx2+7=16a+4b+7=﹣2+7=5,故选:C.【点评】本题主要考查代数式求值,解题的关键是熟练掌握代数式的求值及整体代入思想的运用.14.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为()A.B.2x+8=3x﹣12C.D.=【分析】设有糖果x颗,根据该幼儿园小朋友的人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有糖果x颗,根据题意得:=.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A.6B.8C.9D.12【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.【点评】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.16.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0【分析】根据题意可知:a是从1开始到序数的连续整数的和,c是序数与1的和,而b 是a与c的和,据此可得.【解答】解:由图可知,a=1+2+3+ (2018)c=2019,则b=a+c=1+2+3+……+2018+2019,∴a﹣b+c=1+2+3+……+2018﹣(1+2+3+……+2018+2019)+2019=0,故选:D.【点评】本题考查数字和图形的变化类,解题的关键是明确题意,找出数字的变化规律.二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×102018>9.9×102017.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵1.1×102018=11×102017,由11>9.9,∴1.1×102018>9.9×102017.故答案为:>.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=9cm.【分析】根据题意求出BC,根据线段中点的性质解答即可.【解答】解:∵点D是线段BC的中点,若BD=3cm,∴BC=2BD=2×3=6cm,∵点C是线段AB的中点,∴AC=CB=6cm,∴AD=AC+CD=6+3=9cm,故答案为:9cm.【点评】本题考查的是两点间的距离的计算,掌握线段中点的概念、灵活运用数形结合思想是解题的关键.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=1﹣.【分析】分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.=1﹣;=1﹣;【解答】解:故答案为:;1﹣.【点评】本题主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律是解答此题的关键.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣1【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)方程移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=13﹣9+2﹣7=15﹣16=﹣1;(2)原式=﹣1﹣×3×(﹣4)=﹣1+6=5;(3)方程移项合并得:5x=﹣20,解得:x=﹣4;(4)方程去分母得:4x﹣2+x﹣5=﹣6,移项合并得:5x=1,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.【分析】(1)在射线CP上延长截取CM=MN=a,ND=b,则CD满足条件;(2)根据几何语言画出对应的几何图形即可.【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=5x2y﹣3xy2﹣7x2y+2xy2=﹣2x2y﹣xy2,当x=﹣1,y=2时,原式=﹣4+4=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.【分析】设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【解答】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOC=40°.【点评】本题考查了角平分线的定义,要设恰当的未知数,用同一个未知数表示相关的角,根据已知的角列方程进行计算是解此题的关键.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?【分析】根据题意可以列出相应的方程,从而可以求得每件衬衫降价多少元.【解答】解:设每件衬衫降价x元,(180﹣120)×400+(500﹣400)(180﹣x﹣120)=120×500×42%解得,x=48,答:每件衬衫降价48元.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=2;若a=4,则b=﹣2;②用含a的式子表示b,则b=2﹣a;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.【分析】(1)根据政治科目的人数及其所占百分比可得总人数,依据地理学科的人数所占的百分比,即可得到其所在扇形的圆心角;(2)总人数乘以历史科目的百分比可得其人数,从而补全折线图;(3)总人数乘以样本中物理科目人数所占比例即可得.【解答】解:(1)由图知把政治作为首选的324人,占全校总人数的百分比为36%,全校总人数为:324÷36%=900人,地理学科所在扇形的圆心角=360°×=18°;答:被抽查的学生共有900人,地理学科所在扇形的圆心角为18°.(2)本次调查中,首选历史科目的人数为900×6%=54人,补全折线图如下:(3)2000×=400,答:估计喜欢物理学科的人数为400人.【点评】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.【分析】(1)①根据互为基准变换点的定义可得出a+b=2,代入数据即可得出结论;②根据a+b=2,变换后即可得出结论;(2)设点A表示的数为x,根据点A的运动找出点B,结合互为基准变换点的定义即可得出关于x的一元一次方程,解之即可得出结论;(3)由于点P表示的数为m,根据题意,用含m的代数式分别表示出P1、P2、P3、P4、P5表示的数,从而发现4个一循环的规律,进而得出点P2018表示的数与点P2表示的数相同.【解答】解:(1)①∵点A表示数a,点B表示数b,点A与点B互为基准变换点,∵a+b=2,当a=0时,b=2;当a=4时,b=﹣2.故答案为:2;﹣2.②∵a+b=2,∴b=2﹣a.故答案为:2﹣a;(2)设点A表示的数为x,根据题意得:x﹣3+x=2,解得:x=2.故点A表示的数是2;(3)设点P表示的数为m,由题意可知:P1表示的数为m+k,P2表示的数为2﹣(m+k),P3表示的数为2﹣m,P4表示的数为m,P5表示的数为m+k,…由此可分析,4个一循环,∵2018÷4=504…2,∴点P2018表示的数与点P2表示的数相同,即点P2018表示的数为2﹣(m+k).【点评】本题考查了规律型中图形的变化类、数轴以及列代数式,根据互为基准变换点的定义找出a+b=2是解题的关键.。
2018-2019学年山东省青岛市市南区七年级(上)期末数学试卷(考试时间:90分钟满分:120分)一、选择题(本题满分24分,共有8道小题,每小题3分)1.如图,数轴上点()表示的数是﹣2的相反数.A.点A B.点B C.点C D.点D2.如图是一个正方体的展开图,则“文”字的对面的字是()A.青B.岛C.城D.市3.下列调查中,适宜采用全面调查(普查)方式的是()A.调查江北市民对“江北区创建国家食品安全示范城市”的了解情况B.调查央视节目《国家宝藏》的收视率C.调查我校某班学生喜欢上数学课的情况D.调查学校一批白板笔的使用寿命4.莫拉、沃姆两位博士及其同事在《PloSBiology》期刊发表了一篇关于地球物种数量预测的文章,根据他们采用的最新分析方法,这个星球总共拥有8700000个物种,8700000用科学记数法可以表示为()A.8.7×105B.8.7×106C.8.7×107D.0.87×1075.用一副三角板不能画出下列那组角()A.45°,30°,90°B.75°,15°,135°C.60°,105°,150°D.45°,80°,120°6.方程2x﹣1=3与方程1﹣=0的解相同,则a的值为()A.3 B.2 C.1 D.7.在如图所示的2018年1月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是()A.23 B.51 C.65 D.758.把夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,它的每行、每列、每条对角线上三个数之和均相等,则幻方中a的值是()A.6 B.12 C.18 D.24二、填空題(本题满分18分,共有6道小題,每小题3分)9.单项式﹣πa2b3c的系数为,次数为.10.若a=﹣2×32,b=(﹣2×3)2,c=﹣(2×3)2,将a、b、c三个数用“<”连接起来应为.11.半径为2的圆中,扇形AOB的圆心角为90°,则这个扇形的面积是.12.某种商品的进价为300元,售价为550元.后来由于该商品积压,商店准备打折销售,但要保证利润率为10%,则该商品可打折.13.如图,把一张边长为15cm的正方形硬纸板的四个角各剪去一个同样大小的正方形,再折成一个无盖的长方体盒子(纸板的厚度忽略不计),当剪去的正方形边长从4cm变为6cm后,长方体的纸盒容积变(填大或小)了cm3.14.一个由13个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,则这个几何体的搭法共有种.三、解答题(本大题满分78分,共有10道小题)15.(4分)如图,已知线段a、b(1)画一条射线AB;(2)在射线AB上作一条线段AC,使AC等于a﹣b.16.(8分)计算:(1)7+(﹣15)﹣2×(﹣9)(2)(﹣3)2÷(﹣1)×0.75×|﹣2|.17.(10分)(1)化简:﹣(2k3+4k2﹣28)+(k3﹣2k2+4k).(2)已知A﹣B=7a2﹣7ab,且B=﹣4a2+6ab+7.①求A+B;②若a=﹣1,b=2,求A+B的值.18.(8分)解方程(1)2(100﹣15x)=60+5x (2)=1.19.(6分)某中学为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选,同时把调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整).请根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)通过计算补全条形统计图;(3)在扇形统计图中,“私家车”部分所对应的圆心角是多少度?(4)若全校共有1800名学生,估计该校乘坐私家车上学的学生约有多少名?20.(6分)某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“﹣”表示出库):+30、﹣25、﹣30、+28、﹣29、﹣16、﹣15、(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存200吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元、出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费?21.(8分)在市南区某住房小区建设中,为了提高业主的宜居环境,某小区因地制宜规划修建一个广场(图中阴影部分).(1)用含m、n的代数式表示该广场的周长C;(2)用含m、n的代数式表示该广场的面积S;(3)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的周长和面积.22.(8分)如图①,已知线段AB=20cm,CD=2cm,线段CD在线段AB上运动,E、F分别是AC、BD的中点.(1)若AC=4cm,则EF=cm.(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度;如果变化,请说明理由.(3)我们发现角的很多规律和线段一样,如图②,已知∠COD在∠AOB内部转动,OE、OF分别平分∠AOC 和∠BOD,若∠AOB=142°,∠COD=38°,则∠EOF=.由此,你猜想∠EOF、∠AOB和∠COD会有怎样的数量关系.(直接写出猜想即可)23.(10分)我区有着丰富的莲藕资源.某企业已收购莲藕52.5吨.根据市场信息,将莲藕直接销售,每吨可获利100元;如果对莲藕进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加0.5吨,每吨可获利5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批莲藕全部销售.为此研究了二种方案:方案一:将莲藕全部粗加工后销售,则可获利元.方案二:30天时间都进行精加工,未来得及加工的莲藕,在市场上直接销售,则可获利元.问:是否存在第三种方案,将部分莲藕精加工,其余莲藕粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.24.(10分)阅读以下材料并填空问题:在一条直线上有n个点(n≥2),每两个点确定一条线段,一共有多少条线段?【探究】:当仅有2个点时,有=1条线段;当有3个点时,有=3条线段;当有4个点时,有=6条线段;当有5个点时,有条线段;……当有n个点时,从这些点中任意取一点,如1,以这个点为端点和其余各点能组成(n﹣1)条线段,这样总共有n×(n﹣1)条线段.在这些线段中每条线段都重复了两次,如:线段A1A2和A2A1是同一条线段,所以,一条直线上有n个点,一共有条线段.【应用】(1)在一条直线上有10个点,直线外一点分别与这10个点连接成线段,一共可以组成个三角形.(2)平面上有50个点,且任意三个点不在同一直线上,过这些点作直线,一共能作出条不同的直线.【拓展】平面上有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少个不同的三角形?当有3个点时,可作1个三角形;当有4个点时,可作个三角形;当有5个点时,可作个三角形;……当有n个点时,可连成个三角形.。
