2019-2020学年北京市西城区七年级上学期期中数学试卷
- 格式:docx
- 大小:77.26 KB
- 文档页数:10
北京⼗⼆中2019-2020学年度第⼀学期期中考试初⼀数学试卷-含答案北京⼗⼆中2019-2020学年第⼀学期期中考试试题初⼀数学2019.11⾛班班级: 姓名: 学号: 考场号:座位号:满分:100分;时间:120分钟⼀、选择题(每题2分,共30.0分)1.2018年9⽉14⽇,北京新机场名称确定为“北京⼤兴国际机场”,2019年建成的新机场⼀期将满⾜年旅客吞吐量45000000⼈次的需求,将45000000科学记数法表⽰应为()A. 0.45×108B. 45×106C. 4.5×107D. 4.5×1062.绝对值为2的数是()A. 2B. ?2C. ±2D. ?123.下列数或式:(-2)3,(-13)6,-52,0,m2+1,在数轴上所对应的点⼀定在原点右边的个数是()A. 1B. 2C. 3D. 44.设x为有理数,若|x|>x,则()A. x为正数B. x为负数C. x为⾮正数D. x为⾮负数5.以下代数式中不是单项式的是()πC. 2x?3y5D. 06.下列计算正确的是()A. b?5b=?4B. 2m+n=2mnC. 2a4+4a2=6a6D. ?2a2b+5a2b=3a2b7.计算6a2-5a+3与5a2+2a-1的差,结果正确的是()A. a2?3a+4B. a2?3a+2C. a2?7a+2D. a2?7a+48.在多项式-3x3-5x2y2+xy中,次数最⾼的项的系数为()A. 3B. 5C. ?5D. 19.下列各式中是⼀元⼀次⽅程的是()A. x2+1=5B. 4x =3 C. x60x70=1 D. x?510.若x=a是关于x的⽅程2x+3a=15的解,则a的值为()A. 5B. 3C. 2D. 1311.若2x2m y3与-5xy2n是同类项,则|m-n|的值是()C. 7D. ?112.下列解⽅程的步骤正确的是()A. 由2x+4=3x+1,得2x+3x=1+4B. 由0.5x?0.7x=5?1.3x,得5x?7=5?13xC. 由3(x?2)=2(x+3),得3x?6=2x+6D. 由x?12?x+26=2,得2x?2?x+2=1213.若x=2时x4+mx2-n的值为6,则当x=-2时x4+mx2-n的值为()A. ?6B. 0C. 6D. 2614.数轴上点A,M,B分别表⽰数a,a+b,b,那么下列运算结果⼀定是正数的是()A. a+bB. a?bC. abD. |a|?b15.定义⼀种对正整数n的“C运算”:①当n为奇数时,结果为3n+1;②当n为偶数时,结果为n2k (其中k是使n2k为奇数的正整数),并且运算重复进⾏.例如,n=66时,其“C运算”如下若n=26,则第2019次“C运算”的结果是()A. 40B. 5⼆、填空题(16-23每题2分,24题4分,共20.0分)16.⽐较下列两组有理数的⼤⼩,⽤>、<或=填空.34______ +23,-3.14 ______ -π17.若|m+2|与(n-3)2互为相反数,则mn= ..18.如图是⼀位同学数学笔记可见的⼀部分.若要补充⽂中这个不完整的代数式,你补充的内容是:______.19.下⾯的框图表⽰了解这个⽅程的流程在上述五个步骤中依据等式的性质2的步骤有______.(只填序号)20.若代数式(3x2-2x)-(bx+1)中不存在含x的⼀次项,则b的值为______.21.已知a与b互为相反数,c、d互为倒数,x的绝对值是2,y不能作除数,+y2010的值等于_________。
北京市西城区七年级(上)期中数学试卷一.选择题1.如果零上5℃记作+5℃,那么零下5℃记作()A.﹣5 B.﹣10 C.﹣10℃D.﹣5℃2.据统计,2014年国庆黄金周期间,北京全市公园风景区共接待游客约13550000人次,将13550000用科学记数法表示应为()A.1355×104B.1.355×106C.0.1355×108D.1.355×1073.9的倒数是()A.9 B.C.﹣9 D.4.下列说法正确的是()A.整数包括正整数和负整数B.分数包括正分数和负分数C.正有理数和负有理数组成有理数集合D.0既是正整数也是负整数5.在﹣22,(﹣2)2,﹣(﹣2),﹣|0|中,负数的个数是()A.1个B.2个C.3个D.4个6.下面计算正确的是()A.3x2﹣x2=3 B.3a2+2a3=5a5C.3+x=3x D.﹣0.25ab+ba=07.下列去括号正确的是()A.﹣(2x+5)=﹣2x+5 B.C.D.8.已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是()A.20 B.﹣20 C.28 D.﹣289.若两个非零的有理数a、b,满足:|a|=a,|b|=﹣b,a+b<0,则在数轴上表示数a、b的点正确的是()A.B.C. D.10.如果y<0<x,则化简的结果为()A.0 B.﹣2 C.2 D.1二.填空题11.﹣3的倒数是,﹣2的相反数为.12.数轴上到原点的距离等于3个单位长度的点所表示的数为.13.