立体几何中的面面垂直
- 格式:pptx
- 大小:761.67 KB
- 文档页数:28
立体几何之垂直关系【知识要点】空间中的垂直关系如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.如果一个平面过另一个平面的一条垂线,则两个平面互相垂直. 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.解决空间问题的重要思想方法:等价转化——化空间问题为平面问题.空间平行、垂直关系证明的基本思想方法——转化与联系,如图所示.题型1 平移证明线线垂直 例1 如图,在四棱锥ABCD P -中,N M AD BC AB AD BC BC AB ,.2,1,,===⊥分别为DC PD ,的中点,求证:AC MN ⊥例2 底面ABCD 是正方形,Q G BE PD PD BE ,,2,=‖分别为AP AB ,的中点,求证:CG QE ⊥例3 如图,在正方形1111D C B A ABCD -中,M 为1CC 的中点,F E ,分别为11,D A CD 的中点,AC 交BD 于点O ,求证:OM EF ⊥题型2 线面垂直判定例1 如图,在三棱锥ABC P -中,PAB ∆是等边三角形。
①若ABC ∆是等边三角形,证明:PC AB ⊥②若 90=∠=∠PBC PAC ,证明:PC AB ⊥例 2 已知四棱台1111D C B A ABCD -的上下底面边长分别是2和4的正方形,41=AA 且ABCD AA 底面⊥1,点P 为1DD 的中点,求证:PBC AB 面⊥1例3 如图,在三棱柱111C B A ABC -中,AC AB BAC ==∠,90,1A 在底面ABC 的射影为BC 的中点,D 为11C B 的中点。
证明:⊥D A 1平面BC A 1题型3 线面垂直性质证明线线垂直例1 如图,在三棱柱111C B A ABC -中,侧棱垂直于底面,D AA AC ACB ,21,901==∠ 是棱1AA 的中点,求证:BD DC ⊥1例2 已知正方形ABCD 所在平面与正方形ABEF 所在平面互相垂直,M 为AC 上一点,N 为BF 上一点,且FN AM =。
怎么证明面面垂直怎么证明面面垂直证明一个面上的一条线垂直另一个面;首先可以转化成一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面然后转化成一条直线垂直于另一个平面内的两条相交直线也可以运用两个面的法向量互相垂直。
这是解析几何的方法。
证:连接AC,BD.PD垂直面ABCD=>PD垂直AC.ABCD为正方形=>AC垂直BD.而BD是PB在面ABCD内的射影=>PB垂直AC.PD垂直AC=>AC垂直面PBD.AC属于面ACE=>面PBD垂直面ACE21利用直角三角形中两锐角互余证明由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。
2勾股定理逆定理3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。
二、高中部分线线垂直分为共面与不共面。
不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。
1向量法两条直线的方向向量数量积为02斜率两条直线斜率积为-13线面垂直,则这条直线垂直于该平面内的所有直线一条直线垂直于三角形的两边,那么它也垂直于另外一边4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
3高中立体几何的证明主要是平行关系与垂直关系的证明。
方法如下(难以建立坐标系时再考虑):Ⅰ.平行关系:线线平行:1.在同一平面内无公共点的两条直线平行。
2.公理4(平行公理)。
3.线面平行的性质。
4.面面平行的性质。
5.垂直于同一平面的两条直线平行。
线面平行:1.直线与平面无公共点。
2.平面外的一条直线与平面内的一条直线平行。
3.两平面平行,一个平面内的任一直线与另一平面平行。
面面平行:1.两个平面无公共点。
专题20 立体几何中的平行与垂直问题一、题型选讲题型一、线面平行与垂直知识点拨:证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。
直线与平面垂直关键是找两条相交直线例1、(2019南通、泰州、扬州一调)如图,在四棱锥PABCD中,M, N分别为棱PA, PD的中点.已知侧面PAD丄底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN〃平面PBC;MD丄平面PAB.【证明】(1)在四棱锥P-ABCD中,M, N分别为棱PA, PD的中点,所以MN〃AD.(2分)又底面ABCD是矩形,所以BC〃AD.所以MN〃BC.(4分)又BC U平面PBC,MN Q平面PBC,所以MN〃平面PBC. (6分)(2)因为底面ABCD是矩形,所以AB丄AD.又侧面PAD丄底面ABCD,侧面PAD n底面ABCD=AD, AB U底面ABCD,所以AB丄侧面PAD.(8分)又MD U侧面PAD,所以AB丄MD.(10分)因为DA=DP,又M为AP的中点,从而MD丄PA. (12分)又PA,AB在平面PAB内,PA n AB=A,所以MD丄平面PAB.(14分)例2、(2019扬州期末)如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B丄平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1)求证:EF〃平面ABC;(2)求证:BB]丄AC.规范解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E, F分别是侧面AA1B1B, BB1C1C对角线的交点,所以E, F分别是AB1,CB1的中点,所以EF〃AC.(4分)因为EF Q平面ABC, AC U平面ABC,所以EF〃平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1丄AB.因为平面AA1B1B丄平面ABC,且平面AA1B1B n平面ABC=AB, BB1U平面AA1B1B, 所以BB1丄平面ABC.(12分)因为AC U平面ABC,所以BB1丄AC.(14分)例3、(2019南京、盐城二模)如图,在三棱柱ABCA1B1C1中,AB=AC, A1C丄BC], AB]丄BC1,D, E 分别是AB1和BC的中点.求证:(1)DE〃平面ACC1A1;(2)AE丄平面BCC1B1.A _________ c,规范解答⑴连结A1B,在三棱柱ABCA1B1C1中,AA1#BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在厶BA1C中,D和E分别是BA1和BC的中点,所以DE〃A]C.又因为DE G平面ACC1A1,A1C U平面ACC1A1,所以DE〃平面ACC1A1.(6分)(2)由(1)知DE〃A]C,因为A1C丄BC” 所以BC]丄DE.(8 分)又因为BC]丄AB1,AB1H DE=D,AB1,DE U平面ADE,所以BC1丄平面ADE.又因为AE U平在ADE,所以AE丄BC1.(10分)在厶ABC中,AB=AC,E是BC的中点,所以AE丄BC.(12分)因为AE丄BC1,AE丄BC,BC1H BC=B,BC1,BC U平面BCC1B1,所以AE丄平面BCC1B1. (14 分)例4、(2019苏锡常镇调研)如图,三棱锥DABC中,已知AC丄BC,AC丄DC,BC=DC,E,F 分别为BD,CD 的中点.求证:(1)EF〃平面ABC;(2)BD丄平面ACE.