2018-2019学年七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.的绝对值是A. B. C. D.2.下列四个数中最小的数是A. B. C. 0 D. 53.用科学记数法表示2017000,正确的是A. B. C. D.4.下列简单几何体中,属于柱体的个数是A. 5B. 4C. 3D. 25.计算的结果是A. 50B.C.D. 1046.下列各式成立的是A. B. C. D.7.下列每组单项式中是同类项的是A. 2xy与B. 与C. 与D. xy与yz8.下列调查中,适合用普查的是A. 中央电视台春节联欢晚会的收视率B. 一批电视剧的寿命C. 全国中学生的节水意识D. 某班每一位同学的体育达标情况9.过某个多边形一点顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是A. 五边形B. 六边形C. 七边形D. 八边形10.用棋子摆出下列一组“口”字,按照这种方法摆下去,则第n个“口”字需要用棋子A. 枚B. 4n枚C. 枚D. 枚二、填空题(本大题共6小题,共18.0分)11.计算的结果是______.12.如图是一个正方体纸盒的展开图,正方体的各面标有数字1,2,3,,A,B,相对面上是两个数互为相反数,则______.13.某场电影成人票25元张,卖出m张,学生票15元张,卖出n张,共得票款______元14.把角度化为秒的形式,则______15.在一次全市的数学监测中某6名学生的成绩与全市学生的平均分80的差分别为5,,8,11,5,,则这6名学生的平均成绩为______分16.如图,在的幻方的九个空格中,填入9个数字,使得处于同一横行,同一竖行,同一斜对角线上的三个数的和都相等,按以上规则的幻方中,x的值为______.三、计算题(本大题共2小题,共12.0分)17.计算:.18.先化简后求值:,其中.四、解答题(本大题共7小题,共56.0分)19.解方程:注:要写出详细的解答过程含文字20.某文具店,甲种笔记本标价每本8元,乙种笔记本标价每本5元两种笔记本各销售了多少?所得销售款可能是660元吗?为什么?21.如图,OC是的平分线,OD是的平分线,且求的度数;若,求扇形EOF的面积.22.小敏为了解本市的空气质量情况,从市环保局随机抽取了若干天的空气质量情况作为标本进行统计,绘制成如图所示的条形统计图和扇形统计图部分信息为给出请你根据图中提供的信息,解答下列问题:本次调查中共抽取了多少天的空气质量情况作为标本?求轻微污染天数并补全条形统计图;请你估计该市这一年天空气质量达到“优”和“良”的总天数.。
2018-2019学年七年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1. 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A. B. C. D.【答案】B【解析】【分析】检测质量时,与标准质量偏差越小,合格的程度就越高.比较与标准质量的差的绝对值即可.【详解】|+0.6|=0.6,|-0.2|=0.2,|-0.5|=0.5,|+0.3|=0.3 ,而0.2<0.3<0.5<0.6 ,∴B球与标准质量偏差最小,故选B.【点睛】本题考查的是绝对值的应用,理解绝对值表示的意义是解决本题的关键.2. 用式子表示“a的2倍与b的差的平方”,正确的是()A. 2(a﹣b)2B. 2a﹣b2C. (a﹣2b)2D. (2a﹣b)2【答案】D【解析】【分析】根据代数式的表示方法,先求倍数,然后求差,再求平方.【详解】解:a的2倍为2a,与b的差的平方为(2a﹣b)2故选:D.【点睛】本题考查了列代数式的知识,列代数式的关键是正确理解题目中的关键词,比如本题中的倍、差、平方等,从而明确其中的运算关系,正确的列出代数式.3. 在下面四个几何体中,左视图、俯视图分别是长方形和圆的几何体是()A. B. C. D.【答案】A【解析】【分析】逐一判断出各几何体的左视图、俯视图即可求得答案.【详解】A 、圆柱的左视图是长方形,俯视图是圆,符合题意;B 、圆锥的的左视图是等腰三角形,俯视图是带有圆心的圆,不符合题意;C 、长方体的左视图是长方形,俯视图是长方形,不符合题意;D 、三棱柱的左视图是长方形,俯视图是三角形,不符合题意,故选A .【点睛】本题考查了简单几何体的三视图,熟练掌握常见几何体的三视图是解题的关键.4. 下列各式中运算正确的是( )A. 224a a a +=B. 4a 3a 1-=C. 2223a b 4ba a b -=-D. 2353a 2a 5a +=【答案】C【解析】【分析】根据合并同类项的法则逐一进行计算即可.【详解】A. 222a a 2a +=,故A 选项错误;B. 4a 3a a -=,故B 选项错误;C. 2223a b 4ba a b -=-,正确;D. 23a 与32a 不是同类项,不能合并,故D 选项错误,故选C .【点睛】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.5. 如图,能用∠1、∠ABC、∠B 三种方法表示同一个角的是( ) A. B. C.D.【答案】A【解析】【分析】根据角的表示法可以得到正确解答.【详解】解:B、C、D选项中,以B为顶点的角不只一个,所以不能用∠B表示某个角,所以三个选项都是错误的;A选项中,以B为顶点的只有一个角,并且∠B=∠ABC=∠1,所以A正确.故选A .【点睛】本题考查角的表示法,明确“过某个顶点的角不只一个时,不能单独用这个顶点表示角”是解题关键.6. 如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A. 两点之间,线段最短B. 两点确定一条直线C. 垂线段最短D. 在同一平面内,过一点有且只有一条直线与已知直线垂直【答案】B【解析】【分析】根据“经过两点有且只有一条直线”即可得出结论.【详解】解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.故选B.【点睛】本题考查了直线性质,牢记“经过两点有且只有一条直线”是解题的关键.7. 在下列式子中变形正确的是( )A. 如果a b =,那么a c b c +=-B. 如果a b =,那么a b 33=C. 如果a 63=,那么a 2=D. 如果a b c 0-+=,那么a b c =+【答案】B【解析】【分析】根据等式的性质逐个判断即可.【详解】A 、∵a=b ,∴a+c=b+c ,不是b-c ,故本选项不符合题意;B 、∵a=b ,∴两边都除以3得:a b 33=,故本选项符合题意; C 、∵a 63=,∴两边都乘以3得:a=18,故本选项不符合题意; D 、∵a-b+c=0,∴两边都加b-c 得:a=b-c ,故本选项不符合题意,故选B .【点睛】本题考查了等式的性质,能熟记等式的性质的内容是解此题的关键.8. 直线l 外一点P 与直线l 上两点的连线段长分别为3cm ,5cm ,则点P 到直线l 的距离是( )A. 不超过3cmB. 3cmC. 5cmD. 不少于5cm【答案】A【解析】【分析】根据直线外的点与直线上各点的连线垂线段最短,可得答案.【详解】解:直线外的点与直线上各点的连线垂线段最短,得点P 到直线l 的距离是小于或等于3,故选A .【点睛】本题考查了点到直线的距离,直线外的点与直线上各点的连线垂线段最短. 二、填空题(本大题共10小题,共30.0分)9. 元月份某天某市的最高气温是4℃,最低气温是-5℃,那么这天的温差(最高气温减最低气温)是______℃.【答案】9【解析】【分析】利用最高气温减最低气温,再根据减去一个数等于加上这个数的相反数计算即可.【详解】这天的温差为4-(-5)=4+5=9(℃),故答案为9【点睛】本题考查有理数的减法的应用,正确列出算式,熟练掌握有理数减法的运算法则是解题的关键. 10. 我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.【答案】4.4×109【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109, 故答案为4.4×109. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11. 若3x =-是关于x 的一元一次方程250x m ++=的解,则m 的值为___________.【答案】1【解析】把x =−3代入方程得:−6+m +5=0,解得:m =1,故答案为1.12. 若|x -12|+(y +2)2=0,则(xy )2019的值为______. 【答案】-1【解析】【分析】根据非负数的性质列出算式,求出x 、y 的值,计算即可.【详解】∵|x-12|+(y+2)2=0, ∴x-12=0,y+2=0, ∴x=12,y=-2,∴(xy)2019=(-1)2019=-1,故答案为-1.【点睛】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13. 若a+b=2019,c+d=-5,则代数式(a-2c)-(2d-b)=______.【答案】2029【解析】【分析】根据去括号、添括号法则把原式变形,代入计算,得到答案.【详解】(a-2c)-(2d-b)=a-2c-2d+b=(a+b)-2(c+d)=2019+10=2029,故答案为2029.【点睛】本题考查的是整式的加减混合运算,掌握去括号、添括号法则是解题的关键.注意整体思想的应用.14. 一个正方体的平面展开图如图所示,将它折成正方体后“扬”字对面是______字.【答案】美【解析】【分析】注意正方体的空间图形,从相对面入手,分析及解答问题.【详解】对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,“扬”字对面是“美”字,故答案为美.【点睛】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.15. 若∠A=45°30′,则∠A的补角等于_______________.【答案】134°30′【解析】试题分析:根据补角定义:如果两个角的和等于180°(平角),就说这两个角互为补角可得答案.解:∵∠A=45°30′,∴∠A的补角=180°﹣45°30′=179°60′﹣45°30′=134°30′,故答案为134°30′.考点:余角和补角;度分秒的换算.16. 如图,将一副直角三角板叠放在一起,使其直角顶点重合于点O,若∠DOC=26°,则∠AOB=______°.【答案】154【解析】【分析】先根据∠COB=∠DOB-∠DOC求出∠COB,再代入∠AOB=∠AOC+∠COB,即可求解.【详解】∵∠COB=∠DOB-∠DOC=90°-26°=64°,∴∠AOB=∠AOC+∠COB=90°+64°=154°,故答案是:154.【点睛】本题考查了角度的计算,弄清角的和差关系是解题的关键.17. 已知线段AB=6cm,C是线段AB的中点,E是直线AB上的一点,且CE=13AB,则线段AE=______cm.【答案】1或5【解析】【分析】由已知C是线段AB中点,AB=6,求得AC=3,进一步分类探讨:E在线段AC内;E在线段CB内;由此画图得出答案即可.【详解】∵C是线段AB的中点,AB=6cm,∴AC=12AB=3cm,CE=13AB=2cm,①如图,当E在线段AC上时,AE=AC-CE=3-2=1cm;②如图,E在线段CB上,AE=AC+CE=3+2=5cm,所以AE=1cm或5cm,故答案为1或5.【点睛】本题考查线段中点的意义,线段的和与差,分类探究是解决问题的关键.18. 某中学初三(6)班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费赠送老师一张(由学生出钱),每个学生交0.6元刚好,则相片上共有______人.【答案】12【解析】【分析】扩印费+0.5×照片上人数=0.6×学生数,把相关数值代入计算即可.【详解】设相片上共有x人,0.6+0.5x=0.6×(x-1),解得x=12,故答案为12.【点睛】本题考查一元一次方程的应用,弄清题意,得到所需总费用的等量关系是解决本题的关键.三、计算题(本大题共4小题,共32.0分)19. 计算:(1)14-(-12)+(-25)-17.(2)(12-13)÷(-16)-22×(-4).【答案】(1)-16;(2)15【解析】【分析】(1)根据有理数的加减法法则进行计算即可;(2)按顺序先计算括号内的减法、乘方,然后再按运算顺序进行计算即可. 【详解】(1)14-(-12)+(-25)-17=14+12+(-25)+(-17)=-16;(2)(12-13)÷(-16)-22×(-4)=16×(-6)-4×(-4)=(-1)+16=15.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20. 化简:(1)(5a-3b)-3(a-2b);(2)3x2-[7x-(4x-3)-2x2].【答案】(1)2a+3b;(2)5x2-3x-3【解析】【分析】(1)先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可;(2)先按照去括号法则去掉整式中的小括号,然后去中括号,最后合并整式中的同类项即可.【详解】(1)原式=5a-3b-3a+6b=2a+3b;(2)原式=3x2-[7x-4x+3-2x2]=3x2-7x+4x-3+2x2=5x2-3x-3.【点睛】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.21. 