北京市西城区2013-2014学年七年级上学期期末考试数学试题
- 格式:doc
- 大小:1.35 MB
- 文档页数:17
北京市西城区(南区)2012—2013学年度第一学期七年级期末考试数学试卷本份试卷满分100分,考试时间120分钟。
一、选择题(本题共12个小题,每小题2分,共24分。
) 1. -3的相反数是A. -3B. 3C.31 D. -312. 据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680 000 000元,将680 000 000用科学记数法表示正确的是A. 68×107B. 6.8×108C. 6.8×107D. 6.8×1063. 如果单项式y x m231与342+n y x 是同类项,那么m 、n 的值分别是 A. ⎩⎨⎧-==22n mB. ⎩⎨⎧==14n mC. ⎩⎨⎧==12n mD. ⎩⎨⎧-==24n m4. 下列运算正确的是A. 2222=-x xB. 2222555d c d c =+C. xy xy xy =-45D. 532532m m m =+5. 下列方程中,解是x=4的是A. 942=+xB. )1(235x x -=-C. 573=--xD.43232-=+x x 6. 如图,已知点O 在直线AB 上,∠BOC=90°,则∠AOE 的余角是(第6题)A. ∠COEB. ∠BOCC. ∠BOED. ∠AOE7. 已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是(第7题)A. 圆柱B. 圆锥C. 球体D. 棱锥8. 有理数a 、b 在数轴上对应的位置如图所示,则下列结论成立的是(第8题)A. a+b>0B. a+b=0C. a -b>0D. a -b<09. 如果线段AB=6,点C 在直线AB 上,BC=4,D 是AC 的中点,那么A 、D 两点间的距离是A. 只有5B. 只有2.5C. 5或2.5D. 5或110. 已知⎩⎨⎧=-=+872y cx by ax 的解为⎩⎨⎧-==23y x ,某同学由于看错了c 的值,得到的解为⎩⎨⎧=-=22y x ,则a+b+c 的值为A. 7B. 8C. 9D. 1011. 下列说法中:①若a+b+c=0,则22c)(a b =+.②若a+b+c=0,则x=1一定是关于x 的方程ax+b+c=0的解. ③若a+b+c=0,且abc ≠0,则abc>0. 其中正确的是 A. ①②③B. ①③C. ①②D. ②③12. 有一个正方体的六个面上分别标有数字1、2、3、4、5、6,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字6的面所对面上的数字记为a ,2的面所对面上数字记为b ,那么a+b 的值为(第12题)A. 6B. 7C. 8D. 9二、填空题(本题共8个小题,每小题2分,共16分)13. 单项式5332b a -的系数是_________________,次数是_________________.14. 计算:6334'︒=______________°.15. 把弯曲的河道改直,能够缩短航程,这样做的道理是:_________________________. 16. 若0)2(32=++-x y ,则y x 的值为__________________.17. 若一个角的补角是100°,则这个角的余角是_____________________________.18. 如图,已知直线AB 、CD 相交于点O ,OE 平分∠COB ,若∠EOB=55°,则∠AOC 的度数是__________.(第18题)19. 对有理数x ,y 定义运算*,使1++=*b ax y x y. 若47921=*,50032=*,则23*的值为______________.20. 如图所示,圆圈内分别标有1, 2, …, 12, 这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(3n -2)步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳1213=-⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳4223=-⨯步到达标有数字6的圆圈,…. 依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字是___________;第2013次电子跳蚤能跳到的圆圈内所标的数字为________________.(第20题图)三、解答题(60分)21. 计算(每小题3分,共6分)(1)12-7+18-15; (2))3()2()611()321(2-⨯-+-÷-. 22. 化简(每小题3分,共6分)(1)-x+2(x -2)-(3x+5); (2))]2(2[232222ab b a ab b a --- 23. 解下列方程(组)(每小题4分,共12分)(1)122312++=-x x ;(2)⎩⎨⎧=+=+10341353y x y x ;(3)⎪⎩⎪⎨⎧=-+=+++=.52,14,1z y x z y x y x24. 先化简,再求值(本题5分)b a ab b a ab 22222)1(2)27()39(31-++-+-,其中a=-2,b=3. 25. 按要求画图(本题5分)(1)如图1,点M 、N 是平面上的两个定点.图1①连结MN ;②反向延长线段MN 至D ,使MD=MN. (2)如图2,P 是∠AOB 的边OB 上的一点.图2①过点P 画OB 的垂线,交OA 于点C ; ②过点P 画OA 的垂线,垂足为H.26. 列方程(组)解应用题(每小题5分,共10分)(1)某商场进了一批豆浆机,原计划按进价的180%标价销售. 但考虑在春节期间,为了能吸引消费者,于是按照售价的7折销售,此时每台豆浆机仍可获利52元,请问每台豆浆机的进价是多少元?(2)如图所示,在长方形ABCD 中有9个形状、大小完全相同的小长方形,试根据图中所给数据求出三块阴影部分面积的和.27. 几何解答题(每小题5分,共10分)(1)如图,延长线段AB 到C ,使BC=21AB ,D 为AC 的中点,DC=2,求AB 的长.(2)如图,将一副直角三角尺的直角顶点C 叠放在一起.①如图1,若CE 恰好是∠ACD 的角平分线,请直接回答此时CD 是否是∠ECB 的角平分线?图1②如图2,若∠ECD=α,CD 在∠BCE 的内部,请你猜想∠ACE 与∠DCB 是否相等?并简述理由;图2③在②的条件下,请问∠ECD 与∠ACB 的和是多少?并简述理由. 28. 解答下列问题(本题6分)已知整数x 满足:a x <-31.(a 为正整数) (1)请利用数轴分别求当a=1和a=2时的所有满足条件的x 的值; (2)对于任意的正整数a 值,请求出所有满足条件的x 的和与a 的商.【试题答案】一、选择题(本题12个小题,每小题2分,共24分)二、填空题(本题8个小题,每小题2分,共16分)三、解答题(本题共60分) 21. 计算(每小题3分,共6分)(1)12-7+18-15. 解:原式=30-22 =8.……3分(2))3()2()611()321(2-⨯-+-÷-. 解:原式=)3(4)76(31-⨯+-⨯ ……2分 =786-.……3分22. 化简(每小题3分,共6分)(1)-x+2(x -2)-(3x+5). 解:原式=-x+2x -4-3x -5 ……2分 =-2x -9.……3分(2))]2(2[232222ab b a ab b a ---. 解:原式=22228423ab b a ab b a -+- ……2分 =22107ab b a -.……3分23. 解下列方程(组)(每小题4分,共12分)(1)122312++=-x x . 解:去分母,原方程化为6)2(3)12(2++=-x x , 去括号,得66324++=-x x ,……3分移项,整理得x=14. 所以,原方程的解为x=14.……4分(2)⎩⎨⎧=+=+②①.1034,1353y x y x解:①×4,得12x+20y=52 ③ ②×3,得12x+9y=30 ④ ③-④,得11y=22 y=2.……2分将y=2代入②中,得x=1. 所以原方程组的解为⎩⎨⎧==21y x . ……4分(3)⎪⎩⎪⎨⎧=-+=+++=③②①.52,14,1z y x z y x y x 解:①代入②中,得2y+z=13 ④①代入③中,得2y -2z=4 ⑤④-⑤,得3z=9 z=3.……2分将z=3代入④中,得y=5. 将y=5代入④中,得x=6.所以原方程组的解为⎪⎩⎪⎨⎧===356z y x .……4分24. 先化简,再求值(本题5分)解:b a ab b a ab 22222)1(2)27()39(31-++-+-b a ab b a ab 22222222713-++-+-=15522-+=b a ab .……3分 当a=-2,b=3时,原式=-31.……5分25. 按要求画图(本题5分)(1) ……3分(2)……5分26. 列方程(组)解应用题(每小题5分,共10分)(1)解:设每台豆浆机的进价是x 元.……1分根据题意,得180%x ×0.7=x+52. ……3分 解得x=200.……4分 答:每台豆浆机的进价是200元.……5分 (2)设小长方形的宽为x ,则小长方形的长为(66-4x ). ……1分 依题意,得(66-4x )+2x=21+3x ……2分 解得x=9.……3分 ∴小长方形的长为66-4x=66-4×9=30.……4分∴三块阴影部分面积的和为 66×(21+3×9)-9×30×9=738.……5分27. 几何解答题(每小题5分,共10分)(1)∵D 为AC 的中点,(已知) ∴AC=2DC.(线段中点定义) ∵DC=2,(已知) ∴AC=4.……3分∵BC=21AB ,AC=AB+BC ,(已知) ∴AB=38.(等式的性质) ……5分 (2)解:①是 ……1分 ②∠ACE=∠DCB……2分∵∠ACD=90°,∠BCE=90°,∠ECD=α, ∠ACE=90°-α,∠DCB=90°-α, ∴∠ACE=∠DCB.……3分 ③∠ECD+∠ACB=180°.……4分理由如下:∠ECD+∠ACB=∠ECD+∠ACE+∠ECB =∠ACD+∠ECB =90°+90° =180°.……5分说明:求解、说理过程,只要学生能基本说明就可以了. 28. 解答下列问题(本题6分)(1)当a=1时,1|31|<-x , 整数x 的值为0, 1; 当a=2时,2|31|<-x , 整数x 的值为-1, 0, 1, 2.……2分(2)因为,当a=1时,整数x 的值和为1, 当a=2时,整数x 的值和为2, 当a=3时,整数x 的值和为3,所以,对于任意的正整数a ,整数x 的值分别是:-(a -1), -(a -2)…-2, -1, 0, 1, 2, 3…(a -1), a, 它们的和为a , 所以,满足条件的x 的所有的整数的和与a 的商等于1.……6分。