所以EF 〃平面ABC.(6分)(2)因为AC丄BC,AC丄DC,BC H DC = C,BC,DC U平面BCD所以AC丄平面BCD,(8分)因为BD U平面BCD,所以AC丄BD,(10分)因为DC=BC,E为BD的中点,所以CE丄BD,(12分)因为AC n CE = C, AC,CE U平面ACE,所以BD丄平面ACE.(14分)例5、(2019苏州三市、苏北四市二调)如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1 丄B1C1•设A1C与AC1交于点D, B1C与BC1交于点E.求证:(1) DE〃平面ABB1A1;(2) BC]丄平面A1B1C.规范解答(1)因为三棱柱ABCA1B1C1为直三棱柱,所以侧面ACC1A1为平行四边形.又A1C 与AC1 交于点D,所以D为AC]的中点,同理,E为BC]的中点•所以DE〃AB.(3分)又AB U平面ABB]A], DE G平面ABB]A], 所以DE〃平面ABB]A].(6分)(2)因为三棱柱ABCA]B]C]为直三棱柱,所以BB]丄平面A]B]C]. 又因为A]B]U平面A]B]C],所以BB]丄A]B i.(8分)又A]B]丄B]C], BB], B]C] U 平面BCC]B], BB]n B]C1=B1,所以A]B]丄平面BCC]B].(10 分)又因为BC]U平面BCC]B1,所以A]B丄BC].(12分)又因为侧面BCC]B1为正方形,所以BC]丄BQ.又A1B1n B1C=B1,A1B1,B1C U平面A1B1C, 所以BC1丄平面A1B1C.(14分)例6、(2017苏北四市一模)如图,在正三棱柱ABCA1B1C1中,已知D, E分别为BC, B1C1的中点,点F 在棱CC1上,且EF丄CD.求证:(1)直线A1E〃平面ADC1;⑴证法1连结ED,因为D, E分别为BC, B1C1的中点,所以B&/BD且B1E=BD, 所以四边形BBDE是平行四边形,(2分)所以BB/DE且BB1=DE. 又BB]〃AA]且BB]=AA], 所以AA/DE且AA1=DE, 所以四边形AA]ED是平行四边形,所以A]E〃AD.(4分)又因为AE G平面ADC, AD U平面ADC,所以直线AE〃平面ADC.(7分)1 1 1畀 ------ 1B证法2连结ED,连结A1C, EC分别交AC” DC1于点M, N,连结MM,则因为D, E分别为BC,B1C1的中点,所以C1E^CD且C、E=CD,所以四边形C1EDC是平行四边形,所以N是CE的中点.(2分)因为A1ACC1为平行四边形,所以M是A1C的中点,(4分)所以MN//A\E.又因为A]E G平面ADC,MN U平面ADC,,所以直线Af〃平面ADC、.(7分)(2)在正三棱柱ABCA1B1C1中,BB]丄平面ABC.又AD U平面ABC,所以AD丄BB、.又A ABC是正三角形,且D为BC的中点,所以AD丄BC.(9分)又BB,,BC U 平面BBCC,,BB1A BC=B,所以AD丄平面B,BCC,,又EF U平面BBCC,所以AD丄EF.(11分)又EF丄CD,CD,AD U平面ADC,,C,D A AD=D,所以直线EF丄平面ADC,.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
第五节 直线、平面垂直的判定与性质一、基础知识1.直线与平面垂直 (1)直线和平面垂直的定义:直线l 与平面α内的任意一条直线都垂直, 就说直线l 与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理:文字语言 图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a ,b ⊂αa ∩b =Ol ⊥a l ⊥b⇒l ⊥α 性质定理 垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b⎣⎢⎡⎦⎥⎤❶如果一条直线与平面内再多(即无数条)的直线垂直,但这些直线不相交就不能说明这条直线与此平面垂直. 2.平面与平面垂直的判定定理与性质定理文字语言 图形语言符号语言判定定理一个平面过另一个平面的垂线❷,则这两个平面垂直⎭⎪⎬⎪⎫l ⊂βl ⊥α⇒α⊥β 性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl ⊂βα∩β=a l ⊥a ⇒l ⊥α[❷要求一平面只需过另一平面的垂线.]二、常用结论直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.考点一直线与平面垂直的判定与性质[典例]如图,在四棱锥PABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.[证明](1)在四棱锥PABCD中,∵P A⊥底面ABCD,CD⊂底面ABCD,∴P A⊥CD,又∵AC⊥CD,且P A∩AC=A,∴CD⊥平面P AC.∵AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.∵PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,AB⊂底面ABCD,∴P A⊥AB.又∵AB⊥AD,且P A∩AD=A,∴AB⊥平面P AD,∵PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.[解题技法]证明线面垂直的4种方法(1)线面垂直的判定定理:l ⊥a ,l ⊥b ,a ⊂α,b ⊂α,a ∩b =P ⇒l ⊥α. (2)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. (3)性质:①a ∥b ,b ⊥α⇒a ⊥α,②α∥β,a ⊥β⇒a ⊥α. (4)α⊥γ,β⊥γ,α∩β=l ⇒l ⊥γ.(客观题可用) [口诀归纳]线面垂直的关键,定义来证最常见, 判定定理也常用,它的意义要记清. 平面之内两直线,两线相交于一点, 面外还有一直线,垂直两线是条件. [题组训练]1.(2019·安徽知名示范高中联考)如图,在直三棱柱ABC A 1B 1C 1中,AB =BC =BB 1,AB 1∩A 1B =E ,D 为AC 上的点,B 1C ∥平面A 1BD .(1)求证:BD ⊥平面A 1ACC 1;(2)若AB =1,且AC ·AD =1,求三棱锥A BCB 1的体积. 解: (1)证明:如图,连接ED ,∵平面AB 1C ∩平面A 1BD =ED ,B 1C ∥平面A 1BD , ∴B 1C ∥ED , ∵E 为AB 1的中点, ∴D 为AC 的中点, ∵AB =BC ,∴BD ⊥AC .∵A 1A ⊥平面ABC ,BD ⊂平面ABC ,∴A 1A ⊥BD . 又∵A 1A ,AC 是平面A 1ACC 1内的两条相交直线, ∴BD ⊥平面A 1ACC 1.(2)由AB =1,得BC =BB 1=1,由(1)知AD =12AC ,又AC ·AD =1,∴AC 2=2,∴AC 2=2=AB 2+BC 2,∴AB ⊥BC , ∴S △ABC =12AB ·BC =12,∴V A BCB 1=V B 1ABC =13S △ABC ·BB 1=13×12×1=16.2.如图,S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D,E分别为AC,AB的中点.