立体几何第六讲面面垂直练习题(含答案)
- 格式:doc
- 大小:892.00 KB
- 文档页数:4
面面垂直基础训练题(有详解)一、单选题1.平行六面体1111ABCD A B C D -的底面ABCD 是菱形,且1160C CB C CD BCD ∠=∠=∠=︒,2CD =,132C C =,则二面角1C BD C --的平面角的余弦值为( )A .12B .13C .3D 2.如图,在长方体1111ABCD A B C D -中,11AA =,3AD =,4AB =,则点B 到平面1D AC 的距离为( )A B .1213C D .253.在正四面体P ABC -中,,,D E F 分别是,,AB BC CA 的中点,下面四个结论中不成立的是( ) A .//BC 平面PDF B .DF ⊥平面PAE C .平面PDF ⊥平面ABC D .平面PDF ⊥平面PAE二、解答题4.如图,在直角梯形ABCD 中,//AB DC ,90BAD ∠=,4AB =,2AD =,3DC =,点E 在CD 上,且2DE =,将ADE 沿AE 折起,使得平面ADE ⊥平面ABCE (如图).G 为AE 中点.(1)求证:DG ⊥平面ABCE ; (2)求四棱锥D ABCE -的体积;(3)在线段BD 上是否存在点P ,使得//CP 平面ADE ?若存在,求BPBD的值;若不存在,请说明理由.5.如图,四棱锥P ABCD -的底面是菱形,PO ⊥底面ABCD ,O 、E 分别是AD 、AB 的中点,6AB =,5AP =,60BAD ∠=︒.(1)求证:平面PAC ⊥平面POE ;(2)求直线PB 与平面POE 所成角的正弦值;(3)若F 是边DC 的中点,求异面直线BF 与PA 所成角的正切值.6.如图1所示,在矩形ABCD 中, 2,4AB AD ==, E 为 C D 的中点,沿 AE 将AED∆折起,如图2所示, O H M 、、分别为AE BD AB 、、的中点,且 2DM =.(1)求证: //OH 平面DEC ; (2)求证:平面ADE ⊥平面 ABCE .7.如图,在三棱锥P —ABC 中,△PBC 为等边三角形,点O 为BC 的中点,AC⊥PB,平面PBC⊥平面ABC .(1)求直线PB 和平面ABC 所成的角的大小; (2)求证:平面PAC⊥平面PBC ;(3)已知E 为PO 的中点,F 是AB 上的点,AF =λAB .若EF∥平面PAC ,求λ的值. 8.如图,三棱柱111ABC A B C -中,1BC CC =,平面11A BC ⊥平面11BCC B .证明:(1) //AC 平面11A BC ; (2) 平面1AB C ⊥平面11A BC .9.如图,已知四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 为直角梯形,AD CD ⊥,//AB CD ,2CD AB =.(Ⅰ)求证:平面PAB ⊥平面PAD ; (Ⅱ)在侧棱PC 上是否存在点M ,使得//BM 平面PAD ,若存在,确定点M 位置;若不存在,说明理由.10.如图,ABC ∆是边长为2的正三角形.若1AE =,AE ⊥平面ABC ,平面BCD ⊥平面ABC ,BD CD =,且BD CD ⊥.(1)求证:AE 平面BCD ;(2)求证:平面BDE ⊥平面CDE .11.如图所示,在三棱柱111ABC A B C -中,V ABC 与111A B C △都为正三角形,且1AA ⊥平面ABC ,1F F ,分别是11AC A C ,的中点.求证:(1)平面11AB F ∥平面1C BF ; (2)平面11AB F ⊥平面11ACC A .12.如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将ACM ∆折起,使点M 到达点D 的位置,且AB DA ⊥.(Ⅰ)证明:平面ACD ⊥平面ABC ;(Ⅱ)Q 为线段AD 上一点,P 为线段BC 上一点,且13BP DQ DA ==,求二面角Q PA C --的大小的正切值.13.在如图所示的几何体中,四边形ABCD 是正方形, MA ⊥平面ABCD ,//,PD MA E G F 、、分别为MB PB PC 、、的中点,且2AD PD MA ==.(1)求证:平面//EFG 平面PMA ; (2)求证:平面P DC EFG ⊥平面;14.在四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,1AB =,2BC =,60ABC ∠=(Ⅰ)设平面PBC ⋂平面PAD l =,求证://BC l (II )求证:平面PAC ⊥平面PAB15.如图,四棱锥P -ABCD 的底面是矩形,PA ⊥平面ABCD ,E ,F 分别是AB ,PD 的(Ⅱ)求证:平面PEC⊥平面PCD.参考答案1.D 【解析】 【分析】作出二面角1C BD C --的平面角,利用余弦定理计算出二面角的余弦值. 【详解】连接AC 交BD 于O ,连接1C O ,由于四边形ABCD 是菱形,所以BD CO ⊥.由于1111CD CB C CD C CB C C C C=⎧⎪∠=∠⎨⎪=⎩,所以11C CD C CB ∆≅∆,所以11C D C B =,所以1BD C O ⊥.故1C OC ∠是二面角1C BD C --的平面角.由于1160C CB C CD BCD ∠=∠=∠=︒,2CD =,132C C =,所以2,1BD OB OD ===,1113602C B C D===,所以132C O ==,而OC =在三角形1C OC中,由余弦定理得199344cos 3322C OC +-∠==.故选D.【点睛】本小题主要考查利用几何法求二面角的余弦值,考查空间想象能力和逻辑推理能力,属于中档题. 2.B【解析】 【分析】根据等体积法:11D ACD D ACD V V --=得到1111,33ACD ACD S h S DD ⨯=⨯分别求出三角形的面积代入上式得到结果. 【详解】连接BD 交AC 于O 点,根据长方形对角线互相平分得到O 点为BD 的中点,故点B 到面1D AC 的距离等于点D 到面1D AC 的距离,根据11D ACD D ACD V V --=,设点D 到面1D AC 的距离为h,故得到1111,33ACD ACD S h S DD ⨯=⨯115,AC AD CD == 根据余弦定理得到11113cos 2AD CAD C AD C S ===,6ACDS =将面积代入上式得到h=1213. 故答案为:B. 【点睛】本题考查了点面距离的求法,点面距可以通过建立空间直角坐标系来求得点面距离,或者寻找面面垂直,再直接过点做交线的垂线即可;当点面距离不好求时,还可以等体积转化. 3.C 【解析】 【分析】由//DF BC ,能证明//BC 平面PDF ;由已知推导出AE BC ⊥,PE BC ⊥,从而BC ⊥平面PAE ,进而DF ⊥平面PAE ;由已知得平面PAE ⊥平面ABC ,从而平面PDE 与平面ABC 不垂直;由DF ⊥平面PAE ,推导出平面PDF ⊥平面PAE . 【详解】∵在正四面体P ABC -中,,,D E F 分别是,,AB BC CA 的中点, ∴//DF BC ,∵DF ⊂平面PDF ,BC ⊄平面PDF , ∴//BC 平面PDF ,故A 正确;∵AB AC PB PC ===,E 是BC 中点, ∴AE BC ⊥,PE BC ⊥, ∵AE PE E ⋂=, ∴BC ⊥平面PAE , ∵//DF BC ,∴DF ⊥平面PAE ,故B 正确; ∵DF ⊥平面PAE ,DF ⊂平面ABC , ∴平面PAE ⊥平面ABC ,∵平面PAE ⋂平面PDE PE =,且PE 与平面ABC 不垂直, ∴平面PDE 与平面ABC 不垂直,故C 错误; ∵DF ⊥平面PAE ,且DF ⊂平面PDF , ∴平面PDF ⊥平面PAE ,故D 正确,故选C . 【点睛】本题通过对多个命题真假的判断,综合考查线面平行、线面垂直、面面垂直,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题. .4.