解方程:(1)2x+3=11-6x.(2)x24+-2x16-=1【答案】(1)x=1;(2)x=-4.【解析】【分析】(1)按移项、合并同类项、系数化为1的步骤进行求解即可得;(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可得.【详解】(1)2x+6x=11-3,8x=8,x=1;(2)3(x+2)-2(2x-1)=12,3x+6-4x+2=12,3x-4x=12-6-2,-x=4,x=-4.【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22. 先化简,再求值,2(3ab2-a3b)-3(2ab2-a3b),其中a=-12,b=4.【答案】a3b,1 2 -.【解析】【分析】根据乘法分配律,先去括号,再合并同类项进行化简,再代入求值. 【详解】解:原式=6ab2﹣2a3b﹣6ab2+3a3b=a3b,当a=12-,b=4时,原式=3142⎛⎫-⨯⎪⎝⎭=12-.故答案为1 2 -【点睛】本题考核知识点:整式化简求值.解题关键点:根据乘法分配律去括号,再合并同类项.四、解答题(本大题共6小题,共64.0分)23. 如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到______的距离,______是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是______(用“<”号连接).【答案】(1)见解析;(2)见解析;(3)OA,PC的长度,PH<PC<OC.【解析】【分析】(1)利用三角板过点P画∠OPC=90°即可;(2)利用网格特点,过点P画∠PHO=90°即可;(3)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短即可确定线段PC、PH、OC的大小关系.【详解】(1)如图所示;(2)如图所示;(3) 线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短可知PH<PC<OC,故答案为OA,PC,PH<PC<OC.【点睛】本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.24. 某小组计划做一批“中华结”,如果每人做6个,那么比计划多做了8个;如果每人做4个,那么比计划少做了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.【答案】计划做多少个“中华结”?答案见解析.【解析】【分析】首先提出问题:这批“中华结”的个数是多少?设该批“中华结”的个数为x个,根据加工总个数=单人加工个数×人数,结合该小组人数不变找出关于x的一元一次方程,解之即可得出结论.【详解】这批“中华结”的个数是多少?设计划做“中华结”的个数为x个.根据题意,得:842 64x x+-=.解得:x=142.答:计划做“中华结”的个数为142个.【点睛】本题考查了一元一次方程应用.25. 阅读下面一段文字:问题:0.8⋅能用分数表示吗?探求:步骤①设x=0.8⋅,步骤②10x=10×0.8⋅,步骤③10x=8.8⋅,步骤④10x =8+0.8⋅,步骤⑤10x =8+x ,步骤⑥9x =8,步骤⑦x =89. 根据你对这段文字的理解,回答下列问题:(1)步骤①到步骤②的依据是______;(2)仿照上述探求过程,请你尝试把0.36⋅⋅表示成分数的形式.【答案】(1)等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)见解析,114x =. 【解析】【分析】(1)利用等式的基本性质得出答案;(2)利用已知设x=0.36⋅⋅,进而得出100x=36+x ,求出即可.【详解】(1)步骤①到步骤②,等式的两边同时乘10,依据的是等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立,故答案为等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)设x=0.36⋅⋅,100x=100×0.36⋅⋅,100x=36.36⋅⋅,100x=36+ 0.36⋅⋅,100x=36+x ,99x=36,解得:x=411. 【点睛】本题主要考查了等式的基本性质以及一元一次方程的应用,根据题意得出正确等量关系是解题关键.26. 如图,直线AB 、CD 、EF 相交于点O ,OG ⊥CD ,∠BOD =32°.(1)求∠AOG 的度数;(2)如果OC 是∠AOE 的平分线,那么OG 是∠AOF 的平分线吗?请说明理由.【答案】(1)∠AOG=58°;(2)OG是∠AOF的平分线,见解析.【解析】【分析】(1)根据对顶角的性质,可得∠AOC的度数,根据角的和差,可得答案;(2)根据角平分线的性质,可得∠AOC与∠COE的关系,根据对顶角的性质,可得∠DOF与∠COE的关系,根据等量代换,可得∠AOC与∠DOF的关系,根据余角的性质,可得答案.【详解】(1)由对顶角相等,得∠AOC=∠BOD=32°,由角的和差,得∠AOG=∠COG-∠AOC=90°-32°=58°;(2)如果OC是∠AOE的平分线,那么OG是∠AOF的平分线,理由如下:由OC是∠AOE的平分线,得∠COE=∠AOC=32°,由对顶角相等,得∠DOF=∠COE,等量代换,得∠DOF=∠AOC,∠AOC+∠AOG=∠COG=90°,∠DOF+∠FOG=∠DOG=90°,由等角的余角相等,得∠AOG=∠FOG,OG是∠AOF的平分线.【点睛】本题考查了对顶角、邻补角,(1)利用了对顶角相等的性质,角的和差;(2)利用了对顶角相等的性质,角的和差,还利用了余角的性质:等角的余角相等.27. 为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水38m ,则应收水费:264(86)20⨯+⨯-=元.(1)若该户居民2月份用水312.5m ,则应收水费______元;(2)若该户居民3、4月份共用水315m (4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?【答案】(1)48;(2)三月份用水34m .四月份用水113m .【解析】【分析】(1)根据表中收费规则即可得到结果;(2)分两种情况:用水不超过36m 时与用水超过36m ,但不超过310m 时,再这两种情况下设三月份用水3m x ,根据表中收费规则分别列出方程即可得到结果.【详解】(1)应收水费()()264106812.51048⨯+⨯-+⨯-=元.(2)当三月份用水不超过36m 时,设三月份用水3m x ,则()226448151044x x +⨯+⨯+--= 解之得411x =<,符合题意.当三月份用水超过36m 时,但不超过310m 时,设三月份用水3m x ,则()()264626448151044x x ⨯+-+⨯+⨯+⨯--=解之得36x =<(舍去)所以三月份用水34m .四月份用水113m .28. 如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转.(1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE的旋转过程中,若∠AOE=7∠COD,试求∠AOE的大小.【答案】(1)130°;(2)∠AOD与∠COE的差不发生变化,为30°;(3)∠AOE=131.25°或175°.【解析】【分析】(1)求出∠COE的度数,即可求出答案;(2)分为两种情况,根据∠AOC=90°和∠DOE=60°求出即可;(3)根据∠AOE=7∠COD、∠DOE=60°、∠AOC=90°求出即可.【详解】(1)∵OC⊥AB,∴∠AOC=90°,∵OD在OA和OC之间,∠COD=20°,∠EOD=60°,∴∠COE=60°-20°=40°,∴∠AOE=90°+40°=130°,故答案为130°;(2)在△ODE旋转过程中,∠AOD与∠COE的差不发生变化,有两种情况:①如图1、∵∠AOD+∠COD=90°,∠COD+∠COE=60°,∴∠AOD-∠COE=90°-60°=30°,②如图2、∵∠AOD=∠AOC+∠COD=90°+∠COD,∠COE=∠DOE+∠DOC=60°+∠DOC,∴∠AOD-∠COE=(90°+∠COD)-(60°+∠COD)=30°,即△ODE在旋转过程中,∠AOD与∠COE的差不发生变化,为30°;(3)如图1、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°-∠COD=7∠COD,解得:∠COD=18.75°,∴∠AOE=7×18.75°=131.25°;如图2、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°+∠COD=7∠COD,∴∠COD=25°,∴∠AOE=7×25°=175°,即∠AOE=131.25°或175°.【点睛】本题考查了角的有关计算的应用,能根据题意求出各个角的度数是解此题的关键.注意分类思想的运用.。
2018-2019 学年七年级(上)期末数学试卷一、选择题(本大题共10 小题,每小题3 分,共30 分)1.(3 分)2 的绝对值是()A.2 B.﹣2 C.2 或﹣2 D.2 或2.(3 分)化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n3.(3 分)下列方程是一元一次方程的是()A.3x+1=5x B.3x2+1=3x C.2y2+y=3 D.6x﹣3y=1004.(3 分)如图,是一个正方体纸盒的展开图,若在其中三个正方形A,B,C 中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A,B,C 中的三个数依次是()A.1,﹣3,0 B.0,﹣3,1 C.﹣3,0,1 D.﹣3,1,05.(3 分)下列等式的变形正确的是()A.如果s=vt,那么v=B.如果x=6,那么x=3C.如果﹣x﹣1=y﹣1,那么x=y D.如果a=b,那么a+2=2+b6.(3 分)一件夹克衫先按成本提高50%标价,再以8 折(标价的80%)出售,结果获利28 元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣28 B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x﹣28 D.(1+50%x)×80%=x+287.(3 分)下列说法中正确的是()A.38.15°=38.9′B.两点之间,直线最短C.两条射线构成的图形叫做角D.互余的两个角不可能相等8.(3 分)已知a﹣2b 的值是﹣2,则(a﹣2b)2+2(a﹣2b)的值是()A.﹣4 B.﹣1 C.0 D.29.(3 分)已知线段AB=10cm,在直线AB 上有一点C,且线段BC=4cm,点M 是线段AC 的中点,则AM 的长为()A.3cm B.7cm C.6cm D.3cm 和7cm10.(3 分)如图,当过O 点画不重合的2 条射线时,共组成1 个角;当过O 点画不重合的3 条射线时,共组成 3 个角;当过O点画不重合的4 条射线时,共组成6 个角;….根据以上规律,当过O 点画不重合的10 条射线时,共组成()个角.A.28 B.36 C.45 D.55二、填空题(本大题共5 小题,每小题3 分,共15 分,把答案写在题中横线上)11.(3 分)A 看B 的方向是北偏东21°,那么B 看A 的方向是.12.(3 分)已知14x6y2与﹣31x3m y2是同类项,则12m﹣24= .13.(3 分)对于任意有理数a.b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b,例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.若(x﹣3)⊗x=2011,则x 的值为.14.(3 分)如图,∠AOB=30°,∠BOC=70°,OE 是∠AOC 的平分线,则∠BOE 的度数为.15.(3 分)有m 辆客车及n 个人,若每辆客车乘40 人,则还有10 人不能上车;若每辆客车乘43 人,则最后一辆车有 2 个空位.给出下面五个等式:①40m+10=43m ﹣2;②40m﹣10=43m+2 ;③= ;④= ;⑤43m=n+2.其中正确的是(只填序号).三、解答题(本大题共7 小题,共55 分,解答应写出证明过程或演算步骤)16.(6 分)计算:(1)90°23′﹣36°12′(2)﹣|﹣5|×(﹣12)﹣4÷(﹣)217.(7 分)(1)化简:3a3﹣(3a2+b2﹣5b)+a2﹣5b+b2(2)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=2,y=﹣18.(8 分)解方程:(1)3(x﹣1)+2(x+1)=﹣6(2)=1+19.(6 分)列方程解应用题某文具店一支铅笔的售价为1.2 元,一支圆珠笔的售价为2 元,在元旦期间该店举行文具优惠活动,铅笔按原价打八折出售,圆珠笔按原价打九折出售,结果两种笔共卖出60 支,卖得87 元,则在这次优惠活动中卖出铅笔、圆珠笔各多少支?20.(8 分)如图,点O 是直线AB 上任一点,射线OD 和射线OE 分别平分∠AOC 和∠BOC.(1)填空:与∠AOE 互补的角是;(2)若∠AOD=36°,求∠DOE 的度数;(3)当∠AOD=x°时,请直接写出∠DOE 的度数.21.(8 分)阅读思考我们知道,在数轴上|a|表示数a 所对应的点到原点的距离,这是绝对值的几何意义,由此我们可进一步地来研究数轴上任意两个点之间的距离,一般地,如果数轴上两点A、B 对立的数用a,b 表示,那么这两个点之间的距离AB=|a﹣b|.也可以用两点中右边的点所表示数的减去左边的点所表示的数来计算,例如:数轴上P,Q 两点表示的数分别是﹣1 和2,那么P,Q 两点之间的距离就是PQ=2﹣(﹣1)=3.