某地某天早晨的气温是18℃,中午上升了4℃,夜间又下降了10℃,那么这天夜间的气温是℃.14.根据要求,取近似数:1.4149≈(精确到百分位);将用科学记数法的数还原:3.008×105= .15.单项式﹣的系数是,次数是.16.多项式5x3y﹣2x2y3﹣3xy+5的次数是.最高次项系数是,常数项是.17.某商品进价为a元,商店将价格提高30%作零售价销售,这时一件商品的售价为.18.任写一个与﹣a2b是同类项的单项式.19.已知(a﹣2)2+|b+3|=0,则a﹣b= .20.定义计算“☆”,对于两个有理数a,b,有a☆b=a+b﹣ab,例如:﹣3☆2=5.则(﹣2☆3)☆0=.三.解答题(21题6分,22题至29题每题5分)21.直接写出计算结果(1)﹣8﹣8= (2)﹣24×(﹣1)=(3)﹣3÷3×= (4)5+5÷(﹣5)=(5)3﹣(﹣1)2= (6)x2y﹣x2y= .22.+4+2.75+(﹣5)23.计算:(﹣28)÷(﹣6+4)+(﹣1)×5.24.﹣12﹣(1﹣0.5)××[2﹣(﹣3)2].25.(+﹣)÷(﹣)26.﹣(3a2b﹣4ab2).27.﹣3(a﹣5)28.先化简,再求值:﹣(x2+3x)+2(4x+x2),其中x=﹣2.29.已知x2﹣3x﹣1=0,求代数式2x﹣2[x﹣(2x2﹣3x+2)]﹣2x2的值.四.解答题(第30题4分,第31题5分)30.已知数a、b、c在数轴上的位置如图所示,化简|a|+|b|+|a+b|﹣|b﹣c|.31.按照规律填上所缺的单项式并回答问题:(1)a、﹣2a2、3a3、﹣4a4,,;(2)试写出第2007个单项式;第2008个单项式;(3)试写出第n个单项式.五.附加题(10分)32.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,(1)a2是a1的差倒数,则a2= ;(2)a3是a2的差倒数,则a3= ;(3)a4是a3的差倒数,则a4= ,…依此类推,则a2013= .33.已知:a,b互为相反数,c,d互为倒数,x=3(a﹣1)﹣(a﹣2b),y=c2d+d2﹣(+c﹣2),求:﹣的值.参考答案与试题解析一.选择题1.如果零上5℃记作+5℃,那么零下5℃记作()A.﹣5 B.﹣10 C.﹣10℃D.﹣5℃【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:∵“正”和“负”相对,零上5℃记作+5℃,∴零下5℃记作﹣5℃.故选D.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.据统计,2014年国庆黄金周期间,北京全市公园风景区共接待游客约13550000人次,将13550000用科学记数法表示应为()A.1355×104B.1.355×106C.0.1355×108D.1.355×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:13550000用科学记数法表示应为:1.355×107,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.9的倒数是()A.9 B.C.﹣9 D.【考点】倒数.【分析】直接运用倒数的求法解答.【解答】解:∵9×=1,∴9的倒数是,故选:B.【点评】此题考查倒数的意义和求法:乘积是1的两个数互为倒数,是基础题目.4.下列说法正确的是()A.整数包括正整数和负整数B.分数包括正分数和负分数C.正有理数和负有理数组成有理数集合D.0既是正整数也是负整数【考点】有理数.【分析】根据有理数的分类,结合相关概念进行判断即可,整数包括正整数、负整数和0;分数包括正分数和负分数;有理数包括正有理数、负有理数和0;0不是正数也不是负数.【解答】解:整数包括正整数、负整数和0,所以A错误;分数包括正分数和负分数,所以B正确;有理数包括正有理数、负有理数和0,所以C错误;0不是正数也不是负数,所以D错误.故选B.【点评】此题主要考查有理数的概念,理解有理数的分类中各自的含义是解题的关键.5.在﹣22,(﹣2)2,﹣(﹣2),﹣|0|中,负数的个数是()A.1个B.2个C.3个D.4个【考点】正数和负数.【分析】根据小于零的数是负数,可得答案.【解答】解:﹣22是负数,故选:A.【点评】本题考查了正数和负数,注意﹣2的平方与2的平方的相反数之间的区别,负数的相反数是正数,负数的绝对值是它的相反数.6.下面计算正确的是()A.3x2﹣x2=3 B.3a2+2a3=5a5C.3+x=3x D.﹣0.25ab+ba=0【考点】整式的加减.【分析】先判断是否为同类项,若是同类项则按合并同类项的法则合并.【解答】解:A、3x2﹣x2=2x2≠3,故A错误;B、3a2与2a3不可相加,故B错误;C、3与x不可相加,故C错误;D、﹣0.25ab+ba=0,故D正确.故选:D.【点评】此题考查了合并同类项法则:系数相加减,字母与字母的指数不变.7.下列去括号正确的是()A.﹣(2x+5)=﹣2x+5 B.C.D.【考点】去括号与添括号.【专题】常规题型.