∴DE∥BC,∴DE⊥AB,∵SA=SB,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,∵SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)∵AB=BC,∴BD⊥AC,由(1)可知,SD⊥平面ABC,又BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.考点二面面垂直的判定与性质[典例](2018·江苏高考)在平行六面体ABCDA1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.[证明](1)在平行六面体ABCDA1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCDA1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.[解题技法] 证明面面垂直的2种方法 定义法利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题定理法 利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决[题组训练]1.(2019·武汉调研)如图,三棱锥P ABC 中,底面ABC 是边长为2的正三角形,P A ⊥PC ,PB =2.求证:平面P AC ⊥平面ABC .证明:取AC 的中点O ,连接BO ,PO . 因为△ABC 是边长为2的正三角形, 所以BO ⊥AC ,BO = 3.因为P A ⊥PC ,所以PO =12AC =1.因为PB =2,所以OP 2+OB 2=PB 2,所以PO ⊥OB . 因为AC ∩OP =O , 所以BO ⊥平面P AC . 又OB ⊂平面ABC , 所以平面P AC ⊥平面ABC .2.(2018·安徽淮北一中模拟)如图,四棱锥P ABCD 的底面是矩形,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点,且P A =AD .求证:(1)AF ∥平面PEC ; (2)平面PEC ⊥平面PCD .证明:(1)取PC 的中点G ,连接FG ,EG , ∵F 为PD 的中点,G 为PC 的中点, ∴FG 为△CDP 的中位线, ∴FG ∥CD ,FG =12CD .∵四边形ABCD 为矩形,E 为AB 的中点, ∴AE ∥CD ,AE =12CD .∴FG =AE ,FG ∥AE , ∴四边形AEGF 是平行四边形,∴AF ∥EG ,又EG ⊂平面PEC ,AF ⊄平面PEC ,∴AF∥平面PEC.(2)∵P A=AD,F为PD中点,∴AF⊥PD,∵P A⊥平面ABCD,CD⊂平面ABCD,∴P A⊥CD,又∵CD⊥AD,AD∩P A=A,∴CD⊥平面P AD,∵AF⊂平面P AD,∴CD⊥AF.又PD∩CD=D,∴AF⊥平面PCD.由(1)知EG∥AF,∴EG⊥平面PCD,又EG⊂平面PEC,∴平面PEC⊥平面PCD.[课时跟踪检测]A级1.设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β解析:选C对于C项,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故选C.2.(2019·湘东五校联考)已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β.其中正确的命题是()A.①④B.③④C.①②D.①③解析:选A对于①,若α∥β,m⊥α,l⊂β,则m⊥l,故①正确,排除B.对于④,若m∥l,m⊥α,则l⊥α,又l⊂β,所以α⊥β.故④正确.故选A.3.已知P A垂直于以AB为直径的圆所在的平面,C为圆上异于A,B两点的任一点,则下列关系不正确的是()A.P A⊥BC B.BC⊥平面P ACC.AC⊥PB D.PC⊥BC解析:选C由P A⊥平面ACB⇒P A⊥BC,故A不符合题意;由BC⊥P A,BC⊥AC,P A∩AC=A,可得BC⊥平面P AC,所以BC⊥PC,故B、D不符合题意;AC⊥PB显然不成立,故C符合题意.4.如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么点D在平面ABC内的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A因为AB⊥AC,BD⊥AC,AB∩BD=B,所以AC⊥平央ABD,又AC⊂平面ABC,所以平面ABC⊥平面ABD,所以点D在平面ABC内的射影H必在直线AB上.5.如图,在正四面体PABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面P AEC.平面PDF⊥平面P AED.平面PDE⊥平面ABC解析:选D因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确.在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,所以BC⊥平面P AE,又DF∥BC,则DF⊥平面P AE,从而平面PDF⊥平面P AE.因此选项B、C均正确.6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中,与PC垂直的直线有________个;与AP垂直的直线有________个.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC.∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面P AC,又∵AP⊂平面P AC,∴AB⊥AP,与AP垂直的直线是AB.答案:317.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α∥β;②若α外的一条直线l与α内的一条直线平行,则l∥α;③设α∩β=l,若α内有一条直线垂直于l,则α⊥β;④直线l⊥α的充要条件是l与α内的两条直线垂直.其中所有的真命题的序号是________.解析:①正确;②正确;满足③的α与β不一定垂直,所以③错误;直线l⊥α的充要条件是l与α内的两条相交直线垂直,所以④错误.故所有的真命题的序号是①②.答案:①②8.在直三棱柱ABCA1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确命题的序号是________.解析:如图所示,因为AA1∥平面α,平面α∩平面AA1B1B=EH,所以AA1∥EH.同理AA1∥GF,所以EH∥GF,又ABCA1B1C1是直三棱柱,易知EH=GF=AA1,所以四边形EFGH是平行四边形,故①正确;若平面α∥平面BB1C1C,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1,而GH∥B1C1不一定成立,故②错误;由AA1⊥平面BCFE,结合AA1∥EH知EH⊥平面BCFE,又EH⊂平面α,所以平面α⊥平面BCFE,故③正确.答案:①③9.(2019·太原模拟)如图,在四棱锥PABCD中,底面ABCD是菱形,∠BAD=60°,P A=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点.(1)求证:AD⊥平面PNB;(2)若平面P AD⊥平面ABCD,求三棱锥PNBM的体积.解:(1)证明:连接BD.∵P A=PD,N为AD的中点,∴PN⊥AD.又底面ABCD是菱形,∠BAD=60°,∴△ABD为等边三角形,∴BN⊥AD,又PN∩BN=N,∴AD⊥平面PNB.(2)∵P A=PD=AD=2,∴PN=NB= 3.