石景山区2013—2014学年第一学期期末考试试卷初一数学一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确选项前的字母填在题后括号内) 1.-2的相反数是( )A . 2B .21-C . 21 D .-22.当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,记作( )A .海拔23米B .海拔-23米C .海拔175米D .海拔129米 3. 下列各式中,不相等的是 ( )A .(-3)2和-32B .(-3)2和32C .(-2)3和-23D .32-和32- 4.长城总长约为6700000米,用科学计数法表示为 ( )A .6.7510⨯米 B .6.7610⨯米 C .6.7710⨯米 D .6.7810⨯米 5.方程2x +a -4=0的解是 x =-2,则a 等于( ) A .-8 B . 0 C . 2 D . 8 6.下列各组整式中不是同类项的是 ( ) A .3m 2n 与3nm 2 B .31xy 2与31x 2y 2 C .-5ab 与-5×103ab D .35与-12 7.如图,点C 是线段AB 上的点,点D 是线段BC 的中点,AB =10,AC =6,则线段CD的长是( )A.4B.3C.2D.1第7题图8. 下列基本几何体中,从正面、上面、左面观察都是相同图形的是( )二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上) 9.如图,∠α=120o,∠β=90 o. 则∠γ的度数是.10.125 ÷4= __ _________’.11.数a 、b 在数轴上的位置如图所示,化简b a b -+=____________.Oab12.如果a -b =3,ab =-1,则代数式3ab -a +b -2的值是_________.13.有一个正方体,A ,B ,C 的对面分别是z y x ,,三个字母,如图所示,将这个正方体从现有位置依此翻到第1,2,3,4,5,6格, 当正方体翻到第3格时正方体 向上一面的字母是 . 14. 用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■” 个.圆柱 A三棱柱 B球 C长方体 D第14题图654321CBA 第13题图第11题图 βγα第10题图三、探究题(本题4分,每空1分,把答案填在题中横线上)15.有若干个数,第1个数记为1a ,第二个数记为2a ,第三个数记为3a ……,第n 个记为n a ,若211-=a ,从第二个数起,每个数都等于“1与它前面的那个数的差的倒数。
北京市西城区2013— 2014学年度第一学期期末试卷 七年级数学2014.1试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的. 1.的相反数是( ).8-A. B. C. D.188-818-2.根据北京市旅游委发布的统计数字显示,2013年中秋小长假,园博园成为旅游新热点,三天共接待游客约184 000人,接待量位居全市各售票景区首位,将184 000用科学记数法表示应为( ).A .B .C .D .41.8410⨯51.8410⨯318.410⨯418.410⨯3.按语句“画出线段PQ 的延长线”画图正确的是( ).A B C D4.下列关于单项式的说法中,正确的是( ).523x y - A. 它的系数是3 B. 它的次数是5 C. 它的次数是2 D. 它的次数是75.右图所示的四条射线中,表示南偏西60°的是().A .射线OAB .射线OBC .射线OCD .射线OD6.下列说法中,正确的是( ).A .是负数 2(3)-B .最小的有理数是零C .若,则或 5x =5x =5-D .任何有理数的绝对值都大于零7.已知,是有理数,若表示它们的点在数轴上的位置 a b如图所示,则的值为().a b -A .正数 B .负数 C .零D .非负数棵树苗.若设参与种树的人数为人,则下面所列方程中正确的是( ).x A . B . 5364x x +=-5364x x +=+C . D .5364x x -=-5364x x -=+9.如右图,S 是圆锥的顶点,AB 是圆锥底面的直径,M 是SA的侧面上过点B,M所得圆锥的侧面展开图可能是( ).10.将6张小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD 内,未被覆盖的部分恰好分割为两个长方形,面积分别为S 1和S 2.已知小长方形纸片的长为a ,宽为b ,且a ﹥b .当AB 长度不变而BC 变长时,将6张小长方形纸片还按照同样的方式放在新的长方形ABCD 内,S 1与S 2的差总保持不变,则a ,b 满足的关系是( ).A .B .12b a =13b a = C .D .27b a =14b a =二、填空题(本题共20分,11~16题每小题2分,17题、18题每小题4分)为 km .14.如图,点C ,D 在线段AB 上,且AC =CD =DB ,点E 是线段DB 的中点.若CE =9,则AB 的长为 . 15.若,,则的值为 .23m mn +=-2318-=n mn 224m mn n +-16.如图,P 是平行四边形纸片ABCD 的BC 边上一点,以过点P 的直线为折痕折叠纸片,使点C ,D 落在纸片所在平 面上,处,折痕与AD 边交于点M ;再以过点P 的 'C 'D 直线为折痕折叠纸片,使点B 恰好落在边上处, 'C P 'B 折痕与AB 边交于点N .若=75°,则= °.∠MPC '∠NPBA B C D线上的3个数之和都相等.现在方阵图中已填写了一些数和代数式(其 中每个代数式都表示一个数),则x 的值为 ,y 的值为 , 空白处应填写的3个数的和为 .18.用完全一样的火柴棍按如图所示的方法拼成“金鱼”形状的图形,则按照这样的方法拼成第4个图形需要火柴棍 根,拼成第个图形(为正整数)需要火柴棍n n 根(用含的代数式表示).n三、计算题(本题共12分,每小题4分)19.. (9)(8)3(2)-⨯-÷÷- 解:20..323136()(2)3412⨯---- 解: 21.. 22173251[(8]1543-⨯-+⨯--解: 四、先化简,再求值(本题5分)22.,其中,.2222414(2)2(3)33--++-x xy y x xy y 5x =12y =解:五、解下列方程(组)(本题共10分,每小题5分)23.. 5873164x x--+=-解:24.4528.+=⎧⎨-=⎩,x y x y 解:六、解答题(本题4分)25. 问题:如图,点C 是线段AB 的中点,点D 在线段CB 上,点E 是线段AD 的中点.若EC =8,求线段DB 的长.请补全以下解答过程.解:∵ 点C 是线段AB 的中点, , ∴ ,. 2=AB AC 2=AD AE ∵ ,=-DB AB ∴ . 2=-DB AE 2()=-AC AE 2EC = ∵ , 8=EC ∴ .=DB七、列方程(组)解应用题(本题6分)26. 某商店买入100个整理箱,进价为每个40元,卖出时每个整理箱的标价为60元.当按标价卖出一部分整理箱后,剩余的部分以标价的九折出售.所有整理箱卖完时,该商店获得的利润一共是1880元,求以九折出售的整理箱有多少个. 解:八、解答题(本题共13分,第27题6分,第28题7分)27.已知代数式M =是关于的二次多项式. 32(1)(2)(3)5a b x a b x a b x +++-++-x (1)若关于的方程的解是,求的值;y 3()8a b y ky +=-4=y k (2)若当时,代数式M 的值为,求当时,代数式M 的值. 2x =39-1x =- 解:28.已知(),∠AOB 的余角为∠AOC ,∠AOB 的补角为∠BOD ,OMα∠=AOB 3045α︒<<︒平分∠AOC , ON 平分∠BOD . (1)如图,当,且射线OM 在∠AOB 的外部时,用直尺、量角器画出射线OD ,ON40α=︒的准确位置;(2)求(1)中∠MON 的度数,要求写出计算过程;(3)当射线OM 在∠AOB 的内部时,用含的代数式表示∠MON 的度数.(直接写出结果α即可)解:C AO BM北京市西城区2013— 2014学年度第一学期期末试卷七年级数学附加题2014.1试卷满分:20分一、填空题(本题6分)1.对于正整数,我们规定:若为奇数,则;若为偶数,则.例a a ()31=+f a a a ()2=af a 如,.若,,,(15)315146=⨯+=f 10(10)52f ==18=a 21()=a f a 32()=a f a ,…,依此规律进行下去,得到一列数,,,,…,,…(为43()=a f a 1a 2a 3a 4a n a n 正整数),则 ,.3=a 1232014++++= a a a a二、操作题(本题7分)2.如图1,是一个由53个大小相同的小正方体堆成的立体图 形,从正面观察这个立体图形得到的平面图形如图2所示. (1)请在图3、图4中依次画出从左面、上面观察这个立体图形得到的平面图形;(2)保持这个立体图形中最底层的小正方体不动,从其余部分中取走k 个小正方体,得到一个新的立体图形.如果依次从正面、左面、上面观察新的立体图形,所得到的平面图形分别与图2、图3、图4是一样的,那么k 的最大值为 .三、解决问题(本题7分)3.小明的妈妈在打扫房间时,不小心把一块如图所示的钟表(钟表盘上均匀分布着60条刻度线)摔坏了.小明找到带有指针的一块残片,其上的时针和分针恰好分别指向两条相邻的刻度线.t t(1)若这块残片所表示的时间是2点分,求的值;(2)除了(1)中的答案,你知道这块残片所表示的时间还可以是0点~12点中的几点几分吗?写出你的求解过程.解:北京市西城区2013— 2014学年度第一学期期末试卷七年级数学参考答案及评分标准2014.1一、选择题(本题共30分,每小题3分)三、计算题(本题共12分,每小题4分) 19..(9)(8)3(2)-⨯-÷÷-解:原式 ………………………………………………………………3分119832=-⨯⨯⨯ . ………………………………………………………………………4分 12=- 20..323136()(2)3412⨯----解:原式 ……………………………………………………1分23136()(8)3412=⨯----242738=--+ ………………………………………………………………………3分 68=-+ . …………………………………………………………………………4分 2= 21.. 22173251[(8]1543-⨯-+⨯--解:原式 …………………………………………………… 3分 23425(8)1549=-⨯+⨯-101633=-+- . …………………………………………………………………………4分 9=-四、先化简,再求值(本题5分)22.解:2222414(2)2(3)33x xy y x xy y --++-…………………………………………… 2分 22224242633x xy y x xy y =---+-(阅卷说明:正确去掉每个括号各1分) . …………………………………………………………………3分22252x xy y =+-当,时, 5x =12y =原式 ………………………………………………… 4分221125552()22=⨯+⨯⨯-⨯. …………………………………………………………5分 251506222=+-=五、解下列方程(组)(本题共10分,每小题5分)23.. 5873164x x--+=- 解:去分母,得 . ……………………………………… 2分2(58)3(73)12x x -+-=-去括号,得 .………………………………………… 3分 101621912x x -+-=-移项,得 . ………………………………………… 4分 109121621x x -=-+- 合并,得 . ……………………………………………………………… 5分 17x =-24.4528.+=⎧⎨-=⎩,x y x y解法一:由①得 .③ ………………………………………………… 1分54y x =-把③代入②,得 .………………………………………2分 2(54)8x x --=去括号,得 .1088x x -+=移项,合并,得 .918x =系数化为1,得 . …………………………………………………… 3分 2x =把代入③,得 . ……………………………………4分2x =5423y =-⨯=-所以,原方程组的解为 …………………………………………5分23.x y =⎧⎨=-⎩,解法二:①×2得 .③ ………………………………………………… 1分8210x y +=③+②得 .……………………………………………………2分 8108x x +=+合并,得 .918x =系数化为1,得 . …………………………………………………… 3分 2x =把代入①,得 .2x =8+5y =移项,得 ……………………………………………………………4分3.y =-①②所以,原方程组的解为 …………………………………………5分23.x y =⎧⎨=-⎩,六、解答题(本题4分)25.解:∵ 点C 是线段AB 的中点,点E 是线段AD 的中点, ……………………… 1分 ∴ ,. 