(1)见证明;(2) (3)34BP BD = 【解析】 【分析】(1)证明DG AE ⊥,再根据面面垂直的性质得出DG ⊥平面ABCE ; (2)分别计算DG 和梯形ABCE 的面积,即可得出棱锥的体积;(3)过点C 作//CF AE 交AB 于点F ,过点F 作//FP AD 交DB 于点P ,连接PC ,可证平面//CFP 平面ADE ,故//CP 平面ADE ,根据//FP AD 计算BPBD的值. 【详解】(1)证明:因为G 为AE 中点,2AD DE ==, 所以DG AE ⊥.因为平面ADE ⊥平面ABCE , 平面ADE平面ABCE AE =,DG ⊂平面ADE ,所以DG ⊥平面ABCE .(2)在直角三角形ADE 中,易求AE =则AD DEDG AE⋅==. 所以四棱锥D ABCE -的体积为1(14)232D ABCE V -+⨯=⨯=(3) 过点C 作//CF AE 交AB 于点F ,则:1:3AF FB =.过点F 作//FP AD 交DB 于点P ,连接PC ,则:1:3DP PB =. 又因为CF//A E ,AE ⊂平面,ADE CF ⊄平面ADE , 所以CF //平面ADE . 同理//FP 平面ADE . 又因为CF PF F ⋂=, 所以平面CFP //平面ADE .因为CP ⊂平面CFP ,所以//CP 平面ADE .所以在BD 上存在点P ,使得//CP 平面ADE ,且34BP BD =. 【点睛】本题主要考查线面垂直的性质与判定,线面平行的性质与判定以及四棱锥的体积,考查学生的空间想象能力和推理论证能力.计算柱锥台的体积的关键是根据条件找出相应的底面积和高,如果给出的几何体不规则,需要利用求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法.5.(1)见解析;(2)86;(3)9【解析】【分析】(1)根据四边形ABCD 是菱形,证得AC BD ⊥,由平行得到OE AC ⊥,结合PO AC ⊥,证得AC ⊥平面POE ,由此证得平面PAC ⊥平面POE .(2)作出线面角,然后解直角三角形求得线面角的正弦值.(3)作出异面直线所成的角,然后利用余弦定理求得角的余弦值,进而求得其正切值.【详解】(1)证明:ABCD 是菱形,AC BD ⊥,//OE BD OE AC ∴⊥,PO ⊥底面ABCD ,PO AC ⊥,OE ,OP ⊂平面POEOE OP O =,AC ∴⊥平面POE ,AC ⊂平面PAC∴平面PAC ⊥平面POE(2)过点B 作BM OE ⊥于M ,易证PO BM ⊥,OE ,OP ⊂平面POEOE OP O =,BM ∴⊥平面POE ,PM ∴是PB 在平面POE 上的射影BPM ∠即为所求,在Rt PMB ∆中,2BM =,PB =sin BM BPM PB ∠==(3)分别取AB ,PB 中点H ,T ,易证//DH BF ,//TH PADHT ∴∠即为异面直线BF 与PA 所成角或其补角在DHT ∆中,DH =,52HT =,DT =cos 10DHT ∴∠= tan 9DHT ∴∠=【点睛】本小题主要考查面面垂直的证明,考查线面角的正弦值的求法,考查线线角的正切值的求法,考查空间想象能力和逻辑推理能力,属于中档题.6.(1)见解析;(2)见解析【解析】【分析】(1)取BC 中点Q ,连接OQ ,通过证明线线平行,证得平面//DEC 平面OHQ ,由此证得 //OH 平面DEC .(2)连接OD ,OM ,根据等腰三角形的性质,证得DO AE ⊥,利用勾股定理证得DO OM ⊥,由此证得OD ⊥平面ABCE ,进而证得平面ADE ⊥平面 ABCE .【详解】(1)证明:取BC 中点Q ,连接OQ (如图),易证//OQ 平面DEC//HQ 平面DEC ,OQ ,HQ ⊂平面OHQ ,OQ HQ Q =∴平面//DEC 平面OHQ ,OH ⊂平面OHQ ,//OH ∴平面DEC(2)证明:连接OD ,OM ,DA DE =,O 为AE 中点DO AE ∴⊥,222DO OM DM +=,DO OM ∴⊥AE ,OM ⊂平面ABCE ,AE OM O =,OD ∴⊥平面ABCEOD ⊂平面ADE ∴平面ADE ⊥平面ABCE【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.7.(1)060;(2)证明见解析;(3)13λ=【解析】【分析】(1)先找到直线PB 与平面ABC 所成的角为PBO ∠,再求其大小;(2)先证明PO AC ⊥, 再证明平面PAC⊥平面PBC ;(3)取CO 的中点G,连接EG ,过点G 作FG||AC,再求出λ的值.【详解】(1)因为平面PBC⊥平面ABC ,PO⊥BC, 平面PBC∩平面ABC=BC,PO PBC ⊂平面, 所以PO ⊥平面ABC,所以直线PB 与平面ABC 所成的角为PBO ∠,因为0=60PBO ∠,所以直线PB 与平面ABC 所成的角为060.(2)因为PO ⊥平面ABC,所以PO AC ⊥,因为AC ⊥PB ,,,PO PB PBC POPB P ⊂=平面,所以AC ⊥平面PBC,因为AC ⊂平面PAC,所以平面PAC⊥平面PBC.(3)取CO 的中点G ,连接EG ,过点G 作FG||AC,由题得EG||PC,所以EG||平面APC,因为FG||AC ,所以FG||平面PAC,EG,FG ⊂平面EFO,EG ∩FG=G ,所以平面EFO||平面PAC,因为EF ⊂平面EFO,所以EF||平面PAC.此时AF=11,33AB λ∴=. 【点睛】本题主要考查空间几何元素垂直关系的证明,考查线面角的求法,考查空间几何中的探究性问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据三棱柱特点可知11//AC A C ,根据线面平行判定定理证得结论;(2)由四边形11BCC B 为菱形可得11B C BC ⊥,根据面面垂直的性质可知1B C ⊥平面11A BC ,根据面面垂直的判定定理证得结论.【详解】(1)几何体为三棱柱 ⇒四边形11ACC A 为平行四边形 11//AC A C ⇒又11A C ⊂平面11A BC ,AC ⊄平面11A BC //AC ∴平面11A BC(2)1BC CC =且四边形11BCC B 为平行四边形∴四边形11BCC B 为菱形 11B C BC ⊥∴又平面11A BC ⊥平面11BCC B ,平面11A BC ⋂平面111BCC B BC =1B C ∴⊥平面11A BC又1B C ⊂平面1AB C ∴平面1AB C ⊥平面11A BC【点睛】本题考查直线与平面平行、平面与平面垂直关系的证明,涉及到空间几何体的结构、面面垂直性质定理的应用等知识,属于常考题型.9.(Ⅰ)见解析;(Ⅱ)见解析【解析】【分析】(Ⅰ)先证明PD AB ⊥和AD AB ⊥,进而求出AB ⊥平面PAD ,然后就可以证出平面PAB ⊥平面PAD(Ⅱ)连接MN ,AN ,易得MN 是PCD ∆的中位线,即可证明四边形ABMN 为平行四边形,然后,利用定义,即可求证//BM平面PAD 【详解】(Ⅰ)证明:因为PD ⊥平面ABCD ,所以PD AB ⊥.又因为AD CD ⊥,//AB CD ,所以AD AB ⊥.又AD PD D =I ,,AD PD ⊂平面PAD .可得AB ⊥平面PAD .又AB Ì平面PAB ,所以平面PAB ⊥平面PAD .(Ⅱ)当点M 是PC 的中点时,//BM 平面PAD .证明如下:设PD 的中点为N ,连接MN ,AN ,易得MN 是PCD ∆的中位线, 所以//MN CD ,12MN CD =. 由题设可得//AB CD ,2CD AB =,所以//MN AB ,MN AB =.所以四边形ABMN 为平行四边形,所以//BMAN .又BM ⊄平面PAD ,AN ⊂平面PAD ,所以//BM 平面PAD .【点睛】本题考查面面垂直与线面平行的证明,属于基础题10.