又平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,PN⊥AD,∴PN⊥平面ABCD,∴PN⊥NB,∴S△PNB=12×3×3=32.∵AD⊥平面PNB,AD∥BC,∴BC ⊥平面PNB .又PM =2MC , ∴V P NBM =V M PNB =23V C PNB =23×13×32×2=23.10.如图,在直三棱柱ABC A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .证明:(1)在直三棱柱ABC A 1B 1C 1中,AC ∥A 1C 1, 在△ABC 中,因为D ,E 分别为AB ,BC 的中点. 所以DE ∥AC ,于是DE ∥A 1C 1,又因为DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F , 所以直线DE ∥平面A 1C 1F .(2)在直三棱柱ABC A 1B 1C 1中,AA 1⊥平面A 1B 1C 1, 因为A 1C 1⊂平面A 1B 1C 1,所以AA 1⊥A 1C 1,又因为A 1C 1⊥A 1B 1,A 1B 1∩AA 1=A 1,AA 1⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1, 所以A 1C 1⊥平面ABB 1A 1, 因为B 1D ⊂平面ABB 1A 1, 所以A 1C 1⊥B 1D ,又因为B 1D ⊥A 1F ,A 1C 1∩A 1F =A 1,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F , 所以B 1D ⊥平面A 1C 1F , 因为直线B 1D ⊂平面B 1DE , 所以平面B 1DE ⊥平面A 1C 1F .B 级1.(2018·全国卷Ⅱ)如图,在三棱锥P ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离. 解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3. 连接OB , 因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为AC ∩OB =O ,所以PO ⊥平面ABC . (2)作CH ⊥OM ,垂足为H , 又由(1)可得OP ⊥CH , 所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.2.(2019·河南中原名校质量考评)如图,在四棱锥P ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E ,F 分别是CD ,PC 的中点.求证:(1)BE ∥平面P AD ; (2)平面BEF ⊥平面PCD .证明:(1)∵AB ∥CD ,CD =2AB ,E 是CD 的中点, ∴AB ∥DE 且AB =DE , ∴四边形ABED 为平行四边形,∴AD ∥BE ,又BE ⊄平面P AD ,AD ⊂平面P AD , ∴BE ∥平面P AD .(2)∵AB ⊥AD ,∴四边形ABED 为矩形, ∴BE ⊥CD ,AD ⊥CD ,∵平面P AD ⊥底面ABCD ,平面P AD ∩底面ABCD =AD ,P A ⊥AD , ∴P A ⊥底面ABCD , ∴P A ⊥CD ,又P A ∩AD =A , ∴CD ⊥平面P AD ,∴CD ⊥PD , ∵E ,F 分别是CD ,PC 的中点, ∴PD ∥EF ,∴CD ⊥EF ,又EF ∩BE =E , ∴CD ⊥平面BEF ,∵CD ⊂平面PCD ,∴平面BEF ⊥平面PCD .。
面面垂直与二面角一.选择题(共12小题)1.如图梯形ABCD中,AD∥BC,∠ABC=90°,AD:BC:AB=2:3:4,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折,给出四个结论:①DF⊥BC;②BD⊥FC;③平面DBF⊥平面BFC;④平面DCF⊥平面BFC.则在翻折过程中,可能成立的结论的个数为()A.1B.2C.3D.42.如图,已知四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为MC的中点,则下列结论不正确的是()A.平面BCE⊥平面ABNB.MC⊥ANC.平面CMN⊥平面AMND.平面BDE∥平面AMN3.下列命题中错误的是()A.如果α⊥β,那么α内一定存在直线平行于平面βB.如果α⊥β,那么α内所有直线都垂直于平面βC.如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面βD.如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ4.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,P为线段A1B上的动点,则下列结论中正确的个数为()①DC1⊥D1P ②平面D1A1P⊥平面A1AP③∠APD1的最大值为90°④AP+PD1的最小值为⑤C1P与平面A1B1B所成角正弦值的取值范围是[,]A.1B.2C.3D.45.如图,在正方体ABCDA1B1C1D1中,E为BC1的中点,则DE与平面ABC1D1所成角的正弦值为()A.B.C.D.6.二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=2,AC=3,BD=4,CD=,则该二面角的大小为()A.30°B.45°C.60°D.120°7.正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为12,底面对角线的长为2,则侧面与底面所成的二面角为()A.30°B.45°C.60°D.90°8.在正三棱柱ABC﹣A1B1C1中,D是AC的中点,AB1⊥BC1,则平面DBC1与平面CBC1所成的角为()A.30°B.45°C.60°D.90°9.如图,在长方体ABCD﹣A1B1C1D1中,AB=2,,AA1=1,则二面角C﹣B1D﹣C1的大小的余弦值为()A.B.C.D.10.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,则CD的长为()A.B.7C.2D.911.如图,M,N是圆锥底面圆O上不同两点,且M,N,O不共线,设AN与底面所成角为α,二面角A﹣MN﹣O的平面角为β,ON与平面AMN所成角为γ,则()A.β>α>γB.β>γ>αC.α>β>γD.α>γ>β12.如图,P是△ABC边AB上一点,将△ACP沿CP折成直二面角A'﹣CP﹣B,要使|A'B|最短,则CP是()A.△ABC中AB边上的中线B.△ABC中AB边上的高线C.△ABC中∠ACB的平分线D.要视△ABC的具体情况而定二.解答题(共18小题)13.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,△PAD为等边三角形,E,M分别是AD,PD的中点,PB=2.(Ⅰ)求证:平面PBE⊥平面ABCD;(Ⅱ)求点P到平面ACM的距离.14.如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB=BC,D为线段AC的中点,E为线段PC 上一点.〔Ⅰ)求证:PA⊥BD;(Ⅱ)求证:平面BDE⊥平面PAC.15.如图,BD是圆O的直径,C是圆周上不同于B,D的任意一点,AB⊥平面BCD,E为AB 的中点.(1)求证:OE∥平面ACD;(2)求证:平面ACD⊥平面ABC.16.在正方体ABCD﹣A1B1C1D1中,点E为CC1的中点.