启发应用如图,点A 在数轴上对应的数为a,点 B 对应的数为b,且a、b 满足|a+3|+(b ﹣2)2=0(1)求线段AB 的长;(2)如图,点C 在数轴上对应的数为x,且x 是方程2x+1=x﹣8 的解,①求线段BC 的长;②在数轴上是否存在点P 使PA+PB=BC?若存在,直接写出点P 对应的数:若不存在,说明理由.22.(12 分)我国出租车的收费标准因地而异,甲市规定:起步价为6 元,3 千米之后每千米1.4 元:;乙市规定:起步价8 元,3 千米之后每千米1.2 元.(1)分别求出在甲市乘出租车2 千米,5 千米应付的车费;(2)在甲、乙两市乘出租车x (x>3)千米时应付的车费各是多少元(用含有x 的式子表示);(3)若某乘客需在甲、乙两市乘出租车15 千米,请你算一算在哪个城市乘出租车便宜?(4)如果李先生在甲、乙两市乘出租车所付的车费相等,试算出李先生乘出租车多少干米,参考答案与试题解析一、选择题(本大题共10 小题,每小题3 分,共30 分)1.(3 分)2 的绝对值是()A.2 B.﹣2 C.2 或﹣2 D.2 或【分析】根据正数的绝对值是它本身,可得答案.【解答】解:2 的绝对值是2.故选:A.【点评】本题考查了绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0.2.(3 分)化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n【分析】利用分配律把括号内的 2 乘到括号内,然后利用去括号法则求解.【解答】解:﹣2(m﹣n)=﹣(2m﹣2n)=﹣2m+2n.故选:D.【点评】本题考查添括号的方法:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.3.(3 分)下列方程是一元一次方程的是()A.3x+1=5x B.3x2+1=3x C.2y2+y=3 D.6x﹣3y=100【分析】根据只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行分析即可.【解答】解:A、是一元一次方程,故此选项正确;B、不是一元一次方程,故此选项错误;C、不是一元一次方程,故此选项错误;D、不是一元一次方程,故此选项错误;故选:A.【点评】此题主要考查了一元一次方程定义,关键是理解一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.4.(3 分)如图,是一个正方体纸盒的展开图,若在其中三个正方形A,B,C 中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A,B,C 中的三个数依次是()A.1,﹣3,0 B.0,﹣3,1 C.﹣3,0,1 D.﹣3,1,0【分析】使得它们折成正方体后相对的面上两个数互为相反数,则 A 与﹣1,B 与3;C 与0 互为相反数.【解答】解:根据以上分析:填入正方形A,B,C 中的三个数依次是1,﹣3,0.故选:A.【点评】本题主要考查人们的空间想象能力,请不要忘记正方体展开时的各种情形.5.(3 分)下列等式的变形正确的是()A.如果s=vt,那么v=B.如果x=6,那么x=3C.如果﹣x﹣1=y﹣1,那么x=y D.如果a=b,那么a+2=2+b【分析】根据等式的性质:等式的两边同时加上或减去同一个数或字母,等式仍成立;等式的两边同时乘以或除以同一个不为0 数或字母,等式仍成立,可得答案.【解答】解:A、左边乘以,右边乘以,故A 错误;B、左边乘以2,右边乘以,故B 错误;C、左边加(2x+1),右边加1,故C 错误;D、两边都加2,故D 正确;故选:D.【点评】本题主要考查了等式的基本性质,等式的两边同时加上或减去同一个数或字母,等式仍成立;等式的两边同时乘以或除以同一个不为0 数或字母,等式仍成立.6.(3 分)一件夹克衫先按成本提高50%标价,再以8 折(标价的80%)出售,结果获利28 元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣28 B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x﹣28 D.(1+50%x)×80%=x+28【分析】根据售价的两种表示方法解答,关系式为:标价×80%=进价+28,把相关数值代入即可.【解答】解:标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%;∴可列方程为:(1+50%)x×80%=x+28,故选:B.【点评】考查列一元一次方程;根据售价的两种不同方式列出等量关系是解决本题的关键.7.(3 分)下列说法中正确的是()A.38.15°=38.9′B.两点之间,直线最短C.两条射线构成的图形叫做角D.互余的两个角不可能相等【分析】利用余角与补角定义,线段的性质,以及度分秒性质判断即可.【解答】解:A、38.15°=38.9′,故选项正确;B、两点之间,线段最短,故选项错误;C、有公共顶点的两条射线组成的图形叫做角,故选项错误;D、互余的两个角可能相等,故选项错误.故选:A.【点评】此题考查了余角和补角,线段的性质,以及度分秒的换算,熟练掌握各自的性质是解本题的关键.8.(3 分)已知a﹣2b 的值是﹣2,则(a﹣2b)2+2(a﹣2b)的值是()A.﹣4 B.﹣1 C.0 D.2【分析】把a﹣2b=﹣2 代入(a﹣2b)2+2(a﹣2b),计算求值即可.【解答】解:把a﹣2b=﹣2 代入(a﹣2b)2+2(a﹣2b)得:(﹣2)2+2×(﹣2)=4﹣4=0故选:C.【点评】本题考查代数式求值,掌握代入求值的方法是解题的关键.9.(3 分)已知线段AB=10cm,在直线AB 上有一点C,且线段BC=4cm,点M 是线段AC 的中点,则AM 的长为()A.3cm B.7cm C.6cm D.3cm 和7cm【分析】应考虑到A、B、C 三点之间的位置关系的多种可能,即点C 在点A 与B 之间或点C 在点B 的右侧两种情况进行分类讨论.【解答】解:①如图1 所示,当点C 在点A 与B 之间时,∵线段AB=10cm,BC=4cm,∴AC=10﹣4=6cm.∵M 是线段AC 的中点,∴AM= AC=3cm,②当点 C 在点B 的右侧时,∵BC=4cm,∴AC=14cmM 是线段AC 的中点,∴AM=AC=7cm.综上所述,线段AM 的长为3cm 或7cm.故选:D.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.10.(3 分)如图,当过O 点画不重合的2 条射线时,共组成1 个角;当过O 点画不重合的3 条射线时,共组成 3 个角;当过O点画不重合的4 条射线时,共组成6 个角;….根据以上规律,当过O 点画不重合的10 条射线时,共组成()个角.A.28 B.36 C.45 D.55【分析】根据题意得出规律.若从点O 出发的n 条射线,可以组成角的个数是:,代入计算即可.【解答】解:当过O 点画不重合的2 条射线时,共组成1 个角;当过O 点画不重合的3 条射线时,共组成3 个角;当过O 点画不重合的 4 条射线时,共组成 6 个角;….根据以上规律,当过O 点画不重合的n 条射线时组成的角的个数是:,故当n=10 时,=45;故选:C.【点评】本题考查了角的概念,图形的变化类;根据题意得出规律公式是解决问题的关键.二、填空题(本大题共5 小题,每小题3 分,共15 分,把答案写在题中横线上)11.(3 分)A 看B 的方向是北偏东21°,那么B 看A 的方向是南偏西21°.【分析】首先根据从A 看B 的方向是北偏东21°正确作出A 和B 的示意图,然后根据方向角定义解答.【解答】解:从B 看A 的方向是南偏西21°.故答案是:南偏西21°.【点评】本题考查了方向角的定义,正确作出 A 和 B 的位置示意图也是关键.12.(3 分)已知14x6y2与﹣31x3m y2是同类项,则12m﹣24= 0 .【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:∵14x6y2与﹣31x3m y2是同类项,∴3m=6,∴12m=24,∴12m﹣24=0.故答案为:0.【点评】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.13.(3 分)对于任意有理数a.b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b,例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.若(x﹣3)⊗x=2011,则x 的值为2017 .【分析】已知等式利用已知新定义化简,即可求出x 的值.【解答】解:已知等式利用题中新定义化简得:2(x﹣3)﹣x=2011,解得:x=2017,故答案为:2017【点评】此题考查了解一元一次方程,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.14.(3 分)如图,∠AOB=30°,∠BOC=70°,OE 是∠AOC 的平分线,则∠BOE 的度数为20°.【分析】根据角的和差,可得∠AOC,根据角平分线的定义,可得∠AOE,根据角的和差,可得答案.【解答】解:∵∠AOB=30°,∠BOC=70°,∴∠AOC=∠AOB+∠BOC=30°+70°=100°,∵OE 平分∠AOC,∴∠AOE=∠COE=50°,∴∠BOE=∠AOE﹣∠AOB=50°﹣30°=20°.故答案为20°.【点评】本题考查了角的计算,利用角的和差得出∠AOC 的度数是解题关键,又利用了角平分线的定义.15.(3 分)有m 辆客车及n 个人,若每辆客车乘40 人,则还有10 人不能上车;若每辆客车乘43 人,则最后一辆车有 2 个空位.给出下面五个等式:①40m+10=43m ﹣2;②40m﹣10=43m+2 ;③= ;④= ;⑤43m=n+2.其中正确的是①③⑤(只填序号).【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【解答】解:根据总人数列方程,应是40m+10=43m﹣2,①正确,②错误;根据客车数列方程,应该为=,③正确,④错误;根据总人数和客车数列方程得:43m=n+2.故答案为:①③⑤.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.三、解答题(本大题共7 小题,共55 分,解答应写出证明过程或演算步骤)16.(6 分)计算:(1)90°23′﹣36°12′(2)﹣|﹣5|×(﹣12)﹣4÷(﹣)2【分析】(1)直接利用度分秒转换法则计算得出答案;(2)直接利用化简各数,进而计算得出答案.【解答】解:(1)90°23′﹣36°12′=54°11′;(2)原式=﹣5×(﹣1)﹣4×4=﹣11.【点评】此题主要考查了度分秒转化换以及有理数的混合运算,正确化简各数是解题关键.17.(7 分)(1)化简:3a3﹣(3a2+b2﹣5b)+a2﹣5b+b2(2)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=2,y=﹣【分析】(1)直接利用去括号,进而合并同类项得出答案;(2)直接利用去括号,进而合并同类项,把已知代入得出答案.【解答】解:(1)原式=3a3﹣3a2﹣b2+5b+a2﹣5b+b2=3a3﹣2a2;(2)原式=x﹣2x+2y2﹣x+y2=﹣2x+3y2,当x=2,y=﹣时,原式=﹣2×2+3×(﹣)2=﹣4+=﹣.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.18.(8 分)解方程:(1)3(x﹣1)+2(x+1)=﹣6(2)=1+【分析】根据一元一次方程的解法即可求出答案.【解答】(每小题(4 分),本题共8 分)解:(1)3x﹣3+2x+2=﹣65x﹣1=﹣65x=﹣5x=﹣1(2)3(x﹣1)=12+4(x+1)3x﹣3=12+4x+43x﹣3=16+4x3x﹣4x=19x=﹣19【点评】本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.19.(6 分)列方程解应用题某文具店一支铅笔的售价为1.2 元,一支圆珠笔的售价为2 元,在元旦期间该店举行文具优惠活动,铅笔按原价打八折出售,圆珠笔按原价打九折出售,结果两种笔共卖出60 支,卖得87 元,则在这次优惠活动中卖出铅笔、圆珠笔各多少支?【分析】设卖出铅笔x 支,则卖出圆珠笔(60﹣x)支,根据总价=单价×数量,即可得出关于x 的一元一次方程,解之即可得出结论.【解答】解:设卖出铅笔x 支,则卖出圆珠笔(60﹣x)支,根据题意得:1.2×0.8x+2×0.9(60﹣x)=87,解得:x=25,∴60﹣x=60﹣25=35.答:卖出铅笔25 支,卖出圆珠笔35 支.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.(8 分)如图,点O 是直线AB 上任一点,射线OD 和射线OE 分别平分∠AOC 和∠BOC.(1)填空:与∠AOE 互补的角是∠BOE、∠COE ;(2)若∠AOD=36°,求∠DOE 的度数;(3)当∠AOD=x°时,请直接写出∠DOE 的度数.【分析】(1)先求出∠BOE=∠COE,再由∠AOE+∠BOE=180°,即可得出结论;(2)先求出∠COD、∠COE,即可得出∠DOE=90°;(3)先求出∠AOC、COD,再求出∠BOC、∠COE,即可得出∠DOE=90°.【解答】解:(1)∵OE 平分∠BOC,∴∠BOE=∠COE;∵∠AOE+∠BOE=180°,∴∠AOE+∠COE=180°,∴与∠AOE 互补的角是∠BOE、∠COE;故答案为∠BOE、∠COE;(2)∵OD、OE 分别平分∠AOC、∠BOC,∴∠COD=∠AOD=36°,∠COE=∠BOE= ∠BOC,∴∠AOC=2×36°=72°,∴∠BOC=180°﹣72°=108°,∴∠COE= ∠BOC=54°,∴∠DOE=∠COD+∠COE=90°;(3)当∠AOD=x°时,∠DOE=90°.