2=AB AC 2=AD AE ∵ , ……………………………………………………… 2分DB AB AD=- ∴ . …………………………… 3分 2 2DB AC AE =-2()=-AC AE 2EC = ∵ ,8=EC ∴ . …………………………………………………………… 4分 16 DB =七、列方程(或方程组)解应用题(本题6分)26.解:设以九折出售的整理箱有x 个.………………………………………………… 1分 则按标价出售的整理箱有个.(100)x - 依题意得 .…………………………… 3分 60(100)600.9100401880x x -+⨯=⨯+ 去括号,得 . 600060545880x x -+= 移项,合并,得 .6120x -=-系数化为1,得 .……………………………………………………………5分20x =答:以九折出售的整理箱有20个. ……………………………………………………6分八、解答题(本题共13分,第27题6分, 第28题7分)27.解:(1)∵代数式M =是关于的二次多项式, 32(1)(2)(3)5a b x a b x a b x +++-++-x ∴, ………………………………………………………………1分 10a b ++= 且.20a b -≠∵关于的方程的解是,y 3()8a b y ky +=-4=y ∴. ………………………………………………………2分 3()448a b k +⨯=-∵, 1a b +=-∴.3(1)448k ⨯-⨯=-解得. …………………………………………………………………3分 1k =-(2)∵当时,代数式M =的值为,2x =2(2)(3)5a b x a b x -++-39-∴将代入,得.2x =4(2)2(3)539a b a b -++-=- 整理,得. …………………………………………………4分10234a b +=-∴ 110234.a b a b +=-⎧⎨+=-⎩,由②,得.③ 517a b +=- 由③-①,得. 416a =- 系数化为1,得 .4a =-把代入①,解得.4a =-3b =∴原方程组的解为 …………………………………………………5分43.a b =-⎧⎨=⎩,∴M ==.2[2(4)3](433)5x x ⨯--+-+⨯-21155x x -+-将代入,得. ………………………6分 1x =-211(1)5(1)521-⨯-+⨯--=-①②28.解:(1)如图1,图2所示. ………………………………………………………… 2分 (阅卷说明:画图每种情况正确各1分,误差很大的不给分)(2∠AOC ,∠AOB 的补角为∠BOD ,∴ ,9050AOC AOB ∠=︒-∠=︒. 180140BOD AOB ∠=︒-∠=︒ ∵ OM 平分∠AOC ,ON 平分∠BOD ,∴ , 1252MOA AOC ∠=∠=︒. ………………………………………………3分1702BON BOD ∠=∠=︒①如图1.MON MOA AOB BON ∠=∠+∠+∠. ………………………………………4分254070135=︒+︒+︒=︒ ②如图2.MON NOB MOA AOB ∠=∠-∠-∠. …………………………………………5分7025405=︒-︒-︒=︒ ∴ 或. 135MON ∠=︒5︒ (3)或. ……………………………………………7分45MON α∠=+︒1352α︒- (阅卷说明:每种情况正确各1分)B 图2N DC A O B M七年级数学附加题参考答案及评分标准 2014.1一、填空题(本题6分)1.2,4705. (阅卷说明:每个空各3分)二、操作题(本题7分)2.解:(1)从左面、上面观察这个立体图形得到的平面图形分别如图1,图2所示.…………………… 4分(2)k 的最大值为 16 . ………………………………………………………… 7分三、解决问题(本题7分)3.解:(1)此钟表一共有60条刻度线,两条相邻两条刻度线间叫1格.时针每走1格是分钟. 60125=以0点为起点,则时针走了格,分针走了格. (25)12t⨯+t ∵时针和分针恰好分别指向两条相邻的刻度线,∴①当分针在前时,. ………………………………………… 1分25112tt ⨯++= 解得 . ………………………………………………………………… 2分12t =②当时针在前时,. ………………………………………… 3分 25112tt ⨯+=+解得 .(不符合题意,舍去) ……………………………………… 4分10811t =∴.12t =(2)设这块残片所表示的时间是点分,其中,都为整数.x y x y 以0点为起点,则时针走了格,分针走了格. (5)12yx +y∵为整数. 512yx +∴0,12,24,36,48. ……………………………………………………… 5分 y =①当分针在前时,. 5112yy x =++可知当时,,即为(1)中的答案. …………………………… 6分12y =2x =(阅卷说明:每个图各2分)图1(从左面看)图2(从上面看)②当时针在前时,. 5112yx y +=+可知当时,,符合题意.48y =9x =即这块残片所表示的时间是9点48分. ……………………………………… 7分 答:这块残片所表示的时间还可以是9点48分. (阅卷说明:其他解法相应给分)。
2013—2014学年度七年级上学期期末考试数学试卷一、仔细选一选,将你认为正确的选项填入括号中(每题3分,共36分) 1. |-2|=( )A. -2,B. 21-, C. 2, D.21 2.校园文化艺术节期间,小明经过统计,全校师生大约有12000人次参加各项竞赛活动,把这个数字记成科学计数法是( )A.12×103B. 12×104C.1.2×104D. 1.2×1033.下列计算正确的是()A. 96)32(3-=- B. -24=16C. -(-2)=-21D. 425)25(2-=- 4.若2x 2+x +2与M 的和为x 则M 等于()A. 2x 2-2B. 2x 2+2C. -2x 2+2D. - 2x 2-2 5.如果两个角度数之比为1:4,且它们的差为54°,那么两个角的关系是( )A.相等B.互余C.互补D.不确定6.已知关于x 的方程2x -a=1的解是x =2,则a 的值是()A. -3B. 3C. 5D.-57.若整式2a -[a+2(k a -1)]的值与a 的取值无关,则k 为()A. 1B. -1C. 21D. -21 8.下列等式变形一定正确的有()①若a=b ,则ac=bc . ②若ac=bc , 则a=b③若a=b ,则c a =c b . ④若c a =c b,则a=b ⑤若a=b ,则12+c a =12+c b⑥若(c 2+1)·a=(c 2+1)·b ,则a=bA.2个B.3个C.4个D.5个9.某厂原计划每天生产x 个零件,由于改进技术,实际每天多生产y 个零件,那么生产W 个零件可以提前天完成任务.A.y wx w - B. y x w + C. yw y x w -+ D. y x w x w +-10.小华参加“文明礼仪”知识抢答共8道题,规定答对一题得10分,打错一题倒扣5分,若小华计划得分不低于50分,则小华至少要答对 道题.A.5B.6C.7D.811.某商场售货员同时卖出两双皮鞋,每双的价格都是240元,若按成本计算,其中一双的盈利是20%另一双亏损20%,则在这次交易中商场( )A.赚了20元B.赔了20元C.不赚不赔D.赔了60元12.如图是一个正方形的纸盒的展开图,若相对的两面的数相等,试求x ,y 的值 A. x =1,y =3 B. x =4,y =1C. x =4,y =2.5D.x =2.5,y =4二、填空题(每小题3分,共18分。
2013-2014学年第一学期期末考试试卷初一数学试题一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应的位置上.1.下列各对数中互为相反数的是【】A.-(+3)和+(-3)B.-(-3)和+(-3)C.-(+3)和-3 D.+(-3)和-32.下列各图中,经过折叠能围成一个立方体的是【】3.若x=1是方程2x+m-6 =0的解,则m的值是【】A.-4 B.4 C.-8 D.84.如图,直线AB、CD相交于点O,若∠BOD=40°,OA平分∠COE,则∠AOE的度数是【】A.140°B.80°C.40°D.20°5.若a=b,2b=3c,则a+b-3c等于【】A.0 B.3c C.-3c D.32c6.如果单项式-x a+1y3与12x2y b是同类项,那么a、b的值分别为【】A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=27.若a=-a,则实数a在数轴上的对应点一定在【】A.原点左侧B.原点或原点左侧C.原点右侧D.原点或原点右侧8.一列单项式按以下规律排列:x,3x2,5x2,7x,9x2,l1x2,13x,…,则第2014个单项式应是【】A.4029x2B.4029x C.4027x D.4027x29.如图,将长方形纸片ABCD的角C沿着GF折叠,使点C落在长方形内部点E处,若FH平分∠BFE,则∠GFH的度数d是【】A.90°<α< 180°B.00°<α<90°C.α=90°D.α随折痕GF位置的变化而变化10.在数轴上,点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,若a b=2013,且AO=2BO,则a+b的值为【】A.-1242 B.1242 C.671 D.-671二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填在答题纸相对应的位置上.11. 一个数的绝对值等于0.24,则这个数是.12.嫦娥三号“零窗口”发射升空,约112小时后,嫦娥三号将抵达368000km之外的月球附近,试用科学计数法表示这个行程数据.368000km表示为km.13.回收废纸10kg,可产再生纸6kg,某校去年回收废纸a kg,这些废纸可产再生纸▲kg.14.单项式-234xy的系数是,次数是15.如图,线段AB=8,C是DB =1.5,则线段CD 的长等于 .16.如图,AC ⊥BC ,CD ⊥AB ,垂足分别为C 、D ,则∠ACD =∠ . 17.如图是一个简单的数值运算程序框图.如果输入x 的值为-1,那么输出的数值为 .18. 一个城市铁路系统只卖从一站出发到达另一站的单程车票,每一张票都说明起点站和终点站.若原有m 个站点,现在新增设了n 个站点,则必须再印 种不同的车票(结果用含m 、n 的代数式表示).三、解答题:本大题共1l 小题,共76分,把解答过程写在答题纸相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔.+ 19.(本题满分8分,每小题4分)计算:(1)()()()32224510--÷-⨯;(2)()()311135236⎛⎫⎛⎫-÷---⨯- ⎪ ⎪⎝⎭⎝⎭20.(本题满分8分,每小题4分)先化简,再求值:(1)求3y 2-x 2+(2x -y )-2(x 2+3y 2)的值,其中x =l 、y =-14.(2)求4xy -[(x 2+5xy -y 2)-(3xy -12y 2)]的值,其中x =3、y =-6.21.(本题满分8分,每小题4分)解下列方程: (1)1232x x +=-; (2)12223x x x -+-=-.22.(本题满分5分)已知代数式3a +12与3(a -12). (1)当a 为何值时,这两个代数式的值互为相反数? (2)试比较这两个代数式值的大小(直接写出答案).23.(本题满分6分)已知∠α与∠β互为补角,且∠α比∠β大30°.(1)求∠α、∠β的度数; (2)利用(1)中所求结果,用量角器直接画出∠a ,再用直尺和圆规另作∠AOB ,使∠AOB =∠α.(只保留作图痕迹)24.(本题满分6分)学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出40册,就记作-10.