(1)求证:平面AA1CC1⊥平面BDB1D1;(2)求直线BE与平面ACC1A1所成角的余弦值.17.如图1,梯形ABCD满足:AB∥CD,AD⊥AB,AD=DC=2AB=2,E是BA延长线上一点,AE=2.现将△EDA沿直线DA翻折,记翻折后的点E为点P.若PC=2,M为PC的中点,如图2.(Ⅰ)求证:平面ABM⊥平面PBD;(Ⅱ)求直线BC与平面PBD所成的角的正弦值.18.已知三棱锥A﹣BCD中,△BCD是等腰直角三角形,且BC⊥CD,BC=4,AD⊥平面BCD,AD=2.(Ⅰ)求证:平面ABC⊥平面ADC(Ⅱ)若E为AB的中点,求点A到平面CDE的距离.19.如图(1)在直角梯形ABCD中,∠BAD=90°,AB∥CD,CD=2AB=2AD=4,E为CD中点,现将△CEB沿BE折起,使得AC=4,得到如图(2)几何体,记线段CB的中点为F.(1)求证:平面CED⊥平面ABED(2)求点F到平面ACD的距离.20.如图所示,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点.(1)求证:FH∥平面BDE;(2)求证:平面BDE⊥平面ACF.21.如图,在正三棱柱(底面为正三角形的直棱柱)ABC﹣A1B1C1中,已知AB=AA1=2,点Q为BC的中点.(Ⅰ)求证:平面AQC1⊥平面B1BCC1;(Ⅱ)求点B到平面AQC1的距离.22.如图,在正三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都是4,D是CC1的中点,求:(1)三棱锥D﹣ABC的体积;(2)二面角D﹣AB﹣C的大小.23.如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,PD=DC,E是PC的中点.(1)证明:平面PAB⊥平面PAD;(2)求二面角P﹣AB﹣D的大小.24.三棱柱ABC﹣A1B1C1的底面ABC是等边三角形,BC的中点为O,A1O⊥底面ABC,AA1与底面ABC所成的角为,点D在棱AA1上,且AD=,AB=2.(1)求证:OD⊥平面BB1C1C;(2)求二面角B﹣B1C﹣A1的平面角的余弦值.25.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形且∠ABC=120°,点E是棱PC的中点,平面ABE与棱PD交于点F.(1)求证:EF∥CD;(2)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求锐二面角P﹣AF﹣E的余弦值.26.四棱锥P﹣ABCD中,底面ABCD是平行四边形,BC=2AB,∠ABC=60°,PA=PB,点M为AB 的中点.(Ⅰ)在棱PD上作点N,使得AN∥平面PMC(Ⅱ)若PB⊥AC,且直线PC与平面PAB所成的角是45°,求二面角M﹣PC﹣A的余弦值27.如图,在直三棱柱ABC﹣A1B1C1中,E、F分别为A1C1、BC的中点AB=BC=2,C1F⊥AB.(1)求证:平面ABE⊥平面B1BCC1;(2)若直线C1F和平面ACC1A1所成角的正弦值等于,求二面角A﹣BE﹣C的平面角的正弦值.28.已知PA⊥菱形ABCD所在平面,PA=,G为线段PC的中点,E为线段PD上一点,且=2.(1)求证:BG∥平面AEC;(2)若AB=2,∠ADC=60°,求二面角G﹣AE﹣C的余弦值.29.在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=.(1)求证:平面EBC⊥平面EBD;(2)设M为线段EC上一点,3=,求二面角M﹣BD﹣E的平面角的余弦值.30.如图所示,在四棱锥P﹣ABCD中,底面四边形ABCD是边长为的正方形,,PC=4,点E为PA中点,AC与BD交于点O.(Ⅰ)求证:OE⊥平面ABCD;(Ⅱ)求二面角B﹣PA﹣D的余弦值.参考答案一.选择题(共12小题)1.解:因为BC∥AD,AD与DF相交不垂直,所以BC与DF不垂直,则①错误;设点D在平面BCF上的射影为点P,当BP⊥CF时就有BD⊥FC,而AD:BC:AB=2:3:4,可使条件满足,所以②正确;当点P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BCF,所以③正确;因为点D的投影不可能在FC上,所以平面DCF⊥平面BFC不成立,即④错误.故选:B.2.解:分别过A,C作平面ABCD的垂线AP,CQ,使得AP=CQ=1,连接PM,PN,QM,QN,将几何体补成棱长为1的正方体.∵BC⊥平面ABN,BC⊂平面BCE,∴平面BCE⊥平面ABN,故A正确;连接PB,则PB∥MC,显然PB⊥AN,∴MC⊥AN,故B正确;取MN的中点F,连接AF,CF,AC.∵△AMN和△CMN都是边长为的等边三角形,∴AF⊥MN,CF⊥MN,∴∠AFC为二面角A﹣MN﹣C的平面角,∵AF=CF=,AC=,∴AF2+CF2≠AC2,即∠AFC≠,∴平面CMN与平面AMN不垂直,故C错误;∵DE∥AN,MN∥BD,∴平面BDE∥平面AMN,故D正确.故选:C.3.解:如果α⊥β,则α内与两平面的交线平行的直线都平行于面β,故可推断出A命题正确.B选项中α内与两平面的交线平行的直线都平行于面β,故B命题错误.C根据平面与平面垂直的判定定理可知C命题正确.D根据两个平面垂直的性质推断出D命题正确.故选:B.4.解:对于①,∵A1D1⊥DC1,A1B⊥DC1,∴DC1⊥面A1BCD1,D1P⊂面A1BCD1,∴DC1⊥D1P,①正确对于②,∵平面D1A1P即为平面D1A1BC,平面A1AP 即为平面A1ABB1,切D1A1⊥平面A1ABB1,∴平面D1A1BC,⊥平面A1ABB1,∴平面D1A1P⊥平面A1AP,∴②正确;对于③,当0<A1P<时,∠APD1为钝角,∴③错;对于④,将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,在△D1A1A中,∠D1A1A=135°利用余弦定理解三角形得AD1=,即AP+PD1≥,∴④不正确.对于⑤,C1P与平面A1B1B所成角正弦值为,∵,∴C1P与平面A1B1B所成角正弦值的取值范围是[,],故⑤正确.故选:C.5.解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCDA1B1C1D1中棱长为2,D(0,0,0),E(1,2,1),A(2,0,0),B(2,2,0),C1(0,2,2),=(1,2,1),=(0,2,0),=(﹣2,2,2),设平面ABC1D1的法向量=(x,y,z),则,取x=1,得=(1,0,1),设DE与平面ABC1D1所成角为θ,则sinθ===,∴DE与平面ABC1D1所成角的正弦值为.故选:D.6.解:由已知可得:,,,∴=+2=32+22+42+2×3×4cos<,>=,∴cos<>=﹣,即<>=120°,∴二面角的大小为60°,故选:C.7.解:正四棱锥的体积为12,底面对角线的长为2,底面边长为2,底面积为12,所以正四棱锥的高为3,则侧面与底面所成的二面角的正切tanα==,则二面角等于60°,故选:C.8.在正三棱柱ABC﹣A1B1C1中,D是AC的中点,AB1⊥BC1,则平面DBC1与平面CBC1所成的角为()A.30°B.45°C.60°D.90°解:以A为坐标原点,、的方向分别为y轴和z轴的正方向建立空间直角坐标系.设底面边长为2a,侧棱长为2b,则A(0,0,0),C(0,2a,0),D(0,a,0),B(a,a,0),C1(0,2a,2b),B1(a,a,2b).=(),=(﹣,a,2b),=(,0,0),=(0,a,2b),由AB1⊥BC1,得•=2a2﹣4b2=0,即2b2=a2.设=(x,y,z)为平面DBC1的一个法向量,则•=0,•=0.