【点评】本题考查了余角和补角以及角平分线的定义;熟练掌握两个角的互余和互补关系是解决问题的关键.21.(8 分)阅读思考我们知道,在数轴上|a|表示数a 所对应的点到原点的距离,这是绝对值的几何意义,由此我们可进一步地来研究数轴上任意两个点之间的距离,一般地,如果数轴上两点A、B 对立的数用a,b 表示,那么这两个点之间的距离AB=|a﹣b|.也可以用两点中右边的点所表示数的减去左边的点所表示的数来计算,例如:数轴上P,Q 两点表示的数分别是﹣1 和2,那么P,Q 两点之间的距离就是PQ=2﹣(﹣1)=3.启发应用如图,点A 在数轴上对应的数为a,点 B 对应的数为b,且a、b 满足|a+3|+(b ﹣2)2=0(1)求线段AB 的长;(2)如图,点C 在数轴上对应的数为x,且x 是方程2x+1=x﹣8 的解,①求线段BC 的长;②在数轴上是否存在点P 使PA+PB=BC?若存在,直接写出点P 对应的数:若不存在,说明理由.【分析】(1)利用非负数的性质求出a 与b 的值,即可确定出AB 的长;(2)①求出方程的解得到x 的值,进而确定出BC 的长;②存在,求出P 点对应的数即可.【解答】解:(1)由题意得|a+3|+(b﹣2)2=0,所以a+3=0,b﹣2=0,解得,a=﹣3,b=2,所以AB=2﹣(﹣3)=5;(2)①2x+1=x﹣8,解得,x=﹣6,∴BC=2﹣(﹣6)=8,即线段BC 的长为8;②存在点P,当点P 对应的数是3.5 或﹣4.5 使PA+PB=BC.【点评】此题考查了实数与数轴,非负数的性质,以及一元一次方程的解,熟练掌握运算法则是解本题的关键.22.(12 分)我国出租车的收费标准因地而异,甲市规定:起步价为6 元,3 千米之后每千米1.4 元:;乙市规定:起步价8 元,3 千米之后每千米1.2 元.(1)分别求出在甲市乘出租车2 千米,5 千米应付的车费;(2)在甲、乙两市乘出租车x (x>3)千米时应付的车费各是多少元(用含有x 的式子表示);(3)若某乘客需在甲、乙两市乘出租车15 千米,请你算一算在哪个城市乘出租车便宜?(4)如果李先生在甲、乙两市乘出租车所付的车费相等,试算出李先生乘出租车多少干米,【分析】(1)由2<3 可得出乘出租车 2 千米应付的车费,再根据应付费用=起步价+1.4×超出 3 千米部分,即可求出乘出租车 5 千米应付的车费;(2)根据两地的收费标准即可找出在甲、乙两市乘出租车x (x>3)千米时应付的车费;(3)将x=15 代入(2)的代数式中即可求出结论;(4)设李先生乘出租车x 千米时,李先生在甲,乙两市乘出租车所付的车费相等,根据(2)的结论,即可得出关于x 的一元一次方程,解之即可得出结论.【解答】解:(1)∵2<3,∴乘出租车 2 千米应付6 元,乘出租车5 千米应付的车费为:6+1.4×(5﹣3)=8.8(元).答:在甲市乘出租车2 千米应付6 元车费,在甲市乘出租车5 千米应付8.8 元车费.(2)在甲市应付:6+1.4(x﹣3)=1.4x+1.8(元);在乙市应付:8+1.2(x﹣3)=1.2x+4.4(元).(3)由(2)得:在甲市坐出租车的车费为:1.4x+1.8=1.4×15+1.8=22.8 元,在乙市坐出租车的车费为:1.2x+4.4=1.2×15+4.4=22.4 元.∵22.8>19.4,∴在乙市乘出租车便宜.(4)设李先生乘出租车x 千米时,李先生在甲,乙两市乘出租车所付的车费相等,根据题意得:1.2x+4.4=1.4x+1.8,解得:x=13.答:李先生乘出租车13 千米时,所付车费相等.【点评】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据收费标准列式计算;(2)根据数量间的关系,列出代数式;(3)代入x=15 求值;(4)找准等量关系,正确列出一元一次方程.。
2018-2019学年七年级(上)期末数学试卷一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定4.(3分)如图,几何体的左视图是()A.B.C.D.5.(3分)下列运算结果为正数的是()A .﹣32B .﹣3÷2C .﹣1+2D .0×(﹣2018) 6.(3分)若方程(a ﹣3)x |a |﹣2﹣1=5是关于x 的一元一次方程,则a 的值为( ) A .±2 B .3 C .±3 D .﹣37.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是( ) A .两点确定一条直线B .直线比曲线短C .两点之间直线最短D .两点之间线段最短8.(3分)下列解方程变形正确的是( )A .若5x ﹣6=7,那么5x=7﹣6B .若,那么2(x ﹣1)+3(x +1)=1C .若﹣3x=5,那么x=﹣D .若﹣,那么x=﹣39.(3分)若3a 2+m b 3和(n ﹣2)a 4b 3是同类项,且它们的和为0,则mn 的值是( )A .﹣2B .﹣1C .2D .110.(3分)若x=4是关于x 的方程2x +a=1的解,则a 的值是( )A .﹣4B .﹣7C .7D .﹣911.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB ,则线段AB 盖住的整点个数有( ) A .2018或2019 B .2017或2018 C .2016或2017 D .2019或202012.(2分)已知(b +1)4与|3﹣a |互为相反数,则b a 的值是( )A .﹣3B .3C .﹣1D .113.(2分)若x=2时,代数式ax 4+bx 2+5的值是3,则当x=﹣2时,代数式ax 4+bx 2+7的值为( )A .﹣3B .3C .5D .714.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x 颗,则可得方程为( )A .B .2x +8=3x ﹣12C .D . =15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a >b ),则a ﹣b 的值为( )A.6B.8C.9D.1216.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×1020189.9×102017.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣121.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=;若a=4,则b=;②用含a的式子表示b,则b=;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm【分析】从图可知长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条,再把它们的长度相加即可.【解答】解:因为长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条.所以图中所有线段长度之和为:1×4+2×3+3×2+4×1=20(厘米).故选:B.【点评】本题考查了两点间的距离,关键是能够数出1cm,2cm,3cm,4cm的线段的条数,从而求得解.2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°【分析】根据1度等于60分,1分等于60秒解答即可.【解答】解:10°36″用度表示为10.01°,故选:C.【点评】考查了度分秒的换算,分秒化为度时用除法,而度化为分秒时用乘法.3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定【分析】结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2013年的销售收入约为50万元,2017年约为90万元,则从2013~2017年甲公司增长了90﹣50=40万元;乙公司2013年的销售收入约为50万元,2017年约为70万元,则从2013~2017年乙公司增长了70﹣50=20万元.则甲公司近年的销售收入增长速度比乙公司快.故选:A.【点评】本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.4.(3分)如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体.故选:C.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.5.(3分)下列运算结果为正数的是()A.﹣32B.﹣3÷2C.﹣1+2D.0×(﹣2018)【分析】根据各个选项中的式子,可以计算出相应的结果,从而可以解答本题.【解答】解:∵﹣32=﹣9,﹣3÷2=﹣,﹣1+2=1,0×(﹣2018)=0,∴选项C中的结果为正数,故选:C.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.6.(3分)若方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,则a的值为()A.±2B.3C.±3D.﹣3【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,∴|a|﹣2=1,a﹣3≠0,解得:a=﹣3.故选:D.【点评】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.7.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短【分析】根据线段的性质解答即可.【解答】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.【点评】本题考查的是线段的性质,即两点之间线段最短.8.(3分)下列解方程变形正确的是()A.若5x﹣6=7,那么5x=7﹣6B.若,那么2(x﹣1)+3(x+1)=1C.若﹣3x=5,那么x=﹣D.若﹣,那么x=﹣3【分析】A、运用移项的法则可以求出结论;B、根据等式的性质2去分母可以得出结论;C、运用等式的性质2化系数为1可以得出结论;D、运用等式的性质2化系数为1可以得出结论;【解答】解:A、∵5x﹣6=7,移项,得5x=7+6,故选项错误;B、∵,去分母,得2(x﹣1)+3(x+1)=6,故选项错误;C、∵﹣3x=5,化系数为1,得x=﹣,故选项错误;D、∵﹣,化系数为1,得x=﹣3,故选项正确.故选:D.【点评】本题考查了解方程步骤的运用,去分母,去括号,移项,合并同类项,化系数为1的过程的运用.9.(3分)若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2B.﹣1C.2D.1【分析】由同类项是字母相同且相同字母的指数也相同,可得m的值;根据合并同类项系数相加字母及指数不变,可得n的值;再计算mn,可得答案.【解答】解:由3a2+m b3和(n﹣2)a4b3是同类项,得2+m=4,解得m=2.由它们的和为0,得3a4b3+(n﹣2)a4b3=(n﹣2+3)a4b3=0,解得n=﹣1.mn=﹣2,故选:A.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.(3分)若x=4是关于x的方程2x+a=1的解,则a的值是()A.﹣4B.﹣7C.7D.﹣9【分析】把x=4代入已知方程后,列出关于a的新方程,通过解新方程来求a的值.【解答】解:∵x=4是关于x的方程2x+a=1的解,∴2×4+a=1,解得a=﹣7.故选:B.【点评】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.11.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB,则线段AB盖住的整点个数有()A.2018或2019B.2017或2018C.2016或2017D.2019或2020【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【解答】解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点.∵2018+1=2019,∴2018厘米的线段AB盖住2018或2019个整点.故选:A.【点评】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.12.(2分)已知(b+1)4与|3﹣a|互为相反数,则b a的值是()A.﹣3B.3C.﹣1D.1【分析】根据相反数的概念列出算式,根据非负数的性质求出a、b的值,计算即可.【解答】解:由题意得(b+1)4+|3﹣a|=0,则3﹣a=0,b+1=0,解得a=3,b=﹣1,则b a=﹣1,故选:C.【点评】本题考查的是非负数的性质和相反数,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13.(2分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.7【分析】将x=2代入ax4+bx2+5=3得16a+4b=﹣2,据此将其代入x=﹣2时ax4+bx2+7=16a+4b+7中计算可得.【解答】解:将x=2代入ax4+bx2+5=3,得:16a+4b+5=3,则16a+4b=﹣2,所以当x=﹣2时,ax4+bx2+7=16a+4b+7=﹣2+7=5,故选:C.【点评】本题主要考查代数式求值,解题的关键是熟练掌握代数式的求值及整体代入思想的运用.14.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为()A.B.2x+8=3x﹣12C.D.=【分析】设有糖果x颗,根据该幼儿园小朋友的人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有糖果x颗,根据题意得:=.