上星期图书馆借出图书记录如下:(1)上星期三借出图书多少册? (2)上星期五比上星期四多借出图书24册,求a的值;(3)上星期平均每天借出图书多少册?25.(本题满分6分)已知关于x的方程16(x+2)=2k-13(x-1)的解为x=10.求26k 的值.26.(本题满分6分)附表为天弘服饰店销售的服饰与原价对照表,某日该服饰店举办大拍卖,外套按原价打六折出售,衬衫和裤子按原价打八折出售,服饰共卖出200件,共得48000元,问外套卖出几件?27.(本题满分7分)如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.(1)若∠DOE=45°,求∠BOC的度数;(2)若∠DOE=n°.求∠BOC的度数.28.(本题满分8分)用长度一定的不锈钢材料设计成外观为长方形的框架(如图①、②、③中的一种).请根据以下图案回答下列问题:(题中的不锈钢材料总长度均指各图中所有黑线的长度和,所有横档和竖档分别与AC、AB平行)设竖档AB=xm.(1)如果不锈钢材料总长度为12m.在图①中,当x=2时,长方形框架ABDC的面积为m2;在图②中,当x=a时,长方形框架ABDC的面积为m2(用含a的代数式表示结果);(2)如果不锈钢材料总长度为bm.在图③中,当x=c时,且共有n条竖档,那么长方形框架ABDC的面积是多少?(用含b、c、n的代数式表示结果)29.(本题满分8分)已知:如图,数轴上线段AB=2(单位长度),线段CD=4(单位长度),点A在数轴上表示的数是-10,点C在数轴上表示的数是16.若线段AB以每秒6个单位长度的速度向右匀速运动,同时线段CD以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒.(1)当点B与点C相遇时,点A、点D在数轴上表示的数分别为;(2)当t为何值时,点B刚好与线段CD的中点重合;(3)当运动到BC=8(单位长度)时,求出此时点B在数轴上表示的数.。
北京市西城区(北区)2012—2013学年度第一学期期末试卷七年级数学(试卷满分100分,考试时间100分钟)、选择题(本题共30分,每小题3分)F 面各题均有四个选项,其中只有一个是符合题意的.1 . 6的绝对值等于().11A. 6B. 6C.D.-662•根据北京市公安交通管理局网站的数据显示,截止到2012年2月16日,北京市机动车5. 下列说法中,正确的是().A .任何数都不等于它的相反数B. 互为相反数的两个数的立方相等C. 如果a大于b,那么a的倒数一定大于b的倒数D . a与b两数和的平方一定是非负数6. 将一副直角三角尺按如图所示的不同方式摆放,则图中锐角7. 下列关于几何画图的语句正确的是A.延长射线AB到点C,使BC=2ABB .点P在线段AB上,点Q在直线AB的反向延长线上C.将射线OA绕点O旋转180,终边OB与始边OA的夹角为一个平角2013.1保有量比十年前增加了 3 439 000辆,将3 439 000用科学记数法表示应为()•A. 0.343 9 107B. 3.439 106C. 3.439 107D. 34.39 1053.下列关于多项式5ab2 2a2bcA. 它是三次三项式C.它的最高次项是2a2bc4•已知关于x的方程7 kx x4A. 3B.i51的说法中,正确的是().B. 它是四次两项式D.它的常数项是12k的解是x 2,贝U k的值为().5C. 1D.—4与相等的是().D •已知线段a, b满足2a b 0 ,在同一直线上作线段AB 2a , BC b,那么线段AC 2a b&将下列图形画在硬纸片上,剪下并折叠后能围成三棱柱的是9•已知a, b是有理数,若a在数轴上的对应点的位置如图所示, a b 0,有以下b :④b a结论:①b 0 :②b a 0 :③则所有正确的结论是()•10.右图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几何体应是A B二、填空题(本题共20分,11〜14题每小题2分,15〜18题每小题3分)11.用四舍五入法将1.893 5取近似数并精确到0.001,得到的值是12 .计算: 135 45 91 16 =13 •一件童装每件的进价为a元(a 0),商家按进价的3倍定价销售了一段时间后,为了吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润用代数式表示应为___________ 元.14•将长方形纸片ABCD折叠并压平,如图所示,点C,点分别为点C,点D,折痕分别交AD,BC边于点BFC 30,贝U CFE= _______ °C15. 对于有理数 a , b ,我们规定a b a b b . (1) (3)4 = ____ ;(2)若有理数x 满足(x 4)3 6,则x 的值为 __________ .16.如图,数轴上 A , B 两点表示的数分别为2和6,数轴上的点 C 满足AC BC ,点D3在线段AC 的延长线上,若 AD AC ,贝卩BD= ,点D 表示的数为217. 右边球体上画出了三个圆,在图中的六个□里分别填入3,4, 5, 6,使得每个圆周上四个数相加的和都相等.(1) ______________________ 这个相等的和等于 ; (2) 在图中将所有的□填完整.18. __________________ 如图,正方形 ABCD 和正方形 DEFG 的边长都是 3 cm , 点P 从点D 出发,先到点 A ,然后沿箭头所指方向运动 (经过点D 时不拐弯),那么从出发开始连续运动 2012 cm 时,它离点 _______________________ 最近,此时它距该点 ______ cm .三、计算题(本题共12分,每小题4分)2 7 19. 42 ( H - ( 12)( 4).3 2解:解:20. ( 3)341 232).AB----------- ------------- 1---------- 1 ---------- 1 ---------- 1 ---------- 1---------- 1 ----------- 1---------- -------------20 621 .12 (丄丄)49 — ( 5)264828解:四、先化简,再求值(本题5分)22. 5(3a2b ab2)(ab2 3a2b) 2ab2,其中a 1, b 3. 2解:五、解下列方程(组)(本题共10分,每小题5分)x 3 2x 1 ,23. x 1 .2 3解:24. 2X 3y 14 4x 5y 6.解:六、解答题(本题4分)25. 问题:如图,线段AC上依次有D , B, E三点,其中点B为线段AC的中点,AD BE , 若DE 4,求线段AC的长.请补全以下解答过程. _ _ —_解:••• D , B, E三点依次在线段AC上,••• DE ______ BE .••• AD BE ,•DE DB _______ AB .••• DE 4,•AB 4 .__________________ ,•AC 2 AB _______ .七、列方程(或方程组)解应用题(本题共6分)26. 有甲、乙两班学生,已知乙班比甲班少4人,如果从乙班调17人到甲班,那么甲班人数比乙班人数的3倍还多2人,求甲、乙两班原来各有多少人.解:八、解答题(本题共13分,第27题6分,第27题7分)27.已知当x 1时,代数式2mx3 3nx 6的值为17.(1)若关于y的方程2my n 4 ny m的解为y 2,求m n的值;(2)若规定a表示不超过a的最大整数,例如4.3 4,请在此规定下求m值.解:28.如图,DOE 50 , OD 平分/ AOC , AOC 60 , OE 平分/ BOC.(1)用直尺、量角器画出射线OA, OB, OC的准确位置;(2)求/ BOC的度数,要求写出计算过程;(3)当DOE , AOC 2 时(其中0 , 0 90 ),用,的代数式表示/ BOC的度数.(直接写出结果即可)解:北京市西城区(北区)2012— 2013学年度第一学期期末试卷七年级数学参考答案及评分标准2013.13 22 2解:原式 423 ................................................................................. 2分3 7阅卷说明:15〜18题中,第一个空为1分,第二个空为2分;17题第(2)问其他正确答案相应给分•三、计算题(本题共12分,每小题4分)2 719. 42 ()( 12)( 4).15a 2b 5ab 2 ab 2 3a 2b 2ab 2(阅卷说明:去掉每个括号各 1分)12a 2b 4ab 2. ....................................................................................................................... 3 分1当a , b 3时,21 2 1 2原式 12 (―)2 3 4 32 .............................................................................. 4 分2 2 9 18 9. ............................................................................................... 5 分五、解下列方程(组)(本题共10分,每小题5分)x 3 2x 1 ,x 1 .23解:去分母,得 3(x 3) 2(2x 1) 6(x 1) .............................................. 2 分去括号,得 3x 9 4x 2 6x 6. ........................................................................... 3分 移项,得 3x 4x 6x 9 2 6 . ........................................................ 4 分合并,得x 5................................................................................... 5分2x 3y 14,① 4x 5y 6.②解法一:由①得 2x 14 3y .③把③代入②,得 2(14 3y ) 5y 6 .21.四、22.11. (阅卷说明:写成 4-不扣分)31 12(6 1 48)349 ( 28 1 6 4)4 141 (4 3 14 3 4 . 14先化简,再求值(本题解:原式 (12 125)2 .48) 28) 2丄 28 1 28) 25(5。
北京市西城区(北区)2012— 2013学年度第一学期期末试卷
七年级数学附加题2013.1
(试卷满分20分)
一、填空题:(本题6分)
1.如图,将一个正方形纸片分割成四个面积相等的小正方形纸片,然后将其中一个小正方形再分割成四个面积相等的小正方形纸片,如此分割下去.第6次分割后,共有正方形纸片_______个,第n次分割后(n为正整数),共有正方形纸片_______个.
二、操作题(本题7分)
2.如图,已知图形A,B,C,D,E,F分别是由3,4,5,6,7,8个“单位正方形”(每个小正方形的边长为1)组成的图形,它们之中的五个
..可以拼成一个大正方形.
(1)填空:能拼成的大正方形的面积等于,多余的那一个图形的编号是(从A,B,C,D,E,F中选择一个);
(2)请在下图中画出拼接正方形的方法,要求:标注所使用五个图形的编号,并用实粗线画出边界线.(说明:所使用的五个图形可以旋转,也可以翻转)
解:(1)能拼成的大正方形的面积等于,多余的那一个图形的编号是.(2)
三、解决问题(本题7分)
3.小刘为自己的文件设了一个五位数的密码,这个五位数的前三位数字组成的数与后两位数字组成的数之和等于155;这个五位数的前两位数字组成的数与后三位数字组成的数之和等于434,你知道小刘设的密码是多少吗?写出你的求解过程.