(1)见解析;(2)见解析【解析】【分析】(1)取BC 的中点M ,连接DM ,由平面BCD ⊥平面ABC ,得DM ⊥平面ABC ,再证AE DM 即可证明(2)证明CD ⊥平面BDE ,再根据面面垂直的判定定理从而进行证明.【详解】(1)取BC 的中点M ,连接DM ,因为BD CD =,且BD CD ⊥,2BC =.所以1DM =,DM BC ⊥.又因为平面BCD ⊥平面ABC ,所以DM ⊥平面ABC ,又AE ⊥平面ABC ,所以AE DM又因为AE ⊄平面BCD ,DM ⊂平面BCD ,所以AE 平面BCD .(2)连接AM ,由(1)知AE DM ,又1AE =,1DM =,所以四边形DMAE 是平行四边形,所以DE AM .又ABC ∆是正三角形,M 为BC 的中点,∴AM BC ⊥,因为平面BCD ⊥平面ABC ,所以AM ⊥平面BCD ,所以DE ⊥平面BCD .又CD ⊂平面BCD ,所以DE CD ⊥.因为BD CD ⊥,BD DE D ⋂=,所以CD ⊥平面BDE .因为CD ⊂平面CDE ,所以平面BDE ⊥平面CDE .【点睛】本题考查了线面平行的证明,线面垂直,面面垂直的判定定理,考查空间想象和推理能力,熟记定理是关键,是一道中档题.11.(1)见解析.(2)见解析.【解析】【分析】(1)由1,F F 分别是11,AC A C 的中点,证得1111,B F BF AF C F ∥∥,由线面平行的判定定理,可得11B F //平面1C BF ,1AF //平面1C BF ,再根据面面平行的判定定理,即可证得平面11AB F ∥平面1C BF .(2)利用线面垂直的判定定理,可得11B F ⊥平面11ACC A ,再利用面面垂直的判定定理,即可得到平面11AB F ⊥平面11ACC A .【详解】(1)在三棱柱111ABC A B C -中,因为1,F F 分别是11,AC A C 的中点,所以1111,B F BF AF C F ∥∥,根据线面平行的判定定理,可得11B F //平面1C BF ,1AF //平面1C BF又11111,B F AF F C F BF F ==,∴平面11AB F ∥平面1C BF .(2)在三棱柱111ABC A B C -中,1AA ⊥平面111A B C ,所以111B F AA ⊥,又1111B F AC ⊥,1111A C AA A =,所以11B F ⊥平面11ACC A ,而11B F ⊂平面11AB F ,所以平面11AB F ⊥平面11ACC A .【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.12.(Ⅰ)详见解析;【解析】【分析】(Ⅰ)证明AB AC ⊥,结合AB DA ⊥,证明AB ⊥平面ACD ,然后证明平面ACD ⊥平面ABC ;(Ⅱ)过Q 作//QN DC 交AC 于点N ,过N 作NO AP ⊥交AP 于点O ;证明DC ⊥平面ABC ,推出QN AP ⊥,结合NO AP ⊥,推出AP ⊥平面QNO ,即可证明QO AP ⊥,NOQ ∠就是二面角Q PA C --的平面角;通过求解三角形的相关知识即可求解二面角Q PA C --大小的正切值.【详解】 (Ⅰ)平行四边形ABCM 中,90ACM ∠= 90BAC ∴∠=,即AB AC ⊥ 又AB DA ⊥,DA AB A = AB ∴⊥平面ACDAB ⊂平面ABC ∴平面ACD ⊥平面ABC(Ⅱ)在ACD ∆中,过Q 作//QN DC 交AC 于点N ,过N 作NO AP ⊥交AP 于点O 由(Ⅰ)知平面ACD ⊥平面ABC平面ACD ⋂平面ABC AC =,90DCA ∠=o DC ∴⊥平面ABC//QN DC QN ∴⊥平面ABC ,AP ⊂平面ABC QN AP ∴⊥又NO AP ⊥,QN NO N = AP ∴⊥平面QNOQO ⊂平面NQO QO AP ∴⊥NOQ ∴∠就是二面角Q PA C --的平面角在CAP ∆中,3CA =,23CP CB ==45ACP ∠=(2222232342co 5s 5AP AC CP AC CP ACP ∴=+-⋅⋅∠=+-⨯⨯︒=AP ∴=在CAP ∆中,sin sin CP AP CAP ACP=∠∠,即:sin 2CAP =∠sin sin CAP NAO ∴∠==∠ ACD ∆中,//QN DC ,且223DQ AC ==,223QN CD == 在Rt NAO ∆中,sin 2NO AN NAO =∠==. 在Rt NOQ ∆中,2tan 4NQ NOQ NO ∠===∴二面角Q PA C --大小的正切值2【点睛】本题考查二面角的平面角的求法,直线与平面垂直的判定定理的应用,考查空间想象能力以及计算能力;准确找到二面角的平面角是解决本题的关键.13.(1)证明过程详见解析(2)证明过程详见解析;【解析】【分析】(1)由三角形中位线定理可得//,//EG PM GF BC ,由正方形的性质可得//BC AD ,GF AD //,由线面平行的判定定理可得//EG 平面PMA , //GF 平面PMA ,从而可得结果;(2)由线面垂直的性质证明PD BC ⊥,正方形的性质可得BC DC ⊥,结合//GF BC ,可得GF ⊥平面PDC ,从而可得平面EFG ⊥平面PDC ;【详解】(1)∵E G F 、、分别为MB PB PC 、、的中点,∴//,//EG PM GF BC ,又∵四边形ABCD 是正方形,∴//BC AD ,∴GF AD //,∵EG GF 、在平面PMA 外, PM AD 、在平面PMA 内,∴//EG 平面PMA , //GF 平面PMA ,又∵EG GF 、都在平面EFG 内且相交,∴平面//EFG 平面PMA .(2)证明:由已知MA ⊥平面,//ABCD PD MA ,∴PD ⊥平面ABCD .又BC ⊂平面ABCD ,∴PD BC ⊥.∵四边形ABCD 为正方形,∴BC DC ⊥,又PD DC D =,∴BC ⊥平面PDC ,在PBC ∆中,∵G F 、分别为PB PC 、的中点,∴//GF BC ,∴GF ⊥平面PDC .又GF ⊂平面EFG ,∴平面EFG ⊥平面PDC .【点睛】本题主要考查正方体的性质、线面垂直的判定定理及面面垂直的判定定理以及线面平行、面面平行的判定定理,属于中档题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论()||,a b a b αα⊥⇒⊥;(3)利用面面平行的性质(),||a a ααββ⊥⇒⊥;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.14.(Ⅰ)见解析;(II )见解析.【解析】【分析】(Ⅰ)根据线面平行判定定理可知//BC 平面PAD ;利用线面平行性质定理可证得结论;(II )根据线面垂直性质定理可得PA AC ⊥,利用余弦定理求得AC ,根据勾股定理可证得AC AB ⊥,利用线面垂直判定定理证得AC ⊥平面PAB ,根据面面垂直判定定理可证得结论.【详解】(Ⅰ)//BC AD ,AD ⊂平面PAD ,BC Ë平面PAD//BC ∴平面PADBC ⊂平面PBC ,且平面PBC ⋂平面PAD l =//BC l ∴(II )PA ⊥平面ABCD ,AC ⊂平面ABCD PA AC∴⊥ 1AB =,2BC =,60ABC ∠=,由余弦定理得:3AC ==222AB AC BC ∴+= AC AB∴⊥ 又AC PA ⊥,PA AB A =,PA ⊂平面PAB ,AB Ì平面PABAC ∴⊥平面PAB又AC ⊂平面PAC ∴平面PAC ⊥平面PAB【点睛】本题考查立体几何中的线面平行的证明与性质、面面垂直的证明、线面垂直的证明与性质应用,考查学生对于空间中直线与平面、平面与平面位置关系相关定理的掌握情况.15.(Ⅰ)见解析(Ⅱ)见解析【解析】【分析】(Ⅰ)取PC 的中点G ,连结FG 、EG ,AF ∥EG 又EG⊂平面PCE ,AF ⊄平面PCE ,AF ∥平面PCE ; (Ⅱ)由(Ⅰ)得EG ∥AF ,只需证明AF ⊥面PDC ,即可得到平面PEC ⊥平面PCD .【详解】证明:(Ⅰ)取PC 的中点G ,连结FG 、EG ,∴FG 为△CDP 的中位线,FG ∥CD ,FG =12CD . ∵四边形ABCD 为矩形,E 为AB 的中点,∴AE ∥CD ,AE =12CD . ∴FG =AE ,FG ∥AE ,∴四边形AEGF 是平行四边形,∴AF∥EG又EG⊂平面PCE,AF⊄平面PCE,∴AF∥平面PCE;(Ⅱ)∵PA=AD.∴AF⊥PDPA⊥平面ABCD,∴PA⊥CD,又因为CD⊥AB,AP∩AB=A,∴CD⊥面APD∴CD⊥AF,且PD∩CD=D,∴AF⊥面PDC由(Ⅰ)得EG∥AF,∴EG⊥面PDC又EG⊂平面PCE,∴平面PEC⊥平面PCD.【点睛】本题考查了空间线面平行、面面垂直的判定,属于中档题.。