即,又2b2=a2,令z=1,解得=(0,﹣,1).同理可求得平面CBC1的一个法向量为=(1,,0).设平面DBC1与平面CBC1所成的角为θ,则cos θ==,解得θ=45°.∴平面DBC1与平面CBC1所成的角为45°.故选:B.9.解:建立空间直角坐标系,如图所示;长方体ABCD﹣A1B1C1D1中,AB=2,,AA1=1,∴A(0,0,0),C(2,,0),D(0,,0),B1(2,0,1),C1(2,,1);∴=(﹣2,,﹣1),=(﹣2,0,0),=(0,,0);设平面CB1D的法向量为=(x,y,z),则,即,令y=1得=(0,1,);同理,设平面C1B1D的法向量为=(x,y,z),则,即,令x=1,则=(1,0,﹣2);∴cos<,>===﹣,∴二面角C﹣B1D﹣C1的余弦值为﹣cos<,>=.故选:A.10.解:∵CA⊥AB,BD⊥AB,∴,.∵,∴=+++2+2+2═62+42+82+2×6×8cos120°=68,∴CD=2故选:C.11.解:连接OA,OM,取MN的中点H,连接OH,AH,过O作OD⊥AH,垂足为D,连接ND,由AO⊥底面,可得∠ANO=α,由OH⊥MN,AO⊥底面,由三垂线定理可得MN⊥AH,可得∠AHO=β,由OD⊥AH,MN⊥平面AHO,可得OD⊥MN,OD⊥平面AMN,可得∠OND=γ,且α,β,γ均为锐角,则sinα=,sinβ=>=sinα,即β>α;=•=>1,即有β>γ,tanα=,tanγ=,设AO=h,ON=r,OH=d,可得OD=,DN=,则tanα=,tanγ=,tan2α﹣tan2γ=>0,可得tanα>tanγ,即有α>γ,即为β>α>γ.故选:A.12.解:如图所示,作A′E⊥CP,垂足为E.∵直二面角A'﹣CP﹣B,∴A′E⊥平面BCP.时AC=b,BC=a,∠ACB=α.设∠ACP=θ.则A′E=bsinθ,CE=bcosθ.BE2=b2cos2θ+a2﹣2abcosθcos(α﹣θ),∴A′B2=(A′E)2+BE2=b2sin2θ+b2cos2θ+a2﹣2abcosθcos(α﹣θ)=b2+a2﹣2abcosθcos(α﹣θ),∵cosθcos(α﹣θ)=cosθ(cosαcosθ+sinαsinθ)=cosαcos2θ+sinαsin2θ=c osα+sinαsin2θ=+cos(α﹣2θ).∴A′B2=b2+a2﹣abcosα﹣abcos(α﹣2θ),当且仅当cos(α﹣2θ)=1时,即α=2θ时,即CP为∠ACB的平分线时,|A'B|最短.故选:C.二.解答题(共18小题)13.(Ⅰ)证明:由题意知,正△PAD边长为2,∵E为AD的中点,∴PE⊥AD,PE=,在正方形ABCD中,E为AD的中点,边长为2,则BE=,在△PBE中,BE2+PE2=8=PB2,∴PE⊥BE,又BE∩AD=E,∴PE⊥平面ABCD,∵PE⊂P平面ABCDM,∴平面PBE⊥平面ABCD;(Ⅱ)由题意知V P﹣ACM=V C﹣APM,△PAD为等边三角形,则AM=,∴S△APM=,∵PE⊥平面ABCD,∴PE⊥CD,∵CD⊥AD.∴CD⊥平面PAD,故CD为三棱锥C﹣PAB的高,∴CD⊥PD,在正方形ABCD中,AC=2,则在△ACM中,满足8=AC2=AM2+CM2,∴△ACM为直角三角形,∴AM⊥MC,∴S△ACM=|AM|•|CM|=,设点P到平面ACM的距离为d,由V P﹣ACM=V C﹣APM,得×d×S△ACM=×CD×S△APM,解得d=14.证明:(Ⅰ)∵在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB∩BC=B,∴PA⊥平面ABC,∵D为线段AC的中点,∴BD⊂平面ABC,∴PA⊥BD.(Ⅱ)∵AB=BC,D为线段AC的中点,∴BD⊥AC,∵PA⊥BD,PA∩AC=A,∴BD⊥平面PAC,∵BD⊂平面BDE,∴平面BDE⊥平面PAC.15..证明:(1)∵BD是圆O的直径,E为AB的中点,∴OE∥AD,∵OE⊄平面ACD,AD⊂平面ACD,∴OE∥平面ACD.(2)∵BD是圆O的直径,∴BC⊥DC,∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD,∵AB∩BC=B,∴平面ACD⊥平面ABC.16.证明:(1)正方体ABCD﹣A1B1C1D1中,有AA1⊥平面ABCD,又BD⊂平面ABCD,∴AA1⊥BD,又由正方形ABCD,可知AC⊥BD,AA1∩AC=A,∴BD⊥平面ACC1A1,又BD⊂平面BDD1B1,∴平面AA1C1C⊥平面BDD1B1.(6分)解:(2)记AC与BD交点为O,连接OE,∵BD⊥平面ACC1A1,∴∠OEB即为直线BE与平面ACC1A1所成角,设正方体棱长AB=2,则OB=,BE=,OE=,则有cos=,直线BE与平面ACC1A1所成角的余弦值为.(12分)17.(Ⅰ)证明:在△ADE中,AD=AE=2,得DE=2,即PD=.在△PDC中,DC=2,PC=2,可得PC2=PD2+DC2,∴∠CDP=90°,即CD⊥PD.又CD⊥AD,∴CD⊥平面PAD.取PD中点N,则MN是△PCD的中位线,∴MN∥CD,MN=.又AB∥CD,AB=,∴AB∥MN,AB=MN,即四边形ABMN为平行四边形.又AN是等腰直角三角形PAD斜边PD的中线,∴PD⊥AN,又CD⊥平面PAD,∴AB⊥平面PAD,AB⊥PD.∴PD⊥平面ABM,又PD⊂平面PBD,∴平面ABM⊥平面PBD;(Ⅱ)解:在△MNB中,作MH⊥NB于H,则MH⊥平面PBD,由已知可得MN=1,MB=,又NB=,∴,即点M到平面PDB的距离为.又由于M是PC的中点,∴点C到平面PBD的距离h=.求得BC=,设直线BC与平面PBD所成的角为θ,则s inθ=.18.(Ⅰ)证明:∵AD⊥平面BCD,BC⊂平面BCD,∴AD⊥BC,又∵BC⊥CD,CD∩AD=D,∴BC⊥平面ACD,又BC⊂平面ABC,∴平面ABC⊥平面ACD.…(5分)(Ⅱ)解:由已知可得,取CD中点为F,连结EF,∵,∴△ECD为等腰三角形,∴,,…(8分)由(Ⅰ)知BC⊥平面ACD,∴E到平面ACD的距离为:,∴S△ACD=4,…(10分)设A到平面CED的距离为d,有,解得,∴A到平面CDE的距离是.…(12分)19.(1)证明:由条件可知BA=DE,BA∥DE,∠BAD=90°,∴四边形ABED为正方形,∴BE⊥EC,BE⊥ED,EC⊥ED=E,⇒BE⊥平面DEC.又BE⊂平面ABCD,所以平面CED⊥平面ABCD.(2)AD∥BE,∴AD⊥平面DEC,∴∠ADC=90°,∴∠CED=120°,△CED为等腰三角形.过点E作EM⊥CD,∴M为CD中点⇒ME=1 ∴ME⊥CD,ME⊥AD⇒ME⊥平ACD.又F为BC的中点,∴.20.证明:(1)设BD与AC交于点O,连接OE、OH.∵O、H分别为AC,BC中点,∴OH∥AB,OH=AB,∴EF∥AB,EF=AB,∴OH=EF,OH∥EF,∴四边形OEFH为平行四边形,∴FH∥OE,又∴FH⊄平面BDE,OE⊂平面BDE,∴FH∥平面BDE.(2)∵EF∥AB,EF⊥FB,AB∩FB=B,∴EF⊥平面ABF,∵FB⊂平面ABF,∴AB⊥FB,∵AB⊥BC,BC∩FB=B,∴AB⊥平面BCF,∵FH⊂BCF,∴AB⊥FH,∵FH⊥BC,AB∩BC=B,∴FH⊥平面ABCD,又FH∥OE,∴OE⊥平面ABCD,∵AC⊂平面ABCD,∴OE⊥AC,∵AC⊥BD,AC∩BD=O,∴AC⊥平面BDE,又AC⊂平面ACF,∴平面BDE⊥平面ACF.21.