解:。
北京市西城区2012—2013学年度第一学期七年级期末考试数学试卷【试题答案】一、选择题(本题12个小题,每小题2分,共24分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BBACDABCDACB二、填空题(本题8个小题,每小题2分,共16分)题号 1314 15 16 17 18 19 20 答案5,53- 34.6两点之间, 线段最短-810°70°50310,10三、解答题(本题共60分) 21. 计算(每小题3分,共6分)(1)12-7+18-15. 解:原式=30-22 =8.……3分(2))3()2()611()321(2-⨯-+-÷-.解:原式=)3(4)76(31-⨯+-⨯……2分 =786-.……3分22. 化简(每小题3分,共6分)(1)-x+2(x -2)-(3x+5). 解:原式=-x+2x -4-3x -5 ……2分 =-2x -9.……3分 (2))]2(2[232222ab b a ab b a ---. 解:原式=22228423ab b a ab b a -+- ……2分 =22107ab b a -.……3分23. 解下列方程(组)(每小题4分,共12分)(1)122312++=-x x . 解:去分母,原方程化为6)2(3)12(2++=-x x , 去括号,得66324++=-x x ,……3分 移项,整理得x=14. 所以,原方程的解为x=14.……4分(2)⎩⎨⎧=+=+②①.1034,1353y x y x解:①×4,得12x+20y=52 ③ ②×3,得12x+9y=30 ④ ③-④,得11y=22 y=2.……2分将y=2代入②中,得x=1. 所以原方程组的解为⎩⎨⎧==21y x .……4分(3)⎪⎩⎪⎨⎧=-+=+++=③②①.52,14,1z y x z y x y x 解:①代入②中,得2y+z=13 ④①代入③中,得2y -2z=4 ⑤④-⑤,得3z=9 z=3.……2分将z=3代入④中,得y=5. 将y=5代入④中,得x=6.所以原方程组的解为⎪⎩⎪⎨⎧===356z y x .……4分24. 先化简,再求值(本题5分)解:b a ab b a ab 22222)1(2)27()39(31-++-+-b a ab b a ab 22222222713-++-+-=15522-+=b a ab .……3分 当a=-2,b=3时,原式=-31.……5分25. 按要求画图(本题5分)(1) ……3分(2)……5分 26. 列方程(组)解应用题(每小题5分,共10分)(1)解:设每台豆浆机的进价是x 元. ……1分 根据题意,得180%x ×0.7=x+52. ……3分 解得x=200.……4分 答:每台豆浆机的进价是200元. ……5分 (2)设小长方形的宽为x ,则小长方形的长为(66-4x ).……1分 依题意,得(66-4x )+2x=21+3x ……2分 解得x=9.……3分 ∴小长方形的长为66-4x=66-4×9=30.……4分∴三块阴影部分面积的和为 66×(21+3×9)-9×30×9=738.……5分27. 几何解答题(每小题5分,共10分)(1)∵D 为AC 的中点,(已知) ∴AC=2DC.(线段中点定义) ∵DC=2,(已知) ∴AC=4.……3分∵BC=21AB ,AC=AB+BC ,(已知) ∴AB=38.(等式的性质)……5分 (2)解:①是 ……1分 ②∠ACE=∠DCB……2分∵∠ACD=90°,∠BCE=90°,∠ECD=α, ∠ACE=90°-α,∠DCB=90°-α, ∴∠ACE=∠DCB.……3分 ③∠ECD+∠ACB=180°.……4分理由如下:∠ECD+∠ACB=∠ECD+∠ACE+∠ECB =∠ACD+∠ECB =90°+90° =180°.……5分说明:求解、说理过程,只要学生能基本说明就可以了. 28. 解答下列问题(本题6分)(1)当a=1时,1|31|<-x , 整数x 的值为0, 1; 当a=2时,2|31|<-x , 整数x 的值为-1, 0, 1, 2.……2分(2)因为,当a=1时,整数x 的值和为1, 当a=2时,整数x 的值和为2,当a=3时,整数x 的值和为3,所以,对于任意的正整数a ,整数x 的值分别是:-(a -1), -(a -2)…-2, -1, 0, 1, 2, 3…(a -1), a, 它们的和为a , 所以,满足条件的x 的所有的整数的和与a 的商等于1.……6分北京市西城区2013— 2014学年度第一学期期末试卷七年级数学参考答案及评分标准 2014.1一、选择题(本题共30分,每小题3分) 题号12345678910 答案 C B A D C C B A B D二、填空题(本题共20分,11~16题每小题2分,17题、18题每小题4分) 11. 3.66. 12. 6940'︒. 13. 5()a b +.14. 18. 15. 21-. 16. 15.17. 1-,3,4-. (阅卷说明:第1个空1分,第2个空1分,第3个空2分) 18. 30,7n +2. (阅卷说明:第1个空2分,第2个空2分)三、计算题(本题共12分,每小题4分) 19.(9)(8)3(2)-⨯-÷÷-.解:原式119832=-⨯⨯⨯………………………………………………………………3分 12=-. ………………………………………………………………………4分 20.323136()(2)3412⨯----. 解:原式23136()(8)3412=⨯---- ……………………………………………………1分242738=--+68=-+ ………………………………………………………………………3分 2=. …………………………………………………………………………4分21.22173251[()8]1543-⨯-+⨯--.解:原式23425(8)1549=-⨯+⨯- …………………………………………………… 3分 101633=-+-9=-. …………………………………………………………………………4分四、先化简,再求值(本题5分)22.解: 2222414(2)2(3)33x xy y x xy y --++-22224242633x xy y x xy y =---+- …………………………………………… 2分 (阅卷说明:正确去掉每个括号各1分)22252x xy y =+-. …………………………………………………………………3分 当5x =,12y =时, 原式221125552()22=⨯+⨯⨯-⨯ ………………………………………………… 4分251506222=+-=. …………………………………………………………5分五、解下列方程(组)(本题共10分,每小题5分) 23.5873164x x--+=-. 解:去分母,得 2(58)3(73)12x x -+-=-. ……………………………………… 2分去括号,得 101621912x x -+-=-.………………………………………… 3分 移项,得 109121621x x -=-+-. ………………………………………… 4分 合并,得 17x =-. ……………………………………………………………… 5分24.4528.+=⎧⎨-=⎩,x y x y解法一:由①得 54y x =-.③ ………………………………………………… 1分把③代入②,得 2(54)8x x --=.………………………………………2分去括号,得 1088x x -+=. 移项,合并,得 918x =.系数化为1,得 2x =. …………………………………………………… 3分 把2x =代入③,得 5423y =-⨯=-. ……………………………………4分所以,原方程组的解为 23.x y =⎧⎨=-⎩,…………………………………………5分解法二:①×2得 8210x y +=.③ ………………………………………………… 1分③+②得 8108x x +=+.……………………………………………………2分合并,得 918x =.①②系数化为1,得 2x =. …………………………………………………… 3分 把2x =代入①,得 8+5y =.移项,得 3.y =- ……………………………………………………………4分所以,原方程组的解为 23.x y =⎧⎨=-⎩,…………………………………………5分六、解答题(本题4分)25.解:∵ 点C 是线段AB 的中点,点E 是线段AD 的中点, ……………………… 1分 ∴ 2=AB AC ,2=AD AE .∵ DB AB AD =-, ……………………………………………………… 2分 ∴ 2 2DB AC AE =-2()=-AC AE 2EC =. …………………………… 3分 ∵ 8=EC ,∴ 16 DB =. …………………………………………………………… 4分七、列方程(或方程组)解应用题(本题6分)26.解:设以九折出售的整理箱有x 个.………………………………………………… 1分 则按标价出售的整理箱有(100)x -个.依题意得 60(100)600.9100401880x x -+⨯=⨯+.…………………………… 3分去括号,得 600060545880x x -+=. 移项,合并,得 6120x -=-.系数化为1,得 20x =.……………………………………………………………5分答:以九折出售的整理箱有20个. ……………………………………………………6分八、解答题(本题共13分,第27题6分, 第28题7分)27.解:(1)∵代数式M =32(1)(2)(3)5a b x a b x a b x +++-++-是关于x 的二次多项式, ∴10a b ++=, ………………………………………………………………1分 且20a b -≠.∵关于y 的方程3()8a b y ky +=-的解是4=y , ∴3()448a b k +⨯=-. ………………………………………………………2分∵1a b +=-,∴3(1)448k ⨯-⨯=-.解得1k =-. …………………………………………………………………3分 (2)∵当2x =时,代数式M =2(2)(3)5a b x a b x -++-的值为39-,∴将2x =代入,得4(2)2(3)539a b a b -++-=-.整理,得10234a b +=-. …………………………………………………4分∴110234.a b a b +=-⎧⎨+=-⎩, 由②,得517a b +=-.③① ②由③-①,得416a =-. 系数化为1,得 4a =-.把4a =-代入①,解得3b =.∴原方程组的解为 43.a b =-⎧⎨=⎩,…………………………………………………5分∴M =2[2(4)3](433)5x x ⨯--+-+⨯-=21155x x -+-.将1x =-代入,得211(1)5(1)521-⨯-+⨯--=-. ………………………6分28.解:(1)如图1,图2所示. (2)分(阅卷说明:画图每种情况正确各1分,误差很大的不给分)(2)∵ 40AOB ∠=︒,∠AOB 的余角为∠AOC ,∠AOB 的补角为∠BOD ,∴ 9050AOC AOB ∠=︒-∠=︒,180140BOD AOB ∠=︒-∠=︒. ∵ OM 平分∠AOC ,ON 平分∠BOD ,∴1252MOA AOC ∠=∠=︒,1702BON BOD ∠=∠=︒. ………………………………………………3分①如图1.MON MOA AOB BON ∠=∠+∠+∠254070135=︒+︒+︒=︒. ………………………………………4分②如图2.MON NOB MOA AOB ∠=∠-∠-∠7025405=︒-︒-︒=︒. …………………………………………5分∴ 135MON ∠=︒或5︒.(3)45MON α∠=+︒或1352α︒-. ……………………………………………7分 (阅卷说明:每种情况正确各1分)七年级数学附加题参考答案及评分标准2014.1一、填空题(本题6分)1.2,4705. (阅卷说明:每个空各3分)二、操作题(本题7分)2.解:(1)从左面、上面观察这个立体图形得到的平面图形分别如图1,图2所示.…………………… 4分图1MBO ACDN图2N DCAOBM图1(从左面看)图2(从上面看)(2)k 的最大值为 16 . ………………………………………………………… 7分三、解决问题(本题7分)3.解:(1)此钟表一共有60条刻度线,两条相邻两条刻度线间叫1格.时针每走1格是60125=分钟. 以0点为起点,则时针走了(25)12t⨯+格,分针走了t 格. ∵时针和分针恰好分别指向两条相邻的刻度线, ∴①当分针在前时,25112tt ⨯++=. ………………………………………… 1分 解得 12t =. ………………………………………………………………… 2分 ②当时针在前时,25112tt ⨯+=+. ………………………………………… 3分 解得 10811t =.(不符合题意,舍去) ……………………………………… 4分∴12t =.