1.已知如图, P 平面ABC PA=PB=PC / APB=/ APC=60,/ BPC=90 ° 求证:平面 ABC!平面 PBC线,然后证明直线与另一平面 D,证明AD 垂直平PBC 即可证明:取BC 中点D 连结AD PD •/ PA=PB / APB=60•••△ PAB 为正三角形 同理△ PAC 为正三角形设 PA=a在 RT A BPC 中, PB=PC=a BC= -2a在 A ABC 中 AD= AB 2 BDA D+P[5= —a=a =AP•A APD 为直角三角形即AD 丄DP 又••• AD 丄 BC • AD 丄平面PBC •平面ABCL 平面PBC12 .如图(1)在直角梯形 ABCD 中, AB//CD , AB AD 且AB=AD^ CD=1现以 AD 为一边 向梯形外作正方形 ADEF 然后沿AD 将正方形翻拆,使平面 ADEF 与平面ABCD 互相垂直 如图(2)。
【答案】【解析】要证明面面垂直,要在其呈平面内找一条 垂直即可。
显然 BC 中点(1) 求证平面BDE 平面BEC(2) 求直线BD 与平面BEF 所成角的正弦值。
又在 BCD 中,DB BC 2, DC 2,三边满足勾股定理, BC BD 。
由线面垂直的判定定理即证得结论。
(2)因为DB ,2,只需求出点D 到平面BEF 的距离也是点 A 到平面BEF 的距离,易证出 AD//EF , AD 平面BEF ,由面面垂直的判定定理得平面ABF 平面BEF , ABF 中BF 边上的高就是点 A 到平面BEF 的距离。
根据线面角的定义可求 直线BD与平面BEF 所成角的正弦值。
(1)求证:EF//平面CBD ; (2)求证:平面 CAAC 丄平面CBD . 【答案】(I)略(H )略【解析】(1 )证明:连结 BD 在长方体AC 1中BD// B 1D 1.又 Q E 、F 为棱 AD AB 的中点,/. EF//BD . /• EF//B 1D 1. ................ 4 分又 BD 平面 CB 1D 1, EF 平面 CBD ,: EF//平面 CBD................ 7 分 (2) Q 在长方体 AC 1中,AA 丄平面A B 1C 1D ,而BD 平面ABC D ,「. AA 丄B D .…9分又Q 在正方形 A B C D 中,A C X B 1 D ,: B D 丄平面CAAC . 又Q B 1 D 平面CBD ,:平面 CAAC 丄平面 CBD .……1 4分 4 .如图,四棱锥P ABCD 中,底面ABCD 为平行四边形,AB 2AD 2, BD .3, PD 丄底面 ABCD .【答案】⑴证见解析⑵sinAH 1 BD 2【解析】(1 )由折前折后线面的位置关系得ED平面ABCD ,所以EDBC ,3 •(本小题满分14分)如图,在正方体 ABC B A i BiGD 中,E 、F 为棱 AD AB 的中点. EA 1D 1FBC(i)证明:平面PBC 平面PBD ;【解析】本试题主要是考查了面面垂直的证明和二面角与线面角的求解的综合运用。
第六节 面面关系(一)平行 (二)垂直1.如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.2.【2012高考江西文19】(本小题满分12分)如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB=12,AD=5,BC=42△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合与点G ,得到多面体CDEFG .(1)求证:平面DEG ⊥平面CFG ; (2)求多面体CDEFG 的体积。
3.如图,已知空间四边形中,,BC AC AD BD ==,E是AB 的中点。
求证:(1)⊥AB 平面CDE;(2)平面CDE ⊥平面ABC 。
4.如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. (1)求证:1//A C 平面BDE ;B 1C BADC 1A 1AEDBCA AC⊥平面BDE.(2)求证:平面15.已知四棱锥P—ABCD,底面ABCD是菱形,∠PDDAB,60平面ABCD,PD=AD,=⊥︒点E为AB中点,点F为PD中点.(1)证明平面PED⊥平面PAB;(2)求二面角P—AB—F的平面角的余弦值第六节 面面关系答案(一)平行 (二)垂直1.【命题意图】本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.【解析】(Ⅰ)由题设知BC ⊥1CC ,BC ⊥AC ,1CC AC C ⋂=,∴BC ⊥面11ACC A , 又∵1DC ⊂面11ACC A ,∴1DC BC ⊥,由题设知01145A DC ADC ∠=∠=,∴1CDC ∠=090,即1DC DC ⊥,又∵DC BC C ⋂=, ∴1DC ⊥面BDC , ∵1DC ⊂面1BDC , ∴面BDC ⊥面1BDC ;(Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132+⨯⨯⨯=12,由三棱柱111ABC A B C -的体积V =1,∴11():V V V -=1:1, ∴平面1BDC 分此棱柱为两部分体积之比为1:1.2.【解析】(1)由已知可得AE=3,BF=4,则折叠完后EG=3,GF=4,又因为EF=5,所以可得EG GF ⊥又因为CF EGF ⊥底面,可得CF EG ⊥,即EG CFG ⊥面所以平面DEG ⊥平面CFG . (2)过G 作GO 垂直于EF ,GO 即为四棱锥G-EFCD 的高,所以所求体积为11125520335DECF S GO ⋅=⨯⨯⨯=正方形3.证明:(1)BC AC CE AB AE BE =⎫⇒⊥⎬=⎭同理,AD BD DE AB AE BE =⎫⇒⊥⎬=⎭又∵CE DE E ⋂= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE又∵AB ⊆平面ABC , ∴平面CDE ⊥平面ABC 4.证明:(1)设AC BD O ⋂=,∵E 、O 分别是1AA 、AC 的中点,∴1A C ∥EO又1AC ⊄平面BDE ,EO ⊂平面BDE ,∴1A C ∥平面BDE (2)∵1AA ⊥平面ABCD ,BD ⊂平面ABCD ,1AA BD ⊥ 又BD AC ⊥,1AC AA A⋂=,∴BD ⊥平面1A AC ,BD ⊂平面BDE ,∴平面BDE ⊥平面1A AC5.(1)证明:连接BD.ADB DAB AD AB ∆∴︒=∠=,60, 为等边三角形.E 是AB 中点,.DE AB ⊥∴⊥PD 面ABCD ,AB ⊂面ABCD ,.PD AB ⊥∴⊂DE 面PED ,PD ⊂面PED ,⊥∴=AB D PD DE , 面PED. ⊂AB 面PAB ,⊥∴PED 面面PAB.(2)解:⊥AB 平面PED ,PE ⊂面PED ,.PE AB ⊥∴ 连接EF ,⊂EF PED ,.EF AB ⊥∴PEF ∠∴为二面角P —AB —F 的平面角. 设AD=2,那么PF=FD=1,DE=3. 在,1,2,7,===∆PF EF PE PEF 中,147572212)7(cos 22=⨯-+=∠∴PEF 即二面角P —AB —F 的平面角的余弦值为.1475立体几何练习题1.