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A.6B.8C.9D.12【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.【点评】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.16.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0【分析】根据题意可知:a是从1开始到序数的连续整数的和,c是序数与1的和,而b 是a与c的和,据此可得.【解答】解:由图可知,a=1+2+3+ (2018)c=2019,则b=a+c=1+2+3+……+2018+2019,∴a﹣b+c=1+2+3+……+2018﹣(1+2+3+……+2018+2019)+2019=0,故选:D.【点评】本题考查数字和图形的变化类,解题的关键是明确题意,找出数字的变化规律.二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×102018>9.9×102017.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵1.1×102018=11×102017,由11>9.9,∴1.1×102018>9.9×102017.故答案为:>.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=9cm.【分析】根据题意求出BC,根据线段中点的性质解答即可.【解答】解:∵点D是线段BC的中点,若BD=3cm,∴BC=2BD=2×3=6cm,∵点C是线段AB的中点,∴AC=CB=6cm,∴AD=AC+CD=6+3=9cm,故答案为:9cm.【点评】本题考查的是两点间的距离的计算,掌握线段中点的概念、灵活运用数形结合思想是解题的关键.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=1﹣.【分析】分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.=1﹣;=1﹣;【解答】解:故答案为:;1﹣.【点评】本题主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律是解答此题的关键.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣1【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)方程移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=13﹣9+2﹣7=15﹣16=﹣1;(2)原式=﹣1﹣×3×(﹣4)=﹣1+6=5;(3)方程移项合并得:5x=﹣20,解得:x=﹣4;(4)方程去分母得:4x﹣2+x﹣5=﹣6,移项合并得:5x=1,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.【分析】(1)在射线CP上延长截取CM=MN=a,ND=b,则CD满足条件;(2)根据几何语言画出对应的几何图形即可.【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=5x2y﹣3xy2﹣7x2y+2xy2=﹣2x2y﹣xy2,当x=﹣1,y=2时,原式=﹣4+4=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.【分析】设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【解答】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOC=40°.【点评】本题考查了角平分线的定义,要设恰当的未知数,用同一个未知数表示相关的角,根据已知的角列方程进行计算是解此题的关键.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?【分析】根据题意可以列出相应的方程,从而可以求得每件衬衫降价多少元.【解答】解:设每件衬衫降价x元,(180﹣120)×400+(500﹣400)(180﹣x﹣120)=120×500×42%解得,x=48,答:每件衬衫降价48元.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=2;若a=4,则b=﹣2;②用含a的式子表示b,则b=2﹣a;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.【分析】(1)根据政治科目的人数及其所占百分比可得总人数,依据地理学科的人数所占的百分比,即可得到其所在扇形的圆心角;(2)总人数乘以历史科目的百分比可得其人数,从而补全折线图;(3)总人数乘以样本中物理科目人数所占比例即可得.【解答】解:(1)由图知把政治作为首选的324人,占全校总人数的百分比为36%,全校总人数为:324÷36%=900人,地理学科所在扇形的圆心角=360°×=18°;答:被抽查的学生共有900人,地理学科所在扇形的圆心角为18°.(2)本次调查中,首选历史科目的人数为900×6%=54人,补全折线图如下:(3)2000×=400,答:估计喜欢物理学科的人数为400人.【点评】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.【分析】(1)①根据互为基准变换点的定义可得出a+b=2,代入数据即可得出结论;②根据a+b=2,变换后即可得出结论;(2)设点A表示的数为x,根据点A的运动找出点B,结合互为基准变换点的定义即可得出关于x的一元一次方程,解之即可得出结论;(3)由于点P表示的数为m,根据题意,用含m的代数式分别表示出P1、P2、P3、P4、P5表示的数,从而发现4个一循环的规律,进而得出点P2018表示的数与点P2表示的数相同.【解答】解:(1)①∵点A表示数a,点B表示数b,点A与点B互为基准变换点,∵a+b=2,当a=0时,b=2;当a=4时,b=﹣2.故答案为:2;﹣2.②∵a+b=2,∴b=2﹣a.故答案为:2﹣a;(2)设点A表示的数为x,根据题意得:x﹣3+x=2,解得:x=2.故点A表示的数是2;(3)设点P表示的数为m,由题意可知:P1表示的数为m+k,P2表示的数为2﹣(m+k),P3表示的数为2﹣m,P4表示的数为m,P5表示的数为m+k,…由此可分析,4个一循环,∵2018÷4=504…2,∴点P2018表示的数与点P2表示的数相同,即点P2018表示的数为2﹣(m+k).【点评】本题考查了规律型中图形的变化类、数轴以及列代数式,根据互为基准变换点的定义找出a+b=2是解题的关键.。
2018-2019学年七年级(上)期末数学试卷一、精心选一选(本大题共10小题,每小题3分,共30分.)1.﹣6的相反数是()A.﹣6 B. 6 C.﹣ D.2.下列计算正确的是()A. 3a+2b=5ab B. a3+a3=2a3C. 4m3﹣m3=3 D. 4x2y﹣2xy2=2xy3.若x=1是方程2x+m﹣6=0的解,则m的值是()A.﹣4 B. 4 C.﹣8 D. 84.据统计,2019年12月全国约有1650000人参加研究生考试,把1650000用科学记数法表示为()A. 165×104 B. 16.5×105 C. 0.165×107 D. 1.65×1065.下列结论中,不正确的是()A.两点确定一条直线B.等角的余角相等C.过一点有且只有一条直线与已知直线平行D.两点之间的所有连线中,线段最短6.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 47.有理数a、b在数轴上的位置如图所示,则化简|a﹣b|+|a+b|的结果为()A.﹣2a B. 2b C. 2a D.﹣2b8.下列图形中,能折叠成正方体的是()A. B. C. D.9.在今年某月的日历中,用正方形方框圈出的4个数之和是48,则这四个数中最大的一个数是()A. 8 B. 14 C. 15 D. 1610.一列单项式按以下规律排列:x,3x2,5x2,7x,9x2,l1x2,13x,…,则第2019个单项式应是()A. 4029x2 B. 4029x C. 4027x D. 4027x2二、细心填一填:(请将下列各题的正确答案填在第二张试卷的横线上.本大题共8小题,每小题3分,共24分.)11.2019年元旦这一天淮安的气温是﹣3℃~5℃,则该日的温差是℃.12.一个数的绝对值是3,则这个数是.13.如图,线段AB=8,C是AB的中点,点D在CB上,DB=1.5,则线段CD的长等于.14.如图,直线AB、CD相交于点O,∠DOF=90°,OF平分∠AOE,若∠BOD=28°,则∠EOF 的度数为.15.已知∠AOB=80°,以O为顶点,OB为一边作∠BOC=20°,则∠AOC的度数为.16.购买一本书,打八折比打九折少花2元钱,那么这本书的原价是元.17.一种新运算,规定有以下两种变换:①f(m,n)=(m,﹣n).如f(3,2)=(3,﹣2);②g(m,n)=(﹣m,﹣n),如g(3,2)=(﹣3,﹣2).按照以上变换有f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(5,﹣6)]等于.18.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n个图形有个小圆•(用含n的代数式表示)三、细心算一算(本题共10小题,共96分,解答时应写出必要的计算过程,推理步骤或文字说明.)19.计算(1)﹣2+6÷(﹣2)×(2)(﹣2)3﹣(1﹣)×|3﹣(﹣3)2|20.解下列方程:(1)2y+1=5y+7(2)21.解方程组.22.先化简后求值2(x2y+xy2)﹣2(x2y﹣3x)﹣2xy2﹣2y的值,其中x=﹣1,y=2.23.(1)由大小相同的小立方块搭成的几何体如图1,请在图2的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在图2方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.24.(1)如图1,已知线段AB=6,延长线段AB到C,使BC=2AB,点D是AC的中点.求BD的长;(2)如图2,OC是∠AOB内任一条射线,OM、ON分别平分∠AOC、∠BOC,若∠AOB=100°,请求出∠MON的大小.25.学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出40册,就记作﹣10.上星期图书馆借出图书记录如下:期二(1)上期三借出图书多少册?(2)上星期五比上星期四多借出图书24册,求a的值;(3)上星期平均每天借出图书多少册?26.我们知道:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.请回答下列问题:(1)数轴上表示3和圆周率π的两点之间的距离是;(2)若数轴上表示x和﹣4的两点之间的距离为3,试求有理数x值.(1)这两种计算器各购进多少只?(2)若A型计算器按标价的9折出售,B型计算器按标价的8折出售,那么这批计算器全部售出后,超市共获利多少元?28.已知:线段AB=40cm.(1)如图1,点P沿线段AB自A点向B点以3厘米/秒运动,同时点Q沿线段BA自B点向A点以5厘米/秒运动,问经过几秒后P、Q相遇?(2)几秒钟后,P、Q相距16cm?(3)如图2,AO=PO=8厘米,∠POB=40°,点P绕着点O以20度/秒的速度顺时针旋转一周停止,同时点Q沿直线B自B点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度.七年级(上)期末数学试卷参考答案与试题解析一、精心选一选(本大题共10小题,每小题3分,共30分.)1.﹣6的相反数是()A.﹣6 B. 6 C.﹣ D.考点:相反数.分析:根据相反数的概念解答即可.解答:解:﹣6的相反数是6,故选:B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.下列计算正确的是()A. 3a+2b=5ab B. a3+a3=2a3C. 4m3﹣m3=3 D. 4x2y﹣2xy2=2xy考点:合并同类项.分析:根据合并同类项:系数相加字母部分不变,可得答案.解答:解:A、不是同类项不能合并,故A错误;B、系数相加字母部分不变,故B正确;C、系数相加字母部分不变,故C错误;D、不是同类项不能合并,故D错误;故选:B.点评:本题考查了合并同类项,系数相加字母部分不变是解题关键.3.若x=1是方程2x+m﹣6=0的解,则m的值是()A.﹣4 B. 4 C.﹣8 D. 8考点:一元一次方程的解.分析:根据一元一次方程的解的定义,将x=1代入已知方程,列出关于m的新方程,通过解新方程来求m的值.解答:解:根据题意,得2×1+m﹣6=0,即﹣4+m=0,解得m=4.故选B.点评:本题考查了一元一次方程的解的定义.解题时,需要理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.4.据统计,2019年12月全国约有1650000人参加研究生考试,把1650000用科学记数法表示为()A. 165×104 B. 16.5×105 C. 0.165×107 D. 1.65×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:1650 000=1.65×106,故选:D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2019秋•清河区校级期末)下列结论中,不正确的是()A.两点确定一条直线B.等角的余角相等C.过一点有且只有一条直线与已知直线平行D.两点之间的所有连线中,线段最短考点:平行公理及推论;直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;余角和补角.