(2)设这块残片所表示的时间是x 点y 分,其中x ,y 都为整数.以0点为起点,则时针走了(5)12yx +格,分针走了y 格. ∵512yx +为整数. ∴y =0,12,24,36,48. ……………………………………………………… 5分 ①当分针在前时,5112yy x =++. 可知当12y =时,2x =,即为(1)中的答案. …………………………… 6分 ②当时针在前时,5112yx y +=+. 可知当48y =时,9x =,符合题意.即这块残片所表示的时间是9点48分. ……………………………………… 7分 答:这块残片所表示的时间还可以是9点48分. (阅卷说明:其他解法相应给分)海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学 答 案 2011.1一、选择题:(本题共36分,每题3分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 DDCCAABCBCBB(阅卷说明:每个图各2分)二、填空题:(本题共27分,每空3分)13.5-; 14.5.61; 15.7913'︒(全对才得分,写成7873'︒不得分); 16. 2-; 17.余角相等,130; 18.20; 19.8; 20.A 、B 、E (注:若有错误的选项,不得分;若没有错误的选项,对一个,给1分);三、解答题:(本题共18分,第21题8分,每小题各4分,第22题5分,第23题5分) 21.(1)12524()236-⨯+-. 解法一:原式12524(24)(24)236=-⨯+-⨯--⨯121620=--+ ---------------------3分8=-. ----------------------4分 解法二:原式1243=-⨯----------------------3分 8=-. ----------------------4分 (2)2219(3)(1)2-÷+-. 解:原式=29(1)9⨯+- ----------------------3分 =21-=1. ----------------------- 4分 22.解方程:141123x x --=-. 解:方程两边同时乘以6,得3(1)2(41)6x x -=--. ----------------------2分 33826x x -=--. ----------------------3分 8338x x +=+.1111x =. ----------------------4分 1x =. ----------------------5分23.先化简,再求值:2223(2)x y x y +--(),其中21=x ,1-=y . 解:原式22622x y x y =+-+----------------------2分 243x y =+. ----------------------3分当21=x ,1-=y 时, 原式214()3(1)2=⨯+⨯- ---------------------- 4分14(3)4=⨯+-1(3)=+-2=-. ----------------------5分(直接代入求值的,若答案正确给2分,否则不给分) 四、解答题:(本题共5分)24. 解:设这个班有x 名学生. ----------------------1分320425x x +=-. ---------------------- 3分 432025x x -=+.45x =. ---------------------- 4分答:这个班有45名学生. ---------------------- 5分(注:没有列方程解应用题,但是有解题步骤,并且答案正确的,给2分) 五、解答题:(本题共8分,第25题4分,第26题4分) 25. 解:(1)4; ---------------------- 1分 (2)88; ---------------------- 2分(3)设观众想的数为a . ---------------------- 3分36753a a -+=+. 因此,魔术师只要将最终结果减去5,就能得到观众想的数了. ---------------------- 4分 (注:第(3)问没有列代数式或方程解决,但是分析较为合理的,给1分)26.解:(1)(点D 和点'D 各1分) --------------2分(2)∵ E 为线段AD 的中点, ∴ 12AE AD =.如图1,点D 在线段AB 的延长线上.图1∵ 5,3AB BD ==, ∴ 8AD AB BD =+=. ∴ 4AE =.∴ 1BE AB AE =-=. ----------------------3分 如图2,点D 在线段AB 上. ∵ 5,3AB BD ==, ∴ 2AD AB BD =-=. ∴ 1AE =.∴ 4BE AB AE =-=.综上所述,BE 的长为1或4.----------------------4分 (注:第(2)问没有过程但是两个结论都正确的,给1分) 六、解答题:(本题共6分)27.解:(1)①10;----------------------1分 ②35;----------------------2分(2) 180(90)2n --;----------------------4分 (注:写成160(90)2n -的不扣分,丢掉括号的不扣分)(3) 45αβ-=︒;----------------------5分 理由:不妨设1n C k -∠=. 根据题意可知,2n k C ∠=. 在△11n n n A A C --中,由小知识可知11n n n A A C --∠=902k α=︒-. ∴ 11n n n A A C +-∠=180α︒-=902k ︒+. 在△1n n n A A C +中,由小知识可知1n n n A A C +∠= 904k ︒-. ∵ N A n 平分11n n n A A C +-∠, ∴ 1∠=1211n n n A A C +-∠=454k ︒+. ∵ 1n n n A A C +∠=1n n C A N ∠+∠, 图2∴ 904k ︒-=454kβ︒++. ∴ 902k︒-=45β︒+.∴ α=45β︒+.∴ 45αβ-=︒.----------------------6分(对于本卷中学生的不同解法,请老师根据评分标准酌情给分)海淀区七年级第一学期期末练习数 学参考答案及评分标准2012.1说明: 合理答案均可酌情给分,但不得超过原题分数 一、选择题(本题共30分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案ACCDABBDAB二、填空题(本题共18分,每小题3分)11.-2 12.2450'︒ 13.11 14.-115.-116.-47; 2)1()1(21++-+n n (注:此题第一个空1分,第二个空2分) 三、解答题(本题共24分,第19题8分,其他题每题4分)17.解:原式48-31÷⨯= ………………………………2分2-3= ………………………………3分 1=. (4)分18.解:原式)75()32(-++=x x ………………………………3分25-=x . (4)分19.(1)解:原方程可化为9352+=-x x .………………………………2分 123=-x .………………………………3分4-=x .………………………………4分(2)解:两边同时乘以12,得)13(312)75(2-=+-x x . ………………………………1分 39121410-=+-x x .………………………………2分 12143910-+-=-x x .………………………………3分 1-=x .………………………………4分20.解:原式y x y x x 2242222-++-= ………………………………1分)24()22(222y y x x x -++-=y x 22+=. ………………………………2分当1x =-,12y =时,原式212)1(2⨯+-= ………………………………3分 11+=2=. ………………………………4分21.解:(1)否; ………………………………1分(2)连结AB ,交l 于点Q ,………………………………2分则水泵站应该建在点Q 处;………………………………3分 依据为:两点之间,线段最短.………………………………4分注:第(2)小题可以不写作法,在图中画出点Q 给1分,写出结论给1分,写出作图依据给1分.四、解答题(本题共 28分,第22题5分,第23题5分,第24题6分,第25题6分,第26题6分) A lBPQ22.解:∵∠BOC =2∠AOC ,∠AOC =40°,∴∠BOC =2×40°=80°, ……………………………1分 ∴∠AOB =∠BOC +∠AOC = 80°+ 40°=120°,……………………………2分 ∵OD 平分∠AOB , ∴∠AOD =601202121=⨯=∠AOB , ……………………………4分 ∴∠COD =∠AOD -∠AOC = 60°- 40°=20°. ……………………………5分23.解:设生产圆形铁片的工人为x 人,则生产长方形铁片的工人为42-x 人,………………………………1分可列方程)42(802120x x -⨯=. (2)分解得: x =24. ………………………………3分 则42-x =18. ………………………………4分 答:生产圆形铁片的有24人,生产长方形铁片的有18人. ………………5分 24.解:(1)1≠, 1=;…………………………2分(2)由(1)可知方程为03)1(=--x m ,则13-=m x ………………3分 ∵此方程的根为整数, ∴13-m 为整数. 又m 为整数,则3,1,1,31--=-m ∴42,0,2,-=m ..................6分 注:最后一步写对一个的给1分,对两个或三个的给2分,全对的给3分. 25.解:(1)5; (1)分(2)21; ………………………………2分 证明:∵M 是线段AC 的中点,∴,21AC CM =∵N 是线段BC 的中点,∴,21BC CN = ………………………………3分以下分三种情况讨论(图略),当C 在线段AB 上时,AB BC AC BC AC CN CM MN 21)(212121=+=+=+=; ………………………………4分当C 在线段AB 的延长线上时,AB BC AC BC AC CN CM MN 21)(212121=-=-=-=; ………………………………5分当C 在线段BA 的延长线上时,AB AC BC AC BC CM CN MN 21)(212121=-=-=-=; ………………………………6分综上:AB MN 21=. 26. 解:(1)4;………………………………1分 (2)2010;………………………………3分(3)对于任意两个正整数1x ,2x ,21x x -一定不超过1x 和2x 中较大的一个,对于任意三个正整数1x ,2x ,3x ,321-x x x -一定不超过1x ,2x 和3x 中最大的一个,以此类推,设小明输入的n 个数的顺序为,,,n x x x 21则,||||||||321n x x x x m ----= m 一定不超过,,,n x x x 21中的最大数,所以n m ≤≤0,易知m 与12n +++的奇偶性相同;1,2,3可以通过这种方式得到0:||3-2|-1|=0;任意四个连续的正整数可以通过这种方式得到0:0|2)-(|3)(|)1(|||=+++-a a -a a (*);下面根据前面分析的奇偶性进行构造,其中k 为非负整数,连续四个正整数结合指的是按(*)式结构计算.当k n 4=时,12n +++为偶数,则m 为偶数,连续四个正整数结合可得到0,则最小值为0,前三个结合得到0,接下来连续四个结合得到0,仅剩下n ,则最大值为n ; 当14+=k n 时,12n +++为奇数,则m 为奇数,除1外,连续四个正整数结合得到0,则最小值为1,从1开始连续四个正整数结合得到0,仅剩下n ,则最大值为n ; 当24+=k n 时,12n +++为奇数,则m 为奇数,从1开始连续四个正整数结合得到0,仅剩下n 和n -1,则最小值为1,从2开始连续四个正整数结合得到0,仅剩下1和n ,最大值为n -1;当34+=k n 时,12n +++为偶数,则m 为偶数,前三个结合得到0,接下来连续四个正整数结合得到0,则最小值为0,从3开始连续四个正整数结合得到0,仅剩下1,2和n ,则最大值为n -1.………………………………6分注:最后一问写对一种的给1分,对两种或三种的给2分,全对的给3分.海淀区2012-2013七年级第一学期期末练习数学参考答案及评分标准说明: 解答与参考答案解法不同, 合理答案均可酌情相应给分.一、选择题(本题共30分,每小题3分)1. B2.C3.D4.A5. D6. B7. C8. C9. B 10.A 二、填空题(本题共18分,每小题3分)11.12(1分),2(2分) 12. 