设α、β、γ为两两不重合的平面,l 、m 、n 为两两不重合的直线,给出下列四个命题: 若α⊥γ,β⊥γ,则α∥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β;③若α∥β,l ⊂α,则l ∥β;④若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n . 其中真命题的个数是( ) A .1 B .2 C .3 D .42.正方体ABCD ﹣A 1B 1C 1D 1中,BD 1与平面ABCD 所成角的余弦值为() A .B .CD .3.三棱柱ABC ﹣A 1B 1C 1中,AA 1=2且AA 1⊥平面ABC ,△ABC 是 边长为的正三角形,该三棱柱的六个顶点都在一个球面上,则这个球的体积为() A . 8πB .C .D . 8π4.三个平面两两垂直,它们的三条交线交于点O ,空间一点P 到三个平面的距离分别为3、4、5,则OP 长为()A . 5B . 2C . 3D . 55.如图,四棱锥S ﹣ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是() A . AC⊥SB B .AB∥平面SCDC . SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D . AB 与SC 所成的角等于DC 与SA 所成的角6.如图,四棱锥P ﹣ABCD 的底面为正方形,PD ⊥底面ABCD ,PD=AD=1,设点CG 到平面PAB 的距离为d 1,点B 到平面PAC 的距离为d 2,则有( ) A . 1<d 1<d 2 B . d 1<d 2<1C . d 1<1<d 2D . d 2<d 1<17.在锐角的二面角βα--EF ,A EF ∈,AG α⊂, 45=∠GAE ,若AG 与β所成角为 30,则二面角βα--EF 为__________. 8.给出下列四个命题:(1)若平面α上有不共线的三点到平面β的距离相等,则βα//; (2)两条异面直线在同一平面内的射影可能是两条平行直线;(3)两条异面直线中的一条平行于平面α,则另一条必定不平行于平面α; (4)b ,a 为异面直线,则过a 且与b 平行的平面有且仅有一个. 其中正确命题的序号是_______________________9.已知正方体 1111ABCD A B C D -中,点E 是棱 11A B 的中点,则直线AE 与平而 11BDD B 所成角的正弦值是_________.EFA Gαβ10.已知直三棱柱111ABC A B C -中,090ABC ∠=,122AC AA ==,2AB =,M 为1BB 的中点,则1B 与平面ACM 的距离为______11.边长分别为a 、b 的矩形,按图中所示虚线剪裁后,可将两个小矩形拼接成一个正四棱锥的底面,其余恰好拼接成该正四棱锥的4个侧面,则ba的取值范围是 . 12.已知矩形ABCD 的长4AB =,宽3AD =,将其沿对角线BD 折起,得到四面体A BCD -,如图所示, 给出下列结论:①四面体A BCD -体积的最大值为725; ②四面体A BCD -外接球的表面积恒为定值;③若E F 、分别为棱AC BD 、的中点,则恒有EF AC ⊥且EF BD ⊥; ④当二面角A BD C --为直二面角时,直线AB CD 、所成角的余弦值为1625; ⑤当二面角A BD C --的大小为60︒时,棱AC 的长为145. 其中正确的结论有 (请写出所有正确结论的序号). 13.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠BAC=90°,AB=BB 1,直线B 1C 与平面ABC 成30°角.(I )求证:平面B 1AC⊥平面ABB 1A 1;(II )求直线A 1C 与平面B 1AC 所成角的正弦值.14.如图,在三棱锥P ﹣ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知PA⊥AC,PA=AB=6,BC=8,DF=5. (1)若PB⊥BC,证明平面BDE⊥平面ABC . (2)求直线BD 与平面ABC 所成角的正切值.15.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=1,AA 1=2,点P 为DD 1的中点. (1)求证:直线BD 1∥平面PAC ;4343AB CD4334DCBA(2)求证:平面PAC⊥平面BDD1B1;(3)求CP与平面BDD1B1所成的角大小.16.如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上(1)求证:AC⊥平面PDB(2)当PD=AB且E为PB的中点时,求AE与平面PDB所成的角的大小.17.在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.(Ⅰ)求证:PB∥平面ACM;(Ⅱ)求证:AD⊥平面PAC;(Ⅲ)求二面角M﹣AC﹣D的正切值.18.如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.19.如图,直三棱柱ABC﹣A1B1C1中,CA⊥CB,AA1=AC=CB=2,D是AB的中点.(1)求证:BC1∥平面A1CD;(2)求证:A1C⊥AB1;(3)若点E在线段BB1上,且二面角E﹣CD﹣B的正切值是,求此时三棱锥C﹣A1DE的体积.20.如图,四棱锥S﹣ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P﹣AC﹣D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.试卷答案1.B:解:若α⊥γ,β⊥γ,则α与β可能平行也可能相交,故①错误;由于m,n不一定相交,故α∥β不一定成立,故②错误;由面面平行的性质定理,易得③正确;由线面平行的性质定理,我们易得④正确;故选B2.D考点:棱柱的结构特征.专题:空间角.分析:找出BD1与平面ABCD所成的角,计算余弦值.解答:解:连接BD,;∵DD1⊥平面ABCD,∴BD是BD1在平面ABCD的射影,∴∠DBD1是BD1与平面ABCD所成的角;设AB=1,则BD=,BD1=,∴cos∠DBD1===;故选:D.点评:本题以正方体为载体考查了直线与平面所成的角,是基础题.3.C考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:根据题意,正三棱柱的底面中心的连线的中点就是外接球的球心,求出球的半径即可求出球的体积.解答:解:由题意可知:正三棱柱的底面中心的连线的中点就是外接球的球心,因为△ABC是边长为的正三角形,所以底面中心到顶点的距离为:1;因为AA1=2且AA1⊥平面ABC,所以外接球的半径为:r==.所以外接球的体积为:V=πr3=π×()3=.故选:C.点评:本题给出正三棱柱有一个外接球,在已知底面边长的情况下求球的体积.着重考查了正三棱柱的性质、正三角形的计算和球的体积公式等知识,属于中档题.4.D考点:平面与平面垂直的性质.专题:计算题;空间位置关系与距离.分析:构造棱长分别为a,b,c的长方体,P到三个平面的距离即为长方体的共顶点的三条棱的长,OP为长方体的对角线,求出OP即可.解答:构造棱长分别为a,b,c的长方体,P到三个平面的距离即为长方体的共顶点的三条棱的长,则a2+b2+c2=32+42+52=50因为OP为长方体的对角线.所以OP=5.故选:D.点评:本题考查点、线、面间的距离计算,考查计算能力,是基础题.5.D考点:直线与平面垂直的性质.专题:综合题;探究型.分析:根据SD⊥底面ABCD,底面ABCD为正方形,以及三垂线定理,易证AC⊥SB,根据线面平行的判定定理易证AB∥平面SCD,根据直线与平面所成角的定义,可以找出∠ASO是SA与平面SBD所成的角,∠CSO是SC与平面SBD所成的角,根据三角形全等,证得这两个角相等;异面直线所成的角,利用线线平行即可求得结果.