分析:分别利用直线的性质以及线段的性质和平行公理及推论和余角的性质分析求出即可.解答:解:A、两点确定一条直线,正确,不合题意;B、等角的余角相等,正确,不合题意;C、过直线外一点有且只有一条直线与已知直线平行,故此选项错误,符合题意;D、两点之间的所有连线中,线段最短,正确,不合题意;故选:C.点评:此题主要考查了直线的性质以及线段的性质和平行公理及推论和余角的性质等知识,正确把握相关性质是解题关键.6.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 4考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入方程组求出m与n的值,即可确定出m﹣n的值.解答:解:将x=﹣1,y=2代入方程组得:,解得:m=1,n=﹣3,则m﹣n=1﹣(﹣3)=1+3=4.故选:D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.7.有理数a、b在数轴上的位置如图所示,则化简|a﹣b|+|a+b|的结果为()A.﹣2a B. 2b C. 2a D.﹣2b考点:整式的加减;数轴;绝对值.分析:根据数轴上点的位置判断绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.解答:解:根据数轴上点的位置得:a<0<b,且|a|<|b|,∴a﹣b<0,a+b>0,则原式=b﹣a+a+b=2b.故选B点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.8.下列图形中,能折叠成正方体的是()A. B. C. D.考点:展开图折叠成几何体.分析:根据正方体展开图的常见形式作答即可.注意只要有“田”“凹”字格的展开图都不是正方体的表面展开图.解答:解:A、可以折叠成一个正方体,故选项正确;B、有“凹”字格,不是正方体的表面展开图,故选项错误;C、折叠后有两个面重合,不能折叠成一个正方体,故选项错误;D、有“田”字格,不是正方体的表面展开图,故选项错误.故选:A.点评:本题考查了展开图折叠成几何体.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.9.在今年某月的日历中,用正方形方框圈出的4个数之和是48,则这四个数中最大的一个数是()A. 8 B. 14 C. 15 D. 16考点:一元一次方程的应用.分析:设最大的一个数为x,表示出其他三个数,根据之和为48列出方程,求出方程的解即可得到结果.解答:解:设最大的一个数为x,则其他三个数分别为x﹣7,x﹣8,x﹣1,根据题意得:x﹣8+x﹣7+x﹣1+x=48,解得:x=16,则最大的一个数为16.故选D.点评:此题考查了一元一次方程的应用,弄清日历中数字的规律是解本题的关键.10.一列单项式按以下规律排列:x,3x2,5x2,7x,9x2,l1x2,13x,…,则第2019个单项式应是()A. 4029x2 B. 4029x C. 4027x D. 4027x2考点:单项式.专题:规律型.分析:根据单项式的规律,n项的系数是(2n﹣1),次数的规律是每三个是一组,分别是1次,2次2次,可得答案.解答:解:2019÷3=671 (1)∴第2019个单项式应是(2×2019﹣1)x,故选:C.点评:本题考查了单项式,观察式子,发现规律是解题关键.二、细心填一填:(请将下列各题的正确答案填在第二张试卷的横线上.本大题共8小题,每小题3分,共24分.)11.2019年元旦这一天淮安的气温是﹣3℃~5℃,则该日的温差是8 ℃.考点:有理数的减法.分析:用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.解答:解:5﹣(﹣3)=5+3=8℃.故答案为:8.点评:本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.12.一个数的绝对值是3,则这个数是±3 .考点:绝对值.分析:根据绝对值的性质得,|3|=3,|﹣3|=3,故求得绝对值等于3的数.解答:解:因为|3|=3,|﹣3|=3,所以绝对值是3的数是±3.点评:绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.13.如图,线段AB=8,C是AB的中点,点D在CB上,DB=1.5,则线段CD的长等于 2.5 .考点:两点间的距离.分析:先根据线段AB=8,C是AB的中点得出BC的长,再由点D在CB上,DB=1.5即可得出CD的长.解答:解:∵线段AB=8,C是AB的中点,∴CB=AB=8.∵点D在CB上,DB=1.5,∴CD=CB﹣DB=4﹣1.5=2.5.故答案为:2.5.点评:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.14.如图,直线AB、CD相交于点O,∠DOF=90°,OF平分∠AOE,若∠BOD=28°,则∠EOF 的度数为62°.考点:对顶角、邻补角;角平分线的定义.分析:根据平角的性质得出∠COF=90°,再根据对顶角相等得出∠AOC=28°,从而求出∠AOF的度数,最后根据角平分线的性质即可得出∠EOF的度数.解答:解:∵∠DOF=90°,∴∠COF=90°,∵∠BOD=28°,∴∠AOC=28°,∴∠AOF=90°﹣28°=62°,∵OF平分∠AOE,∴∠EOF=62°.故答案为:62°点评:此题考查了角的计算,用到的知识点是平角的性质、对顶角、角平分线的性质,关键是根据题意得出各角之间的关系.15.已知∠AOB=80°,以O为顶点,OB为一边作∠BOC=20°,则∠AOC的度数为60°或100°.考点:角的计算.专题:分类讨论.分析:根据∠BOC的位置,当∠BOC的一边OC在∠AOB外部时,两角相加,当∠BOC的一边OC在∠AOB内部时,两角相减即可.解答:解:以O为顶点,OB为一边作∠BOC=20°有两种情况:当∠BOC的一边OC在∠AOB外部时,则∠AOC=∠AOB+∠BOC=80°+20°=100°;当∠BOC的一边OC在∠AOB内部时,则∠AOC=∠AOB﹣∠BOC=80°﹣20°=60°.故答案是:60°或100°.点评:本题主要考查学生对角的计算这一知识点的理解和掌握,此题采用分类讨论的思想,难度不大,属于基础题.16.购买一本书,打八折比打九折少花2元钱,那么这本书的原价是20 元.考点:一元一次方程的应用.专题:经济问题.分析:等量关系为:打九折的售价﹣打八折的售价=2.根据这个等量关系,可列出方程,再求解.解答:解:设原价为x元,由题意得:0.9x﹣0.8x=2解得x=20.故答案为:20.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.17.一种新运算,规定有以下两种变换:①f(m,n)=(m,﹣n).如f(3,2)=(3,﹣2);②g(m,n)=(﹣m,﹣n),如g(3,2)=(﹣3,﹣2).按照以上变换有f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(5,﹣6)]等于(﹣5,﹣6).考点:有理数的混合运算.专题:新定义.分析:根据题中的两种变换化简所求式子,计算即可得到结果.解答:解:根据题意得:g[f(5,﹣6)]=g(5,6)=(﹣5,﹣6).故答案为:(﹣5,﹣6).点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n个图形有4+n(n+1)个小圆•(用含n的代数式表示)考点:规律型:图形的变化类.专题:规律型.分析:本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.解答:解:根据第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,∵6=4+1×2,10=4+2×3,16=4+3×4,24=4+4×5…,∴第n个图形有:4+n(n+1).故答案为:4+n(n+1),点评:此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.三、细心算一算(本题共10小题,共96分,解答时应写出必要的计算过程,推理步骤或文字说明.)19.计算(1)﹣2+6÷(﹣2)×(2)(﹣2)3﹣(1﹣)×|3﹣(﹣3)2|考点:有理数的混合运算.专题:计算题.分析:(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.解答:解:(1)原式=﹣2﹣6××=﹣2﹣=﹣3;(2)原式=﹣8﹣×6=﹣8﹣4=﹣12.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解下列方程:(1)2y+1=5y+7(2)考点:解一元一次方程.专题:计算题.分析:(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)去分母,移项,再合并同类项,最后化系数为1,从而得到方程的解.解答:解:(1)2y+1=5y+72y﹣5y=7﹣1﹣3y=6y=﹣2;(2)方程去分母得4﹣6x=3x+3﹣6﹣6x﹣3x=3﹣6﹣4﹣9x=﹣7x=.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.21.解方程组.考点:解二元一次方程组.专题:计算题.分析:方程组中两方程相加消去y求出x的值,进而求出y的值,即可确定出方程组的解.解答:解:,①+②得:3x=6,解得:x=2,将x=2代入①得:2+y=1,解得:y=﹣1,则原方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法为:加减消元法与代入消元法.22.先化简后求值2(x2y+xy2)﹣2(x2y﹣3x)﹣2xy2﹣2y的值,其中x=﹣1,y=2.考点:整式的加减—化简求值;合并同类项;去括号与添括号.专题:计算题.分析:根据单项式乘多项式的法则展开,再合并同类项,把x y的值代入求出即可.解答:解:原式=2x2y+2xy2﹣2x2y+6x﹣2xy2﹣2y=6x﹣2y,当x=﹣1,y=2时,原式=6×(﹣1)﹣2×2=﹣10.点评:本题考查了对整式的加减,合并同类项,单项式乘多项式等知识点的理解和掌握,注意展开时不要漏乘,同时要注意结果的符号,代入﹣1时应用括号.23.(1)由大小相同的小立方块搭成的几何体如图1,请在图2的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在图2方格中所画的图一致,则这样的几何体最少要 5 个小立方块,最多要7 个小立方块.考点:作图-三视图.分析:(1)从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最少个数和最多个数相加即可.解答:解:(1)(2)解:由俯视图易得最底层有4个小立方块,第二层最少有1个小立方块,所以最少有5个小立方块;第二层最多有3个小立方块,所以最多有7个小立方块.点评:用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形;俯视图决定底层立方块的个数,易错点是由主视图得到其余层数里最少的立方块个数和最多的立方块个数.24.(1)如图1,已知线段AB=6,延长线段AB到C,使BC=2AB,点D是AC的中点.求BD 的长;(2)如图2,OC是∠AOB内任一条射线,OM、ON分别平分∠AOC、∠BOC,若∠AOB=100°,请求出∠MON的大小.考点:两点间的距离;角平分线的定义.分析:(1)由已知条件可知,BC=2AB,AB=6,则BC=12,故AC=AB+BC可求;又因为点D 是AC的中点,则AD=AC,故BD=BC﹣DC可求.(2)根据角平分线的性质,可得∠MOC与∠NOC的关系,∠AOM与∠COM的关系,根据角的和差,可得答案.解答:解:(1)∵BC=2AB,AB=6,∴BC=12,∴AC=AB+BC=18,∵D是AC的中点,∴AD=AC=9,∴BD=BC﹣DC=12﹣9=3.(2)OM、ON分别平分∠AOC、∠BOC,∴∠NOC=∠BOC,∠COM=∠AOC,∵∠MON=∠MOC+∠COM,∠AOB=100°,∴∠MON=(∠BOC+∠AOC)=∠AOB=50°.点评:本题考查了两点间的距离,利用了线段中点的性质,线段的和差,角平分线的性质,角的和差.25.学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出(2)上星期五比上星期四多借出图书24册,求a的值;(3)上星期平均每天借出图书多少册?考点:正数和负数.分析:(1)根据超过标准记为正,星期三+8,可得答案;(2)根据有理数的减法,星期五+14,可得答案;(3)根据有理数的加法,可得借书总数,根据借书总数除以时间,可得答案.解答:解:(1)+8+50=58(册),答:上期三借出图书58册;(2)上星期五比上星期四多借出图书24册,得14﹣a=24,a=﹣10.(3)(﹣5+3+8﹣10+14)÷5+50=52(册),答:上星期平均每天借出图书52册.点评:本题考查了正数和负数,有理数的加减法运算是解题关键.26.我们知道:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.请回答下列问题:(1)数轴上表示3和圆周率π的两点之间的距离是π﹣3 ;(2)若数轴上表示x和﹣4的两点之间的距离为3,试求有理数x值.考点:数轴.分析:根据数轴上两点间的距离是大数减小数,可得答案.解答:解:(1)数轴上表示3和圆周率π的两点之间的距离是π﹣3,故答案为:π﹣3;(2)数轴上表示x和﹣4的两点之间的距离为3,|x+4|=3,x+4=3或x+4=﹣3,解得x=﹣1或x=﹣7.点评:本题考查数轴,利用了数轴上两点间的距离公式.27.某超市用6800元购进A、B两种计算器共120只,这两种计算器的进价、标价如表.(2)若A型计算器按标价的9折出售,B型计算器按标价的8折出售,那么这批计算器全部售出后,超市共获利多少元?考点:一元一次方程的应用.