1 13. 3 14. 2或-4 15. ∠B 'EM , ∠MEB , ∠ANE , ∠A 'NE四个中任写三个, 对一个给1分 16. (1)-27(2分); (2)213n na+-()(1分)三、解答题(本题共52分;第17题8 分, 第18题7 分;第19 题3分,第20题~第22题各4分;第23 题,第24题各5分;第25题,第26题各6分)17.解:(1)314322-⨯-+--()()()= 12-12-8 ………………………………………………………………3分 =72. ………………………………………………………………4分(2)25×0.5-(-50)÷4+25×(-3)=25×125224⨯+-25×3 ……………………………………………………2分=25×11(3)22+- …………………………………………………………………3分=-50. ………………………………………………………………………………4分18.解:(1)解:移项,得 4x -2x =2+3. …………………………………………1分合并同类项,得 2x =5. …………………………………………………2分系数化为1,得5.2x = ……………………………………………………3分(2)去分母,得4(1)924x x +-=. …………………………………………………………………1分去括号,得44924x x +-=. …………………………………………………………………2分 移项、合并同类项,得520x -=. …………………………………………………………………3分 系数化为1,得4x =-. (4)分19. 画图如右图: 理由:两点之间,线段最短.说明:保留画图痕迹、标出点C 、说明理由各1分.20.依次填: 垂直定义,∠2,∠4,内错角相等,两直线平行.说明: 每空1分,累计4分. 21.解:2213[5()2]22x x x y x y -+-++=2213[52]22x x x y x y -+-++ ……………………………………………1分 =22113222x x y x y -+-+ ……………………………………………2分 =21132x x y -+ ………………………………………………………3分 当x =-2,y =13时, 原式=2111(2)(2)323--⨯-+⨯=16. ………………………4分22.解:∵ N 是线段MB 的中点, ∴ MB =2NB . ……………………1分∵ NB =6,∴ MB = 12. ……………………………………………2分 ∵ M 是线段AB 的中点,∴ AB =2MB =24. ……………………………………………4分 23.解:设做拉花的同学有x 人, …………………………………………1分依题意 3x +1=4x -2. …………………………………………3分解得 x =3. …………………………………………………………4分答: 做拉花的同学有3人. …………………………………………………………5分 24. 解:(1)∵AE //OF , C ABlA M N BA∴ ∠FOB = ∠A =30︒. …………………………………1分 ∵ OF 平分∠BOC , ∴ ∠COF =∠FOB =30°.∴ ∠DOF =180︒-∠COF =150°. ………………………2分 (2)∵ OF ⊥ OG ,∴ ∠FOG =90°.∴ ∠DOG =∠DOF -∠FOG =60°. …………………………………………3分 ∵ ∠AOD =∠COB =∠COF +∠FOB =60°. …………………………………………4分 ∴ ∠AOD =∠DOG .∴ OD 平分∠AOG . ……………………………………………………………5分 25. 解:(1)① 5; ………………………………………………………………1分② 3. …………………………………………………………………3分(2)设同学1心里先想好的数为x , 则依题意同学1的“传数”是21x +, 同学2的“传数”是21122x x +-=,同学3的“传数”是21x +, 同学4的“传数”是x ,……,同学n (n 为大于1的偶数)的“传数”是x . 于是(21)20.2nx x n ++= …………………………………………4分 (31)40.x n n +=∵ n 为大于1的偶数,∴ n ≠0. …………………………………………5分∴ 3140.x +=解得 x =13. …………………………………………6分因此同学1心里先想好的数是13.26. 解:(1)90. ………………………………………………………………1分 (2)∠AOM -∠NOC =30︒.设∠AOC =α, 由∠AOC :∠BOC =1:2可得 ∠BOC =2α.∵∠AOC +∠BOC =180︒,∴ α+2α=180︒.解得 α=60︒. ……………………………2分即 ∠AOC=60︒.∴ ∠AON +∠NOC=60︒. ∵ ∠MON=90︒,∴ ∠AOM +∠AON=90︒. N B O A- 得 ∠AOM -∠NOC =30︒. ……………………………………………4分 说明:若结论正确,但无过程,给1分.(3)(ⅰ)当直角边ON 在∠AOC 外部时,由OD 平分∠AOC ,可得∠BON =30︒ .因此三角板绕点O 逆时针旋转60︒.此时三角板的运动时间为:t =60︒÷15︒=4(秒). …………………………5分(ⅱ)当直角边ON 在∠AOC 内部时, 由ON 平分∠AOC ,可得∠CON =30︒. 因此三角板绕点O 逆时针旋转240︒.此时三角板的运动时间为:t =240︒÷15︒=16(秒). …………………………6分海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学 答 案一、选择题(本题共36分,每题3分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BBDDACCCCBAD二、填空题(本题共24分,每题3分)13.3; 14.两,两点确定一条直线; 15.2-; 16. 8; 17.127,31(第一空1分,第二空2分); 18.5; 19.1; 20.,50a +(36、84、50a +各1分).三、解答题(本题共20分,第21题10分,每小题各5分,第22题5分,第23题5分) 21.(1)解法一:原式125181818236=-⨯-⨯+⨯ 91215=--+ -------------------- 3分6=-. --------------------- 5分解法二:原式1183=-⨯----------------------4分 6=-. ----------------------5分C NMBOA CN B O A D(2)解:原式=116(8)2÷-+=122-+--------------------- 4分 =32-. ---------------------- 5分 22.解:方程两边同时乘以4,得2(1)8x x +-=. ----------------------2分228x x +-=. ----------------------3分6x =. ---------------------5分23.解:原式22221553a b ab ab a b =-------------------------2分22126a b ab =-. ----------------------3分 当12a =,3b =-时, 原式221112()(-3)6(-3)22=⨯⨯-⨯⨯ ---------------------- 4分 927=---36=. ----------------------5分 (注:直接代入求值的,若答案正确给2分,否则不给分)四、解答题(本题5分)24.解:∵OD 平分AOB ∠,15AOD ∠=︒,∴230AOB AOD ∠=∠=︒. …………………2分∵OE 平分AOC ∠,150AOC ∠=︒,∴1752AOE AOC ∠=∠=︒. …………………4分 ∴45BOE AOE AOB ∠=∠-∠=︒. ……………… 5分 (注:无推理过程,若答案正确给2分)五、解答题(本题共9分,第25题5分,第26题4分)25. 解:设小明买了x 本便笺. ----------------------1分58(40)300(6813)x x +-=--. ---------------------- 3分583006813320x x -=-+-.25x =. ---------------------- 4分答:小明买了25本便笺. ------------ 5分(注:没有利用列方程求解的,若答案正确给2分,否则不给分)26.解:(1)①点Q 的位置如图所示. ………………… 1分(注:只标出一个Q 点的位置不给分)②2QC =或6 ; ………………… 3分(2)14. ……………………4分六、解答题:(本题6分)27.解:(1)①C ; ----------------------2分②2-或32- ; ----------------------4分 (2)2650- . ----------------------6分(注:对于本卷中学生的不同解法,请老师根据评分标准酌情给分)27.(2)略解:依题意,可得1b a =+,12c b n a n =++=++, 224d c n a n =++=++. ∵a 、b 、c 、d 四个数的积为正数,且这四个数的和与其中两个数的和相等, ∴0a c +=或0b c +=.∴22n a +=-或32n a +=-. ∵a 为整数, ∴当n 为奇数时,32n a +=-;当n 为偶数时,22n a +=-. ∴12a =-,22a =-,33a =-,43a =-,…,9951a =-,10051a =-. ∴123100...2650a a a a ++++=-.。
北京市西城区2013— 2014学年度第一学期期末试卷七年级数学 2014.1试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.8-的相反数是( ). A. 18 B. 8- C. 8 D. 18-2.根据北京市旅游委发布的统计数字显示,2013年中秋小长假,园博园成为旅游新热点,三天共接待游客约184 000人,接待量位居全市各售票景区首位,将184 000用科学记数法表示应为( ).A .41.8410⨯B .51.8410⨯C .318.410⨯D .418.410⨯3.按语句“画出线段PQ 的延长线”画图正确的是( ).A B C D4.下列关于单项式523x y -的说法中,正确的是( ).A. 它的系数是3B. 它的次数是5C. 它的次数是2D. 它的次数是75.右图所示的四条射线中,表示南偏西60°的是( ).A .射线OAB .射线OBC .射线OCD .射线OD6.下列说法中,正确的是( ).A .2(3)-是负数B .最小的有理数是零C .若5x =,则5x =或5-D .任何有理数的绝对值都大于零7.已知a ,b 是有理数,若表示它们的点在数轴上的位置如图所示,则a b -的值为( ).A .正数B .负数C .零D .非负数8.几个人共同种一批树苗,如果每人种5棵,则剩下3棵树苗未种;如果每人种6棵,则缺4棵树苗.若设参与种树的人数为x 人,则下面所列方程中正确的是( ).A .5364x x +=-B .5364x x +=+C .5364x x -=-D .5364x x -=+9.如右图,S 是圆锥的顶点,AB 是圆锥底面的直径,M 是SA 的中点.在圆锥的侧面上过点B ,M 嵌有一圈路径最短的金属丝,现将圆锥侧面沿SA 剪开,所得圆锥的侧面展开图可能是( ).10.将6张小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD 内,未被覆盖的部分恰好分割为两个长方形,面积分别为S 1和S 2.已知小长方形纸片的长为a ,宽为b ,且a ﹥b .当AB 长度不变而BC 变长时,将6张小长方形纸片还按照同样的方式放在新的长方形ABCD 内,S 1与S 2的差总保持不变,则a ,b 满足的关系是( ).A .12b a =B .13b a =C .27b a =D .14b a =二、填空题(本题共20分,11~16题每小题2分,17题、18题每小题4分)13.一艘船在静水中的速度为km/h ,水流速度为km/h ,则这艘船顺流航行5h 的行程为 km .14.如图,点C ,D 在线段AB 上,且AC =CD =DB ,点E 是线段DB 的中点.若CE =9,则AB 的长为 .15.若23m mn +=-,2318-=n mn ,则224m mn n +-的值为 .16.如图,P 是平行四边形纸片ABCD 的BC 边上一点,以过点P 的直线为折痕折叠纸片,使点C ,D 落在纸片所在平面上'C ,'D 处,折痕与AD 边交于点M ;再以过点P 的直线为折痕折叠纸片,使点B 恰好落在'C P 边上'B 处,折痕与AB 边交于点N .