解答:解:∵SD⊥底面ABCD,底面ABCD为正方形,∴连接BD,则BD⊥AC,根据三垂线定理,可得AC⊥SB,故A正确;∵AB∥CD,AB⊄平面SCD,CD⊂平面SCD,∴AB∥平面SCD,故B正确;∵SD⊥底面ABCD,∠ASO是SA与平面SBD所成的角,∠DSO是SC与平面SBD所成的,而△SAO≌△CSO,∴∠ASO=∠CSO,即SA与平面SBD所成的角等于SC与平面SBD所成的角,故C正确;∵AB∥CD,∴AB与SC所成的角是∠SCD,DC与SA所成的角是∠SAB,而这两个角显然不相等,故D不正确;故选D.点评:此题是个中档题.考查线面垂直的性质定理和线面平行的判定定理,以及直线与平面所成的角,异面直线所成的角等问题,综合性强.6.D考点:点、线、面间的距离计算.专题:综合题;空间位置关系与距离;空间角.分析:过C做平面PAB的垂线,垂足为E,连接BE,则三角形CEB为直角三角形,根据斜边大于直角边,再根据面PAC和面PAB与底面所成的二面角,能够推导出d2<d1<1.解答:解:过C做平面PAB的垂线,垂足为E,连接BE,则三角形CEB为直角三角形,其中∠CEB=90°,根据斜边大于直角边,得CE<CB,即d2<1.同理,d1<1.再根据面PAC和面PAB与底面所成的二面角可知,前者大于后者,所以d2<d1.所以d2<d1<1.故选D.点评:本题考查空间距离的求法,解题时要认真审题,仔细解答,注意空间角的灵活运用.7.48.(2)(4)10.111.1 (,) 212.②③④13.考点:平面与平面垂直的判定;直线与平面所成的角.专题:证明题.分析:(I)欲证平面B1AC⊥平面ABB1A1,关键是寻找线面垂直,而AC⊥平面ABB1A1,又AC⊂平面B1AC,满足面面垂直的判定定理;(II)过A1做A1M⊥B1A1,垂足为M,连接CM,∠A1CM为直线A1C与平面B1AC所成的角,然后在三角形A1CM 中求出此角的正弦值即可.解答:解:(I)证明:由直三棱柱性质,B1B⊥平面ABC,∴B1B⊥AC,又BA⊥AC,B1B∩BA=B,∴AC⊥平面ABB1A1,又AC⊂平面B1AC,∴平面B1AC⊥平面ABB1A1.(II)解:过A1做A1M⊥B1A1,垂足为M,连接CM,∵平面B1AC⊥平面ABB1A,且平面B1AC∩平面ABB1A1=B1A,∴A1M⊥平面B1AC.∴∠A1CM为直线A1C与平面B1AC所成的角,∵直线B1C与平面ABC成30°角,∴∠B1CB=30°.设AB=BB1=a,可得B1C=2a,BC=,∴直线A1C与平面B1AC所成角的正弦值为点评:本题主要考查了平面与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力.14.考点:直线与平面所成的角;平面与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)由已知得DE⊥AC,DE2+EF2=DF2,从而DE⊥平面ABC,由此能证明平面BDE⊥平面ABC.(2)由DE⊥平面ABC,得∠DBE是直线BD与平面ABC所成的角,由此能求出直线BD与平面ABC所成角的正切值.解答:(1)证明:∵在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点.PA⊥AC,PA=AB=6,BC=8,DF=5,∴DE⊥AC,DE=3,EF=4,DF=5,∴DE2+EF2=DF2,∴DE⊥EF,又EF∩AC=F,∴DE⊥平面ABC,又DE⊂平面BDE,∴平面BDE⊥平面ABC.(2)∵DE⊥平面ABC,∴PA⊥平面ABC,∴PA⊥AB,∵PB⊥BC,∴AB⊥BC,∴AC==10,∴,由DE⊥平面ABC,得∠DBE是直线BD与平面ABC所成的角,tan∠DBE==.∴直线BD与平面ABC所成角的正切值为.点评:本题考查平面与平面垂直的证明,考查直线与平面所成角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.15.考点:直线与平面平行的判定;平面与平面垂直的判定;直线与平面所成的角.专题:证明题.分析:(1)设AC和BD交于点O,由三角形的中位线的性质可得PO∥BD1,从而证明直线BD1∥平面PAC.(2)证明AC⊥BD,DD1⊥AC,可证AC⊥面BDD1B1,进而证得平面PAC⊥平面BDD1B1 .(3)CP在平面BDD1B1内的射影为OP,故∠CPO是CP与平面BDD1B1所成的角,在Rt△CPO中,利用边角关系求得∠CPO的大小.解答:(1)证明:设AC和BD交于点O,连PO,由P,O分别是DD1,BD的中点,故PO∥BD1,∵PO⊂平面PAC,BD1⊄平面PAC,所以,直线BD1∥平面PAC.(2)长方体ABCD﹣A1B1C1D1中,AB=AD=1,底面ABCD是正方形,则AC⊥BD,又DD1⊥面ABCD,则DD1⊥AC.∵BD⊂平面BDD1B1,D1D⊂平面BDD1B1,BD∩D1D=D,∴AC⊥面BDD1B1.∵AC⊂平面PAC,∴平面PAC⊥平面BDD1B1 .(3)由(2)已证:AC⊥面BDD1B1,∴CP在平面BDD1B1内的射影为OP,∴∠CPO是CP与平面BDD1B1所成的角.依题意得,,在Rt△CPO中,,∴∠CPO=30°∴CP与平面BDD1B1所成的角为30°.点评:本题考查证明线面平行、面面垂直的方法,求直线和平面所称的角的大小,找出直线和平面所成的角是解题的难点,属于中档题.16.考点:直线与平面所成的角;直线与平面垂直的判定.专题:综合题;空间位置关系与距离;空间角.分析:(1)根据题意证明AC⊥BD,PD⊥AC,可得AC⊥平面PDB;(2)设AC∩BD=O,连接OE,根据线面所成角的定义可知∠AEO为AE与平面PDB所的角,在Rt△AOE中求出此角即可.解答:(1)证明:∵四边形ABCD是正方形,∴AC⊥BD,∵PD⊥底面ABCD,∴PD⊥AC,又BD∩PD=D∴AC⊥平面PDB,(3分)(2)设AC∩BD=O,连接OE,由(1)知AC⊥平面PDB于O,∴∠AEO为AE与平面PDB所的角,(5分)又O,E分别为DB、PB的中点,∴OE∥PD,OE=PD,在Rt△AOE中,OE=PD=AB=AO,∴∠AEO=45°,(7分)即AE与平面PDB所成的角的大小为45°.(8分)点评:本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于中档题.17.考点:与二面角有关的立体几何综合题;直线与平面平行的判定;直线与平面垂直的判定.专题:计算题.分析:(Ⅰ)连接OM,BD,由M,O分别为PD和AC中点,知OM∥PB,由此能够证明PB∥平面ACM.(Ⅱ)由PO⊥平面ABCD,知PO⊥AD,由∠ADC=45°,AD=AC=1,知AC⊥AD,由此能够证明AD⊥平面PAC.(Ⅲ)取DO中点N,连接MN,由MN∥PO,知MN⊥平面ABCD.过点N作NE⊥AC于E,由E为AO中点,连接ME,由三垂线定理知∠MEN即为所求,由此能求出二面角M﹣AC﹣D的正切值.解答:(Ⅰ)证明:连接OM,BD,∵M,O分别为PD和AC中点,∴OM∥PB,∵OM⊂平面ACM,PB⊄ACM平面,∴PB∥平面ACM….(4分)(Ⅱ)证明:由已知得PO⊥平面ABCD∴PO⊥AD,∵∠ADC=45°,AD=AC=1,∴AC⊥AD,∵AC∩PO=O,AC,PO⊂平面PAC,∴AD⊥平面PAC.…..(8分)(Ⅲ)解:取DO中点N,连接MN,则MN∥PO,∴MN⊥平面ABCD过点N作NE⊥AC于E,则E为AO中点,连接ME,由三垂线定理可知∠MEN即为二面角M﹣AC﹣D的平面角,∵MN=1,NE=∴tan∠MEN=2…..(13分)点评:本题考查直线与平面平行、直线现平面垂直的证明,考查二面角的正切值的求法,解题时要认真审题,仔细解答,注意三垂直线定理的合理运用.18.考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角;立体几何.