分析:(1)设A种计算器购进x台,则购进B种计算机(120﹣x)台,根据总进价为6800元,列方程求解;(2)用总售价﹣总进价即可求出获利.解答:解:(1)设A种计算器购进x台,则购进B种计算机(120﹣x)台,由题意得:30x+70(120﹣x)=6800,解得:x=40,则120﹣x=80,答:购进甲种计算器40只,购进乙种计算器80只;(2)总获利为:(50×90%)×40+(100×80%)×80﹣6800=1400,答:这批计算器全部售出后,超市共获利1400元.点评:本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.28.已知:线段AB=40cm.(1)如图1,点P沿线段AB自A点向B点以3厘米/秒运动,同时点Q沿线段BA自B点向A点以5厘米/秒运动,问经过几秒后P、Q相遇?(2)几秒钟后,P、Q相距16cm?(3)如图2,AO=PO=8厘米,∠POB=40°,点P绕着点O以20度/秒的速度顺时针旋转一周停止,同时点Q沿直线B自B点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度.考点:一元一次方程的应用.专题:几何动点问题.分析:(1)根据相遇时,点P和点Q的运动的路程和等于AB的长列方程即可求解;(2)设经过xs,P、Q两点相距10cm,分相遇前和相遇后两种情况建立方程求出其解即可;(3)由于点P,Q只能在直线AB上相遇,而点P旋转到直线AB上的时间分两种情况,所以根据题意列出方程分别求解.解答:解:(1)设经过ts后,点P、Q相遇.依题意,有3t+5t=40,解得t=5.答:经过5秒钟后P、Q相遇;(2)设经过xs,P、Q两点相距16cm,由题意得3x+5x+16=40或3x+5x﹣16=40,解得:x=3或x=7.答:经过3秒钟或7秒钟后,P、Q相距16cm;(3)点P,Q只能在直线AB上相遇,则点P旋转到直线AB上的时间为40÷20=2s或(40+80)÷20=11s.设点Q的速度为ycm/s,则有2y=40﹣16,解得y=12或11y=40,解得y=.答:点Q运动的速度为12cm/s或cm/s.点评:本题考查了相遇问题的数量关系在实际问题中的运用,行程问题的数量关系的运用,分类讨论思想的运用,解答时根据行程问题的数量关系建立方程是关键.。
七年级数学试题1. -3的相反数是 .2.某型号的电脑标价为a 元.打8折后又降价100元出售.则实际售价可用代数式表示为 元. 3.比较大小:32-- ______ 43- (填“<”、“=”或“>”) 4. 观察下列单项式:2x ; 5x 2; 10x 3; 17x 4; 26x 5; ……;按此规律;第10个单项式是 .5.如图是一个数值转换机;若输入的a 值为3-;则输出的结果应为 .6. 如图;A 、B 、C 、D 四名同学的家在同一条直线上;已知C 同学家处在A 与B 两家的中点处;而D 同学的家又处于A 与C 两家的中点处;又知C 与B 两家相距3千米;则A 与D 两同学家相距 千米. 7.若28x y -=; 则62x y -+= .8.已知2(2)|2|0a b a +++=;则2a b -的值等于 . 9.如图;A 、O 、B 在同一条直线上;如果OA 的方向是北偏西2430';那么OB 的方向是东偏南.... 10.如图所示;要使图中平面展开图按虚线折叠成正方体后;相对面上两个数之积为12;则x y += .二.精心选一选(每小题有且只有一个正确答案;请将你认为正确的答案前的字母填入下表相应的空格内;每题3分;共24分)11. 甲、乙、丙三地的海拔高度分别为20m 、-15m 和-10m ;那么最高的地方比最低的地方高A.5mB.10mC.25mD.35m12.如图;从A 到B 有多条道路;人们会走中间的直路;而不会走其他(第9题)题O 西北 南A B东(第10题)yx432 (第6题)输入 (第5题) (第12题)AB的曲折的路;这是因为A .两点之间线段最短B .两条直线相交只有一个交点C .两点确定一条直线D .其他的路行不通13.几个同学在日历竖列上圈出了三个数;算出它们的和;其中错误的一个是 A. 28 B. 33 C. 45 D. 57 14.物理教科书中给出了几种物质的密度;符合科学记数法的是 A .水银13.6×103 kg/m 3 B .铁7.8×103 kg/m 3 C .金19.3×103 kg/m 3 D .煤油0.8×103 kg/m 315.《棋盘上的米粒》故事中;皇帝往棋盘的第1格中放1粒米;第2格中放2粒米;在第3格上加倍至4粒;…;依次类推;每一格均是前一格的双倍;那么他在第12格中所放的米粒数是A . 22粒 B. 24粒 C. 211粒 D. 212粒16.如图;把边长为2的正方形的局部进行图①~图④的变换;最后再通过图形变换形成图⑤;则图⑤的面积是A 、18B 、16C 、12D 、817.一张桌子上摆放着若干个碟子;从三个方向上看到的三种视图如下图所示;则这张 桌子上共有碟子为A. 17个B. 12个C. 8个D. 6个18. 小颖按如图所示的程序输入一个正数..x ;最后输出的结果为656;则满足条件的x 的不同值最多有A.2个B.3个C.4个D.5个⑤④ ③ ② ①俯视图主视图左视图三.计算小能手(本大题共32分)19.计算与化简(每小题8分;共16分)⑴计算:42232[1(3)]()(15)35-÷--+-⨯-⑵先化简;再求值:222363()3x x x x+-+;其中5x=-20.(本题8分)解方程:242 5()()333 x x-=+-21.(本题8分)化简与求值:⑴ 若3m =-;则代数式2113m +的值为 ;⑵ 若3m n +=-;则代数式2()13m n ++的值为 ; ⑶ 若534m n -=-;请你仿照以上求代数式值的方法求出2()4(2)2m n m n -+-+的值四.请你当老师 (本题8分)22.下面是马小哈同学做的一道题;请按照“要求”帮他改正。
2018-2019学年七年级(上)期末数学试卷
一.选择题:相信你一定能选对!(下列各小题的四个选项中,有且只有一个是符合题意的,把你认为符合题意的答案涂在答题卡上,每小题3分,共36分) 1.(3分)下列各对数中,互为相反数的是( )
A.﹣2与3 B.﹣(+3)与+(﹣3)
C.4与﹣4 D.5与
2.(3分)已知一个单项式的系数是2,次数是3,则这个单项式可以是( )
A.﹣2xy2 B.3x2 C.2xy3 D.2x3 3.(3分)未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将
8450亿元用科学记数法表示为( )
A.0.845×104亿元 B.8.45×103亿元
C.8.45×104亿元 D.84.5×102亿元
4.(3分)将一块木板钉在墙上,我们至少需要2个钉子将它固定,这是因为( )
A.两点确定一条直线 B.两点确定一条线段
C.两点之间,直线最短 D.两点之间,线段最短
5.(3分)图中几何体是圆柱沿竖直方向切掉一半后得到的,从上向下看它将看到( )
A. B. C. D.
6.(3分)有理数a,b在数轴上的位置如图所示,则下列各式成立的是( )
A.b﹣a>0 B.﹣b>0 C.a>﹣b D.﹣ab<0 7.(3分)数轴上的点A到原点的距离是4,则点A表示的数为( )
A.4 B.﹣4 C.4或﹣4 D.2或﹣2 8.(3分)下列各组中,不是同类项的是( )
A.52与25 B.﹣ab与ba
C.0.2a2b与﹣a2b D.a2b3与﹣a3b2 9.(3分)若,则x2+y3的值是( )
A. B. C. D.
10.(3分)用一副三角板拼成的图形如图所示,其中B、C、D三点在同一条直线上.则
图中∠ACE的大小为( )
A.45° B.60° C.75° D.105° 11.(3分)将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是( )
A.
B.
C.
D.
12.(3分)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和
爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )
A.19 B.18 C.16 D.15 二、填空题:你能填得又对又快吗?(把答案填答题卡上,每小题3分,本题满分共21分)
13.(3分)单项式﹣5x2y的次数是 .
14.(3分)比较大小:﹣ ﹣|﹣|.
15.(3分)已知6xny4与是同类项,则2m﹣n= .
16.(3分)若方程(a﹣3)x|a|﹣2﹣7=0是一个一元一次方程,则a等于 .
17.(3分)一个角的补角加上10°后,等于这个角的余角的3倍,则这个角= °.
18.(3分)当x= 时,代数式3x﹣2的值与互为倒数.
19.(3分)如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图
案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为 (用含n的式子表示).
三.解答题:一定要细心,你能行!(共63分) 20.(10分)完成下列各题:
(1)计算:; (2)解方程:﹣=1. 21.(10分)已知A=,B=﹣.
(1)化简:2A﹣6B; (2)已知|a+2|+(b﹣3)2=0,求2A﹣6B的值. 22.(10分)同学们,今天我们来学习一个新知识.形如的式子叫做二阶行列式,
它的运算法则用公式表示为=ad﹣bc,利用此法则解决以下问题: (1)仿照上面的解释,表示出的结果; (2)依此法则计算的结果; (3)如果=4,那么x的值为多少? 23.(10分)(1)如图,∠AOB的平分线为OM,ON为∠AOM内的一条射线,若∠BON=55°,
∠AON=15°时,求∠MON的度数; (2)某同学经过认真的分析,得出一个关系式:∠MON=(∠BON﹣∠AON),你认为这个同学得出的关系式是正确的吗?若正确,请把得出这个结论的过程写出来.
24.(11分)列一元一次方程解应用题.
某校七年级(1)班数学老师为做好期末复习,事先录制了一节复习课,准备刻成电脑光盘给每个学生回家观看.如果到电脑公司刻录光盘每张需9元;如果在学校自己刻录,除租用一台刻录机需要140元外,每张光盘还需要成本费5元. (1)问刻录多少张光盘时,到电脑公司刻录与学校自己刻录所需费用一样? (2)如果七年级(1)班共有学生36人,每人一张,那么到电脑公司刻录合算,还是在学校自己刻录合算. 25.(12分)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三
角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方. (1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由; (2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由; (3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由. 七年级(上)期末数学试卷 参考答案与试题解析
一.选择题:相信你一定能选对!(下列各小题的四个选项中,有且只有一个是符合题意的,把你认为符合题意的答案涂在答题卡上,每小题3分,共36分) 1.(3分)下列各对数中,互为相反数的是( )
A.﹣2与3 B.﹣(+3)与+(﹣3)
C.4与﹣4 D.5与
【分析】根据只有符号不同的两个数互为相反数,可得答案. 【解答】解:A、只有符号不同的两个数互为相反数,故A错误; B、都是﹣3,故B错误;
C、只有符号不同的两个数互为相反数,故C正确;
D、互为倒数,故D错误;
故选:C. 【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数. 2.(3分)已知一个单项式的系数是2,次数是3,则这个单项式可以是( )
A.﹣2xy2 B.3x2 C.2xy3 D.2x3 【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数. 【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母. A、﹣2xy2系数是﹣2,错误;
B、3x2系数是3,错误;
C、2xy3次数是4,错误;
D、2x3符合系数是2,次数是3,正确;
故选:D. 【点评】此题考查单项式问题,解答此题需灵活掌握单项式的系数和次数的定义. 3.(3分)未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将
8450亿元用科学记数法表示为( ) A.0.845×104亿元 B.8.45×103亿元
C.8.45×104亿元 D.84.5×102亿元
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数. 【解答】解:将8450亿元用科学记数法表示为8.45×103亿元. 故选:B. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 4.(3分)将一块木板钉在墙上,我们至少需要2个钉子将它固定,这是因为( )
A.两点确定一条直线 B.两点确定一条线段
C.两点之间,直线最短 D.两点之间,线段最短
【分析】根据公理“两点确定一条直线”,来解答即可. 【解答】解:将一块木板钉在墙上,我们至少需要2个钉子将它固定,这是因为两点确定一条直线, 故选:A. 【点评】本题考查直线的确定:两点确定一条直线,熟练掌握数学公理是解题的关键. 5.(3分)图中几何体是圆柱沿竖直方向切掉一半后得到的,从上向下看它将看到( )
A. B. C. D.
【分析】直接利用俯视图是从物体上面看所得到的图形,进而得出答案. 【解答】解:从几何体的上面看俯视图是, 故选:D. 【点评】本题考查了几何体的三视图,掌握俯视图的定义是关键.注意所有的看到的棱都应表现在三视图中. 6.(3分)有理数a,b在数轴上的位置如图所示,则下列各式成立的是( )