若∠MPC =75°,则'∠NPB =17.在如图所示的3×3方阵图中,处于同一横行、同一竖列、同一斜对角线上的3个数之和都相等.现在方阵图中已填写了一些数和代数式(其中每个代数式都表示一个数),则x 的值为 ,y 的值为 ,空白处...应填写的3个数的和为 .18.用完全一样的火柴棍按如图所示的方法拼成“金鱼”形状的图形,则按照这样的方法拼成第4个图形需要火柴棍 根,拼成第n 个图形(n 为正整数)需要火柴棍根(用含n 的代数式表示).三、计算题(本题共12分,每小题4分)19.(9)(8)3(2)-⨯-÷÷-.解:20.323136()(2)3412⨯----. 解:21.22173251[()8]1543-⨯-+⨯--. 解:四、先化简,再求值(本题5分)22.2222414(2)2(3)33--++-x xy y x xy y ,其中5x =,12y =. 解:五、解下列方程(组)(本题共10分,每小题5分)23.58731 64x x--+=-.解:24.4528.+=⎧⎨-=⎩,x yx y解:六、解答题(本题4分)25. 问题:如图,点C 是线段AB 的中点,点D 在线段CB 上,点E 是线段AD 的中点.若EC =8,求线段DB 的长.请补全以下解答过程.解:∵ 点C 是线段AB 的中点, ,∴ 2=AB AC ,2=AD AE .∵ =-DB AB ,∴ 2=-DB AE 2()=-AC AE 2EC =.∵ 8=EC ,∴ =DB .七、列方程(组)解应用题(本题6分)26. 某商店买入100个整理箱,进价为每个40元,卖出时每个整理箱的标价为60元.当按标价卖出一部分整理箱后,剩余的部分以标价的九折出售.所有整理箱卖完时,该商店获得的利润一共是1880元,求以九折出售的整理箱有多少个.解:八、解答题(本题共13分,第27题6分,第28题7分)27.已知代数式M =32(1)(2)(3)5a b x a b x a b x +++-++-是关于x 的二次多项式.(1)若关于y 的方程3()8a b y ky +=-的解是4=y ,求k 的值;(2)若当2x =时,代数式M 的值为39-,求当1x =-时,代数式M 的值.解:28.已知α∠=AOB (3045α︒<<︒),∠AOB 的余角为∠AOC ,∠AOB 的补角为∠BOD ,OM平分∠AOC , ON 平分∠BOD .(1)如图,当40α=︒,且射线OM 在∠AOB 的外部时,用直尺、量角器画出射线OD ,ON的准确位置;(2)求(1)中∠MON 的度数,要求写出计算过程;(3)当射线OM 在∠AOB 的内部..时,用含α的代数式表示∠MON 的度数.(直接写出结果即可)解:北京市西城区2013— 2014学年度第一学期期末试卷七年级数学附加题 2014.1试卷满分:20分一、填空题(本题6分)1.对于正整数a ,我们规定:若a 为奇数,则()31=+f a a ;若a 为偶数,则()2=a f a .例如(15)315146=⨯+=f ,10(10)52f ==.若18=a ,21()=a f a ,32()=a f a ,43()=a f a ,…,依此规律进行下去,得到一列数1a ,2a ,3a ,4a ,…,n a ,…(n 为正整数),则3=a ,1232014++++= a a a a .二、操作题(本题7分)2.如图1,是一个由53个大小相同的小正方体堆成的立体图形,从正面观察这个立体图形得到的平面图形如图2所示.(1)请在图3、图4中依次画出从左面、上面观察这个立体图形得到的平面图形;(2)保持这个立体图形中最底层的小正方体不动,从其余部分中取走k 个小正方体,得到一个新的立体图形.如果依次从正面、左面、上面观察新的立体图形,所得到的平面图形分别与图2、图3、图4是一样的,那么k 的最大值为 .三、解决问题(本题7分)3.小明的妈妈在打扫房间时,不小心把一块如图所示的钟表(钟表盘上均匀分布着60条刻度线)摔坏了.小明找到带有指针的一块残片,其上的时针和分针恰好分别指向两条相邻的刻度线.(1)若这块残片所表示的时间是2点t分,求t的值;(2)除了(1)中的答案,你知道这块残片所表示的时间还可以是0点~12点中的几点几分吗?写出你的求解过程.解:北京市西城区2013— 2014学年度第一学期期末试卷七年级数学参考答案及评分标准2014.1一、选择题(本题共30分,每小题3分)三、计算题(本题共12分,每小题4分) 19.(9)(8)3(2)-⨯-÷÷-.解:原式119832=-⨯⨯⨯………………………………………………………………3分 12=-. ………………………………………………………………………4分 20.323136()(2)3412⨯----. 解:原式23136()(8)3412=⨯---- ……………………………………………………1分242738=--+68=-+ ………………………………………………………………………3分 2=. …………………………………………………………………………4分21.22173251[()8]1543-⨯-+⨯--. 解:原式23425(8)1549=-⨯+⨯- …………………………………………………… 3分 101633=-+-9=-. …………………………………………………………………………4分四、先化简,再求值(本题5分)22.解: 2222414(2)2(3)33x xy y x xy y --++- 22224242633x xy y x xy y =---+- …………………………………………… 2分 (阅卷说明:正确去掉每个括号各1分)22252x xy y =+-. …………………………………………………………………3分 当5x =,12y =时, 原式221125552()22=⨯+⨯⨯-⨯ ………………………………………………… 4分251506222=+-=. …………………………………………………………5分五、解下列方程(组)(本题共10分,每小题5分) 23.5873164x x--+=-. 解:去分母,得 2(58)3(73)12x x -+-=-. ……………………………………… 2分去括号,得 101621912x x -+-=-.………………………………………… 3分 移项,得 109121621x x -=-+-. ………………………………………… 4分 合并,得 17x =-. ……………………………………………………………… 5分24.4528.+=⎧⎨-=⎩,x y x y解法一:由①得 54y x =-.③ ………………………………………………… 1分把③代入②,得 2(54)8x x --=.………………………………………2分去括号,得 1088x x -+=. 移项,合并,得 918x =.系数化为1,得 2x =. …………………………………………………… 3分 把2x =代入③,得 5423y =-⨯=-. ……………………………………4分所以,原方程组的解为 23.x y =⎧⎨=-⎩,…………………………………………5分解法二:①×2得 8210x y +=.③ ………………………………………………… 1分③+②得 8108x x +=+.……………………………………………………2分合并,得 918x =.系数化为1,得 2x =. …………………………………………………… 3分 把2x =代入①,得 8+5y =.移项,得 3.y =- ……………………………………………………………4分所以,原方程组的解为 23.x y =⎧⎨=-⎩,…………………………………………5分①②六、解答题(本题4分)25.解:∵ 点C 是线段AB 的中点,点E 是线段AD 的中点, ……………………… 1分 ∴ 2=AB AC ,2=AD AE .∵ DB AB AD =-, ……………………………………………………… 2分 ∴ 2 2DB AC AE =-2()=-AC AE 2EC =. …………………………… 3分 ∵ 8=EC ,∴ 16 DB =. …………………………………………………………… 4分七、列方程(或方程组)解应用题(本题6分)26.解:设以九折出售的整理箱有x 个.………………………………………………… 1分 则按标价出售的整理箱有(100)x -个.依题意得 60(100)600.9100401880x x -+⨯=⨯+.…………………………… 3分去括号,得 600060545880x x -+=. 移项,合并,得 6120x -=-.系数化为1,得 20x =.……………………………………………………………5分答:以九折出售的整理箱有20个.……………………………………………………6分八、解答题(本题共13分,第27题6分, 第28题7分)27.解:(1)∵代数式M =32(1)(2)(3)5a b x a b x a b x +++-++-是关于x 的二次多项式, ∴10a b ++=, ………………………………………………………………1分 且20a b -≠.∵关于y 的方程3()8a b y ky +=-的解是4=y , ∴3()448a b k +⨯=-. ………………………………………………………2分∵1a b +=-,∴3(1)448k ⨯-⨯=-.解得1k =-. …………………………………………………………………3分 (2)∵当2x =时,代数式M =2(2)(3)5a b x a b x -++-的值为39-,∴将2x =代入,得4(2)2(3)539a b a b -++-=-.整理,得10234a b +=-. …………………………………………………4分∴110234.a b a b +=-⎧⎨+=-⎩, 由②,得517a b +=-.③由③-①,得416a =-. 系数化为1,得 4a =-.把4a =-代入①,解得3b =.∴原方程组的解为 43.a b =-⎧⎨=⎩,…………………………………………………5分① ②∴M =2[2(4)3](433)5x x ⨯--+-+⨯-=21155x x -+-.将1x =-代入,得211(1)5(1)521-⨯-+⨯--=-. ………………………6分28.解:(1)如图1,图2所示. (2)分(阅卷说明:画图每种情况正确各1分,误差很大的不给分)(2)∵ 40AOB ∠=︒,∠AOB 的余角为∠AOC ,∠AOB 的补角为∠BOD ,∴ 9050AOC AOB ∠=︒-∠=︒,180140BOD AOB ∠=︒-∠=︒. ∵ OM 平分∠AOC ,ON 平分∠BOD ,∴ 1252MOA AOC ∠=∠=︒,1702BON BOD ∠=∠=︒. ………………………………………………3分①如图1.MON MOA AOB BON ∠=∠+∠+∠254070135=︒+︒+︒=︒. ………………………………………4分②如图2.MON NOB MOA AOB ∠=∠-∠-∠7025405=︒-︒-︒=︒. …………………………………………5分∴ 135MON ∠=︒或5︒.(3)45MON α∠=+︒或1352α︒-. ……………………………………………7分(阅卷说明:每种情况正确各1分)七年级数学附加题参考答案及评分标准 2014.1一、填空题(本题6分)1.2,4705. (阅卷说明:每个空各3分)二、操作题(本题7分)2.解:(1)从左面、上面观察这个立体图形得到的平面图形分别如图1,图2所示.…………………… 4分(2)k 的最大值为 16 . ………………………………………………………… 7分三、解决问题(本题7分)3.解:(1)此钟表一共有60条刻度线,两条相邻两条刻度线间叫1格.时针每走1格是60125=分钟. 以0点为起点,则时针走了(25)12t⨯+格,分针走了t 格. ∵时针和分针恰好分别指向两条相邻的刻度线, ∴①当分针在前时,25112tt ⨯++=. ………………………………………… 1分 解得 12t =. ………………………………………………………………… 2分 ②当时针在前时,25112tt ⨯+=+. ………………………………………… 3分 解得 10811t =.(不符合题意,舍去) ……………………………………… 4分∴12t =.(2)设这块残片所表示的时间是x 点y 分,其中x ,y 都为整数.以0点为起点,则时针走了(5)12yx +格,分针走了y 格. ∵512yx +为整数. ∴y =0,12,24,36,48. ……………………………………………………… 5分 ①当分针在前时,5112yy x =++. 可知当12y =时,2x =,即为(1)中的答案. …………………………… 6分(阅卷说明:每个图各2分)②当时针在前时,5112yx y +=+. 可知当48y =时,9x =,符合题意.即这块残片所表示的时间是9点48分. ……………………………………… 7分 答:这块残片所表示的时间还可以是9点48分. (阅卷说明:其他解法相应给分)。