分析:(1)由题设条件及图知,可先由线面垂直的性质证出PA⊥BD与PC⊥BD,再由线面垂直的判定定理证明线面垂直即可;(2)由图可令AC与BD的交点为O,连接OE,证明出∠BEO为二面角B﹣PC﹣A的平面角,然后在其所在的三角形中解三角形即可求出二面角的正切值.解答:(1)∵PA⊥平面ABCD∴PA⊥BD∵PC⊥平面BDE∴PC⊥BD,又PA∩PC=P∴BD⊥平面PAC(2)设AC与BD交点为O,连OE∵PC⊥平面BDE∴PC⊥平面BOE∴PC⊥BE∴∠BEO为二面角B﹣PC﹣A的平面角∵BD⊥平面PAC∴BD⊥AC∴四边形ABCD为正方形,又PA=1,AD=2,可得BD=AC=2,PC=3∴OC=在△PAC∽△OEC中,又BD⊥OE,∴∴二面角B﹣PC﹣A的平面角的正切值为3点评:本题考查二面角的平面角的求法及线面垂直的判定定理与性质定理,属于立体几何中的基本题型,二面角的平面角的求法过程,作,证,求三步是求二面角的通用步骤,要熟练掌握19.考点:棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系;直线与平面平行的判定.专题:综合题;空间位置关系与距离;空间角.分析:(1)连接AC1交A1C于点F,由三角形中位线定理得BC1∥DF,由此能证明BC1∥平面A1CD.(2)利用线面垂直的判定定理证明A1C⊥平面AB1C1,即可证明A1C⊥AB1;(3)证明∠BDE为二面角E﹣CD﹣B的平面角,点E为BB1的中点,确定DE⊥A1D,再求三棱锥C﹣A1DE 的体积.解答:(1)证明:连结AC1,交A1C于点F,则F为AC1中点,又D是AB中点,连结DF,则BC1∥DF,因为DF⊂平面A1CD,BC1⊄平面A1CD,所以BC1∥平面A1CD.…(3分)(2)证明:直三棱柱ABC﹣A1B1C1中,因为AA1=AC,所以AC1⊥A1C…(4分)因为CA⊥CB,B1C1∥BC,所以B1C1⊥平面ACC1A1,所以B1C1⊥A1C…(6分)因为B1C1∩AC1=C1,所以A1C⊥平面AB1C1所以A1C⊥AB1…(8分)(3)在直三棱柱ABC﹣A1B1C1中,AA1⊥CD,因为AC=CB,D为AB的中点,所以CD⊥AB,CD⊥平面ABB1A1.所以CD⊥DE,CD⊥DB,所以∠BDE为二面角E﹣CD﹣B的平面角.在Rt△DEB中,.由AA1=AC=CB=2,CA⊥CB,所以,.所以,得BE=1.所以点E为BB1的中点.…(11分)又因为,,,A1E=3,故,故有DE⊥A1D所以…(14分)点评:本题主要考查直线与平面平行、垂直等位置关系,考查线面平行、二面角的概念、求法、三棱锥C﹣A1DE的体积等知识,考查空间想象能力和逻辑推理能力,是中档题.20.考点:直线与平面平行的判定;直线与平面垂直的判定;与二面角有关的立体几何综合题.专题:计算题;证明题;压轴题.分析:(1)连BD,设AC交于BD于O,由题意知SO⊥平面ABCD.以O为坐标原点,分别为x轴、y轴、z轴正方向,建立坐标系O﹣xyz,设底面边长为a,求出高SO,从而得到点S与点C 和D的坐标,求出向量与,计算它们的数量积,从而证明出OC⊥SD,则AC⊥SD;(2)根据题意先求出平面PAC的一个法向量和平面DAC的一个法向量,设所求二面角为θ,则,从而求出二面角的大小;(3)在棱SC上存在一点E使BE∥平面PAC,根据(Ⅱ)知是平面PAC的一个法向量,设,求出,根据可求出t的值,从而即当SE:EC=2:1时,,而BE不在平面PAC内,故BE∥平面PAC解答:证明:(1)连BD,设AC交于BD于O,由题意知SO⊥平面ABCD.以O为坐标原点,分别为x轴、y轴、z轴正方向,建立坐标系O﹣xyz如图.设底面边长为a,则高.于是,,,,故OC⊥SD从而AC⊥SD(2)由题设知,平面PAC的一个法向量,平面DAC的一个法向量.设所求二面角为θ,则,所求二面角的大小为30°.(3)在棱SC上存在一点E使BE∥平面PAC.由(Ⅱ)知是平面PAC的一个法向量,且设,则而即当SE:EC=2:1时,而BE不在平面PAC内,故BE∥平面PAC点评:本题主要考查了直线与平面平行的判定,以及空间两直线的位置关系的判定和二面角的求法,涉及到的知识点比较多,知识性技巧性都很强.。
证明面面垂直的经典例题题目:证明面面垂直的经典例题解答:面面垂直的概念是指两个平面的法线互相垂直。
在几何学中,我们可以通过证明两个平面的法线向量的数量积为零来证明面面垂直的关系。
设两个平面为平面α和平面β,且分别由法线向量n1和n2所决定。
为了证明平面α和平面β垂直,我们需要证明n1·n2=0。
根据向量的数量积的定义,n1·n2=|n1|·|n2|·cosθ,其中θ为n1和n2之间的夹角。
根据平面的法向量的定义,平面α上的任意一条法线向量n1与平面β上的任意一条法线向量n2的夹角θ是相等的。
因此,我们只需在平面α上选取一条法线向量n1,并在平面β上选取与n1垂直的一条法线向量n2,计算它们的数量积即可。
下面通过三个经典例题来具体证明两个平面的法线向量的数量积为零,从而证明两个平面垂直的关系。
例题1:已知平面α过点A(1,2,3),法线向量为n1=(2,-1,3),平面β过点B(4,5,6),法线向量为n2=(1,-2,1)。
证明平面α和平面β垂直。
解析:首先计算n1·n2=(2,-1,3)·(1,-2,1),其结果为2×1 + (-1)×(-2) + 3×1=2+2+3=7≠0。
所以n1·n2 ≠ 0,即两个平面α和β不垂直。
例题2:已知平面α过点A(1,-2,0),法线向量为n1=(2,1,-1),平面β过点B(0,-6,3),法线向量为n2=(3,-1,-2)。
证明平面α和平面β垂直。
解析:先计算n1·n2=(2,1,-1)·(3,-1,-2),其结果为2×3 + 1×(-1) + (-1)×(-2)=6-1+2=7。
所以n1·n2 ≠ 0,即两个平面α和β不垂直。
例题3:已知平面α过点A(2,-1,4),法线向量为n1=(1,0,1),平面β过点B(-1,3,2),法线向量为n2=(1,-1,-1)。
线面垂直练习题及答案线面垂直是几何学中的一项基本概念,用于描述线段、射线、直线和平面之间的垂直关系。
理解线面垂直的概念对于解决几何问题至关重要。
本文将为读者提供一些线面垂直练习题及答案,帮助读者巩固对该概念的理解。
练习题一:1. AB为一条线段,m是一平面。
如果AB与m垂直,判断下列命题的真假:a) 线段AB垂直于平面mb) 平面m垂直于线段ABc) 线段AB平行于平面m2. P是平面XYZ的内点,AP的延长线与平面XYZ有几个交点?练习题二:1. 给出下列命题的定义:a) 垂线b) 垂直平分线c) 垂直平面2. 在平面上画一条线段AB和一条直线l,求证:若线段AB与直线l垂直,则直线l过点A和点B的垂直平分线。
1. 已知直线l与平面P垂直,直线m过l上一点,那么直线m与平面P的关系是什么?2. 在长方形ABCD中,线段AC和线段BD相交于点O。
求证:线段AC与平面ABCD垂直。
答案及解析:练习题一:1. a) 假,线段AB无法垂直于平面m,因为线段只有两个端点而不是无限延伸。
b) 真,平面m可以垂直于线段AB。
c) 假,线段和平面不可能平行。
2. AP的延长线与平面XYZ有且只有一个交点。
练习题二:1. a) 垂线是与给定线段或直线垂直的线段或直线。
b) 垂直平分线是将给定线段或直线垂直平分的线段或直线。
c) 垂直平面是与给定平面垂直的平面。
2. 假设直线l过点A和点B的垂直平分线交线段AB于点M,则根据垂直平分线的定义,我们可以得出线段AM和线段BM的长度相等,且直线l与线段AM和线段BM都垂直。
1. 直线m与平面P平行。
2. 连接线段AC的中点和线段BD的中点,设为点O'。
根据长方形的性质,线段OO'相等且垂直于两个平行线段AC和BD。
因此,线段OO'垂直于平面ABCD,而线段OO'与线段AC相等,所以线段AC与平面ABCD垂直。
通过以上练习题及答案,我们可以加深对线面垂直概念的理解。