解:(I)证明:由题意知,AB=AC,Q为BC的中点,∴AQ⊥BC;由B1B⊥平面ABC,得B1B⊥AQ;∵BC,B1B⊂平面B1BCC1,且BC∩B1B=B,∴AQ⊥平面B1BCC1,又∵AQ⊂平面AC1Q,∴平面AC1Q⊥平面B1BCC1;……(6分)(II)设点B到平面AQC1的距离为d,在正三棱柱ABC﹣A1B1C1中,CC1⊥平面ABQ,∴CC1为三棱锥C1﹣ABQ的高;由(I)知,AQ⊥平面B1BCC1,则AQ⊥QC1,∴;∴,;又,∴,即,解得.……(12分)22.解:(1)∵三棱柱ABC﹣A1B1C1为正三棱柱,且底面边长和侧棱长都是4,D是CC1的中点,∴,三棱锥D﹣ABC的高为DC=2.∴三棱锥D﹣ABC的体积V=;(2)取AB中点G,连接DG,CG,则AB⊥平面DGC,∴∠DGC为二面角D﹣AB﹣C的平面角,在Rt△DCG中,DC=2,CG=,∴tan∠DGC=,则.即二面角D﹣AB﹣C的大小为.23.证明:(1)∵四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,PD=DC,E是PC的中点.∴AB⊥AD,AB⊥PD,又AD∩PD=D,∴AB⊥平面PAD,∵AB⊂平面PAB,∴平面PAB⊥平面PAD.解:(2)以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,设PD=DC=DP=2,则A(2,0,0),P(0,0,2),D(0,0,0),B(2,2,0),=(﹣2,0,2),=(0,2,0),设平面PAB的法向量=(x,y,z),则,取x=1,得=(1,0,1),平面ABD的法向量=(0,0,1),设二面角P﹣AB﹣D的大小为θ,则cosθ===,θ=45°,∴二面角P﹣AB﹣D的大小为45°.24.(1)证明:连接AO,∵A1O⊥底面ABC,AO,BC⊂底面ABC,∴BC⊥A1O,A1O⊥AO,且AA1与底面ABC 所成的角为∠A1AO,即.在等边三角形ABC中,易求得AO=.在△AOD中,由余弦定理,得,∴OD2+AD2=3=OA2,即OD⊥AA1.又∵AA1∥BB1,∴OD⊥BB1.∵AB=AC,OB=OC,∴AO⊥BC,又∵BC⊥A1O,AO∩A1O=O,∴BC⊥平面AA1O,又∵OD⊂平面AA1O,∴OD⊥BC,又BC∩BB1=B,∴OD⊥平面BB1C1C.(2)如下图所示,以O为原点,分别以OA,OB,OA1所在的直线为x,y,z轴建立空间直角坐标系,则故由(1)可知,∴可得点D的坐标为,∴平面BB1C1C的一个法向量是.设平面A1B1C的法向量=(x,y,z),由得,令,则y=3,z=﹣1,则,∴,易知所求的二面角为钝二面角,∴二面角B﹣B1C﹣A1的平面角的余弦角值是.25.解:(1)∵底面ABCD是菱形,∴AB∥CD,又∵AB⊄面PCD,CD⊂面PCD,∴AB∥面PCD,…(2分)又∵A,B,E,F四点共面,且平面ABEF∩平面PCD=EF,∴AB∥EF,即可得EF∥CD…(5分)(2)取AD中点G,连接PG,GB,∵PA=PD,∴PG⊥AD,又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,∴PG⊥GB,在菱形ABCD中,∵AB=AD,∠DAB=60°,G是AD中点,∴AD⊥GB,…(6分)如图,建立空间直角坐标系G﹣xyz,设PA=PD=AD=2,则G(0,0,0),A(1,0,0),B(0,,0),C(﹣2,,0),D(﹣1,0,0),P(0,0,)又∵AB∥EF,点E是棱PC中点,∴点F是棱PD中点,E(﹣1,,),F(﹣,0,),,,设平面AFE的法向量为=(x,y,z),则有⇒,不妨令x=3,则平面AFE的一个法向量为.∵BG⊥平面PAD,∴是平面PAF的一个法向量,cos==∴锐二面角P﹣AF﹣E的余弦值为..…(12分)26.解:(Ⅰ):点N为PD中点.下证:取PD中点N,PC中点Q,连结AN,QN,MQ,在△PCD中,N,Q分别是所在边PD,PC的中点,则NQ∥CD且.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)因为点M为AB中点,AB=CD,所以NQ∥AM且NQ=AM.﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)所以四边形AMQN是平行四边形,所以AN∥MQ.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)又因为AN⊄平面PMC,MQ⊂平面PMC,所以AN∥平面PMC.﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)在△ABC中,BC=2AB,∠ABC=60°,设AB=a,则BC=2a,由余弦定理有:,则BC2=AB2+AC2,由勾股定理的逆定理可得:AC⊥AB.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)又因为PB⊥AC,PB∩AB=B,PB,AB⊂平面PAB,所以AC⊥平面PAB.因为PM⊂平面PAB,所以AC⊥PM.因为PA=PB,点M为线段AB的中点,所以PM⊥AB,因此PM,AB,AC两两垂直.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)以A为原点,分别以AB,AC所在直线为x,y轴,建立空间直角坐标系.因为直线PC与平面PAB的所成角是45°,所以∠CPA=45°,所以Rt△CAP是等腰直角三角形,所以.﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)则A(0,0,0),,,,,.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)设平面PMC的一个法向量为=(x,y,z),则即得,同理可得,平面PAC的一个法向量为,﹣﹣﹣﹣﹣﹣﹣﹣(10分)则.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)由图可得所求二面角的平面角为锐角,所以二面角M﹣PC﹣A的余弦值为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)27.(1)证明:在直三棱柱中,CC1⊥AB,又C1F⊥AB,且CC1∩C1F=C1,∴AB⊥平面B1BCC1,又∵AB⊂平面EBA,∴平面ABE⊥平面B1BCC1;(2)解:由(1)可知,AB⊥BC,以B点为坐标原点,为x轴正方向,为y轴正方向,为z轴正方向建立坐标系.设AA1=a,则B(0,0,0),C(2,0,0),A(0,2,0),B1(0,0,a),C1(2,0,a),A1(0,2,a),E (1,1,a),F(1,0,0).直线FC1的方向向量,平面ACC1A1的法向量.可知||=,∴a=2.,,,设平面ABE的法向量,由,取z=﹣1,可得.设平面CBE的法向量,由,取z=﹣1,可得.记二面角A﹣BE﹣C的平面角为θ,∴|cosθ|=||=,则sin.故二面角A﹣BE﹣C的平面角的正弦值为.28.(1)证明:取PE的中点F,连接GF,BF,∵G为PC的中点,∴GF∥CE,∴GF∥平面AEC.连接BD交AC与点O,连接OE.∵E为DF的中点,∴BF∥OE,∴BF∥平面AEC.∵BF∩GF=F,∴平面BGF∥平面AEC.又BG⊄平面BGF,∴BG∥平面AEC;(2)解:如图,建立空间直角坐标系O﹣xyz.则则O(0,0,0),A(﹣1,0,0),C(1,0,0),P(﹣1,0,),D(0,,0),E(,,),G(0,0,2),∴=(,,),=(2,0,0),=(1,0,),设平面AEC的法向量为,则,∴,即,不妨设得=(0,,),设平面AEG的法向量为,则,∴,即,不妨设z2=1得=(,0,1),∴=.由图可知,二面角G﹣AE﹣C为锐角,则二面角G﹣AE﹣C的余弦值为.29.证明:(1)∵AD=1,CD=2,AC=,∴AD2+CD2=AC2,∴△ADC为直角三角形,且AD⊥DC,同理∵ED=1,CD=2,EC=,∴ED2+CD2=EC2,∴△EDC为直角三角形,且ED⊥DC,又四边形ADEF是正方形,∴AD⊥DE,又∵AB∥DC,∴DA⊥AB.在梯形ABCD中,过点作B作BH⊥CD于H,∴四边形ABHD是正方形,∴∠ADB=45°.在△BCH中,BH=CH=1,∴∠BCH=45°.BC=,∴∠BDC=45°,∴∠DBC=90°,∴BC⊥BD.∵ED⊥AD,ED⊥DC,AD∩DC=D.AD⊂平面ABCD,DC⊂平面ABCD.∴BD⊥平面ABCD,又∵BC⊂平面ABCD,∴ED⊥BC,因为BD∩ED=D,BD⊂平面EBD,ED⊂平面EBD.∴BC⊥平面EBD,BC⊂平面EBC,∴平面EBC⊥平面EBD.解:(2)以D为原点,DA,DC,DE所在直线为x,y,z轴建立空间直角坐标系,如图,D(0,0,0),E(0,0,1),B(1,1,0),C(0,2,0).令M(0,y0,z0),则=(0,y0,z0﹣1),=(0,2,﹣1),∵3=,∴(0,3y0,3z0﹣3a)=(0,2,﹣1),∴M(0,,).=(1,1,0),=(0,),∵BC⊥平面EBD,∴=(﹣1,1,0)是平面EBD的一个法向量.设平面MBD的法向量为=(x,y,z).则.令y=1,得=(﹣1,1,1),∴cos<>===,∴二面角M﹣BD﹣E的平面角的余弦值为.30.证明:(I)底面四边形ABCD是边长为的正方形,,PC=4,在△PBC中,∵PB2=PC2+BC2,∴PC⊥BC,同理可得BC⊥CD,而BC∩CD=C,BC、CD⊂平面ABCD,∴PC⊥平面ABCD,在△PAC中,由题意知O、E分别为AC、PA中点,则OE∥PC,而PC⊥平面ABCD,∴OE⊥平面ABCD.解:(II)由(I)知:OE⊥平面ABCD,故可建立空间直角坐标系O﹣xyz,如图所示,A(1,0,0),B(0,1,0),D(0,﹣1,0),P(﹣1,0,4),∴=(﹣2,0,4),=(﹣1,1,0),=(﹣1,﹣1,0),设、=(a,b,c)分别为平面PAB和平面PAD的一个法向量,则,,∴,,不妨设z=c=1,则=(2,2,1),=(2,﹣2,1),∴cos<>===,由图知二面角B﹣PA﹣D为钝二面角,∴二面角的B﹣PA﹣D的余弦值为﹣.。
lmβααba立体几何的八大定理一、线面平行的判定定理:线线平行⇒线面平行文字语言:如果平面外.的一条直线与平面内.的一条直线平行,则这条直线与平面平行. 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α关键点:在平面内找一条与平面外的直线平行的线...................... 二、线面平行的性质定理:线面平行⇒线线平行文字语言:如果一条直线和一个平面平行,经过..这条直线的平面和这个平面相交..,那么这条直线就和交线..平行. 符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m关键点:需要借助一个经过已知直线的平面,接着找交线。
.......................... 三、面面平行的判定定理:线面平行⇒ 面面平行文字语言:如果一个平面内.有两.条相交..直线都平行..于另一个平面..,那么这两个平面平行. 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 关键点:在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。
................................... 四、面面平行的性质定理: 面面平行⇒线线平行、面面平行⇒线面平行 文字语言:如果两个平行平面同时..和第三..个.平面相交..,那么所得的两条交线..平行. 符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭关键点:找第三个平面与已知平面都相.................交,则交线平行.......文字语言:如果两个平面平行,那么其中一个平面内的任意..一条直线平行于另一个平面.符号语言://,//a a αβαβ⊂⇒ 关键:只要是其中一个平面内的直线就行..................nmAαaBA l βαaβα五、线面垂直的判定定理:线线垂直⇒线面垂直文字语言:如果一条直线和一个平面内.的两.条相交..直线垂直..,那么这条直线垂直于这个平面. 符号语言:,a ma n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭关键点:在平面内找两条相交直线与所要证的直线垂直........................ 六、线面垂直的性质定理:线面垂直⇒线线垂直文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的任意..一条直线. 符号语言:l l a a αα⊥⎫⇒⊥⎬⊂⎭关键点:往往线面垂直中的线线垂直需要用这个定理推出......................... 七、平面与平面垂直的判定定理:线面垂直⇒面面垂直文字语言:如果一个平面经过..另一个平面的一条垂线,则这两个平面互相垂直. (如果一条直线垂直于一个平面,并且有另一个平面经过这条直线,那么这两个平面垂直)符号表示:a a ααββ⊥⎫⇒⊥⎬⊂⎭关键点:....在需要证明的两个平面中找线面垂直................八、平面与平面垂直的性质定理:面面垂直⇒线面垂直文字语言:如果两个平面互相垂直,那么在一个平面内垂直..于它们的交线..的直线垂直于另一个平面.符号语言:l AB AB AB lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭关键点:先找交线,再在其中一个面内找与交线垂直的线。
线面地址关系的八大定理一、直线与平面平行的判判定理:文字语言:若是平面外的一条直线与平面内的一条直线平行,那么这条直线与平面平行a图形语言:符号语言:a bb a //a // b作用:线线平行线面平行二、直线与平面平行的性质定理:文字语言:若是一条直线和一个平面平行,经过这条直线的平面和这个平面订交,那么这条直线就和交线平行。
图形语言:l //l符号语言: l l // mm m作用:线面平行线线平行三、平面与平面平行的判判定理文字语言:若是一个平面内有两条订交直线都平行于另一个平面,那么这两个平面平行.图形语言:符号语言:aba Ib A//a∥b∥作用:线线平行面面平行四、平面与平面平行的性质定理:文字语言:若是两个平行平面同时和第三个平面订交, 那么所得的两条交线平行图形语言 ://符号语言 :a a // bb作用 :面面平行线线平行五、直线与平面垂直的判判定理:文字语言:若是一条直线和一个平面内的两条订交直线垂直,那么这条直线垂直于这个平面图形语言:符号语言:aa ma na m n Am, nAn m作用:线线垂直线面垂直六、直线与平面垂直的性质定理:文字语言:假设两条直线垂直于同一个平面,那么这两条直线平行图形语言:符号语言:aa //b b ab作用:线面垂直线线平行七、平面与平面垂直的判判定理:文字语言:若是一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
图形语言:a a符号表示:a注:线面垂直面面垂直八、平面与平面垂直的性质定理:文字语言:若是两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一个平面图形语言:I l符号语言:ABABAB l Al B作用:面面垂直线面垂直。