面面垂直答案1.已知如图,P 平面ABC,PA=PB=PC,∠APB=∠APC=60°,∠BPC=90 °求证:平面ABC⊥平面PBC【答案】【解析】要证明面面垂直,只要在其呈平面内找一条线,然后证明直线与另一平面垂直即可。
显然BC中点D,证明AD垂直平PBC即可证明:取BC中点D 连结AD、PD∵PA=PB;∠APB=60°∴ΔPAB为正三角形同理ΔPAC为正三角形设PA=a在RTΔBPC中,PB=PC=aBC=2a2a∴PD=2在ΔABC 中 AD=22BD AB -=22a∵AD 2+PD 2=222222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛a a=a 2=AP 2 ∴ΔAPD 为直角三角形 即AD ⊥DP 又∵AD ⊥BC ∴AD ⊥平面PBC ∴平面ABC ⊥平面PBC2.如图(1)在直角梯形ABCD 中,AB//CD ,AB ⊥AD 且AB=AD=12CD=1,现以AD 为一边向梯形外作正方形ADEF ,然后沿AD 将正方形翻拆,使平面ADEF 与平面ABCD 互相垂直如图(2)。
(1)求证平面BDE ⊥平面BEC(2)求直线BD 与平面BEF 所成角的正弦值。
【答案】⑴证见解析 ⑵1sin 2AH BD θ== A B C DEF 图A BE C 图FD【解析】(1)由折前折后线面的位置关系得ED ⊥平面ABCD ,所以ED ⊥BC ,又在BCD ∆中,2DB BC ==2DC =,三边满足勾股定理,BC BD ∴⊥。
由线面垂直的判定定理即证得结论。
(2)因为2,DB =只需求出点D 到平面BEF 的距离也是点A 到平面BEF 的距离,易证出//AD EF ,AD ⊥平面BEF ,由面面垂直的判定定理得平面ABF ⊥平面BEF ,ABF ∆中BF 边上的高就是点A 到平面BEF 的距离。
根据线面角的定义可求直线BD 与平面BEF 所成角的正弦值。
3.(本小题满分14分)如图,在正方体-A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点.(1)求证:EF ∥平面CB 1D 1;(2)求证:平面CAA 1C 1⊥平面CB 1D 1.【答案】(Ⅰ)略(Ⅱ)略【解析】(1)证明:连结BD .在长方体1AC 中,对角线11//BD B D . ……………2分又Q E 、F 为棱AD 、AB 的中点, ∴//EF BD . ∴11//EF B D . ……………4分 又B 1D 1⊂≠ 平面11CB D ,EF ⊄平面11CB D ,∴EF ∥平面CB 1D 1. ……………7分(2)Q 在长方体1AC 中,AA 1⊥平面A 1B 1C 1D 1,而B 1D 1⊂≠ 平面A 1B 1C 1D 1,∴AA 1⊥B 1D 1.…9分A BC D A B1 D 1E F又Q 在正方形A 1B 1C 1D 1中,A 1C 1⊥B 1D 1,∴ B 1D 1⊥平面CAA 1C 1. 又Q B 1D 1⊂≠ 平面CB 1D 1,∴平面CAA 1C 1⊥平面CB 1D 1.……14分4.如图,四棱锥ABCD P -中,底面ABCD 为平行四边形,22==AD AB ,3=BD ,PD ⊥底面ABCD .(1)证明:平面⊥PBC 平面PBD ; (2)若二面角D BC P --为6π,求AP 与平面PBC所成角的正弦值。
第六节 面面关系
(一)平行 (二)垂直
1.如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1
2AA 1,D 是棱
AA 1的中点
(I)证明:平面BDC 1⊥平面BDC
(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.
2.【2012高考江西文19】(本小题满分12分)
如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB=12,AD=5,BC=42,DE=4.现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合与点G ,得到多面体CDEFG .
(1)求证:平面DEG ⊥平面CFG ; (2)求多面体CDEFG 的体积。
3.如图,已知空间四边形中,,BC AC AD BD ==,E
是AB 的中点。
求证:(1)⊥AB 平面CDE;(2)平面CDE ⊥平面ABC 。
4.如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. (1)求证:1//A C 平面BDE ;
B 1
C B
A
D
C 1
A 1
A
E
D
B
C
A AC⊥平面BDE.
(2)求证:平面
1
5.已知四棱锥P—ABCD,底面ABCD是菱形,∠PD
DAB,
60平面ABCD,PD=AD,
=
⊥
︒
点E为AB中点,点F为PD中点.
(1)证明平面PED⊥平面PAB;
(2)求二面角P—AB—F的平面角的余弦值
第六节 面面关系答案
(一)平行 (二)垂直
1.【命题意图】本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计
算,考查空间想象能力、逻辑推理能力,是简单题.
【解析】(Ⅰ)由题设知BC ⊥1CC ,BC ⊥AC ,
1CC AC C ⋂=,∴BC ⊥面11ACC A , 又∵1DC ⊂面11ACC A ,∴1DC BC ⊥,
由题设知01145A DC ADC ∠=∠=,∴1CDC ∠=0
90,即1DC DC ⊥,
又∵DC BC C ⋂=, ∴1DC ⊥面BDC , ∵1DC ⊂面1BDC , ∴面BDC ⊥面1BDC ;
(Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132
+⨯⨯⨯=1
2,
由三棱柱111ABC A B C -的体积V =1,
∴11():V V V -=1:1, ∴平面1BDC 分此棱柱为两部分体积之比为1:1.
2.【解析】(1)由已知可得AE=3,BF=4,则折叠完后EG=3,GF=4,又因为EF=5,所以可得EG GF ⊥
又因为CF EGF ⊥底面,可得CF EG ⊥,即EG CFG ⊥面所以平面DEG ⊥平面CFG . (2)过G 作GO 垂直于EF ,GO 即为四棱锥G-EFCD 的高,所以所求体积为1112
5520
3
35DECF S GO ⋅=⨯⨯⨯=正方形
3.证明:(1)
BC AC CE AB AE BE =⎫
⇒⊥⎬=⎭
同理,
AD BD DE AB AE BE =⎫
⇒⊥⎬=⎭
又∵CE DE E ⋂= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE
又∵AB ⊆平面ABC , ∴平面CDE ⊥平面ABC 4.证明:(1)设AC BD O ⋂=,
∵E 、O 分别是1AA 、AC 的中点,∴1A C ∥EO
又1
AC ⊄平面BDE ,EO ⊂平面BDE ,∴1A C ∥平面BDE (2)∵1AA ⊥平面ABCD ,BD ⊂平面ABCD ,1AA BD ⊥ 又BD AC ⊥,1AC AA A
⋂=,∴BD ⊥平面1A AC ,BD ⊂平面BDE ,∴平面BDE ⊥
平面1A AC
5.(1)证明:连接BD.
ADB DAB AD AB ∆∴︒=∠=,60, 为等边三角形.
E 是AB 中点,.DE AB ⊥∴
⊥PD 面ABCD ,AB ⊂面ABCD ,.PD AB ⊥∴
⊂DE 面PED ,PD ⊂面PED ,⊥∴=AB D PD DE , 面PED.
⊂AB 面PAB ,⊥∴PED 面面PAB.
(2)解:⊥AB 平面PED ,PE ⊂面PED ,.PE AB ⊥∴ 连接EF ,⊂EF PED ,.EF AB ⊥∴
PEF ∠∴为二面角P —AB —F 的平面角. 设AD=2,那么PF=FD=1,DE=3. 在,1,2,7,===∆PF EF PE PEF 中
,14
7
57
2212)7(cos 22=
⨯-+=
∠∴PEF 即二面角P —AB —F 的平面角的余弦值为
.14
7
5。