【分析】去括号时,若括号前面是负号则括号里面的各项需变号,若括号前面是正号,则可以直接去括号.【解答】解:A、﹣(2x+5)=﹣2x﹣5,故本选项错误;B、﹣(4x﹣2)=﹣2x+1,故本选项错误;C、(2m﹣3n)=m﹣n,故本选项错误;D、﹣(m﹣2x)=﹣m+2x,故本选项正确.故选D.【点评】本题考查去括号的知识,难度不大,注意掌握去括号的法则是关键.8.已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是()A.20 B.﹣20 C.28 D.﹣28【考点】同类项.【专题】计算题.【分析】根据同类项相同字母的指数相同可得出m的值,继而可得出答案.【解答】解:由题意得:3m=3,解得m=1,∴4m﹣24=﹣20.故选B.【点评】本题考查同类项的知识,比较简单,注意掌握同类项的定义.9.若两个非零的有理数a、b,满足:|a|=a,|b|=﹣b,a+b<0,则在数轴上表示数a、b的点正确的是()A.B.C. D.【考点】数轴;绝对值.【分析】根据|a|=a得出a是正数,根据|b|=﹣b得出b是负数,根据a+b<0得出b的绝对值比a 大,在数轴上表示出来即可.【解答】解:∵两a、b是两个非零的有理数满足:|a|=a,|b|=﹣b,a+b<0,∴a>0,b<0,∵a+b<o,∴|b|>|a|,∴在数轴上表示为:故选B.【点评】本题考查了数轴,绝对值,有理数的加法法则等知识点,关键是确定出a>0,b<0,|b|>|a|.10.如果y<0<x,则化简的结果为()A.0 B.﹣2 C.2 D.1【考点】有理数的除法;绝对值;约分.【分析】先根据绝对值的性质去掉绝对值,再约分化简即可.【解答】解:∵y<0<x∴xy<0∴=+=1﹣1=0.故选A.【点评】此题主要考查绝对值的化简和分式的运算,准确分析去掉绝对值号是解题的关键.二.填空题11.﹣3的倒数是﹣,﹣2的相反数为2.【考点】倒数;相反数.【分析】根据乘积为1的两个数互为倒数,只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣3的倒数是﹣,﹣2的相反数为 2,故答案为:﹣,2.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.12.数轴上到原点的距离等于3个单位长度的点所表示的数为﹣3或3 .【考点】数轴.【分析】此题注意考虑两种情况:该点在原点的左侧,该点在原点的右侧.【解答】解:根据数轴的意义可知,在数轴上与原点的距离等于3个单位长度的点所表示的数是﹣3或3.故答案为:﹣3或3.【点评】主要考查了数轴,要注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉一种情况.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.13.某地某天早晨的气温是18℃,中午上升了4℃,夜间又下降了10℃,那么这天夜间的气温是12 ℃.【考点】有理数的加减混合运算.【专题】计算题.【分析】气温上升用加下降用减,列出算式后运用有理数的加减混合运算法则计算.【解答】解:根据题意列算式得:18+4﹣10=22﹣10=12.∴这天夜间的气温是12℃.故应填12.【点评】本题主要考查正负数在实际生活中的意义,所以学生在学这一部分时一定要联系实际,不能死学.14.根据要求,取近似数:1.4149≈ 1.41 (精确到百分位);将用科学记数法的数还原:3.008×105= 300800 .【考点】科学记数法与有效数字.【分析】把千分位上的数子4进行四舍五入即可;通过科学记数法换算成原数,正负符号不变,乘以几次幂就将小数点后移几位,不足的补0.【解答】1.4149≈1.41(精确到千分位);3.008×105=300800,故答案为1.415,300800.【点评】此题考查的是近似数和有效数字,将用科学记数法表示的数改为原数的原理,即科学记数法的逆推,解决本题的关键是熟记通过科学记数法换算成原数,正负符号不变,乘以几次幂就将小数点后移几位,不足的补0.15.单项式﹣的系数是﹣,次数是 3 .【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数,次数为1+2=3.【解答】解:单项式﹣的系数是﹣,次数是1+2=3.故答案为:﹣,3.【点评】考查了单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.多项式5x3y﹣2x2y3﹣3xy+5的次数是 5 .最高次项系数是﹣2 ,常数项是+5 .【考点】多项式.【分析】根据多项式的概念及单项式的次数、系数的定义解答.【解答】解:多项式5x3y﹣2x2y3﹣3xy+5的次数是5.最高次项系数是﹣2,常数项是+5.故答案为:5,﹣2,+5.【点评】本题考查了多项式:几个单项式的和叫多项式.多项式中每个单项式都是多项式的项,这些单项式的最高次数,就是这个多项式的次数.17.某商品进价为a元,商店将价格提高30%作零售价销售,这时一件商品的售价为 1.3a .【考点】列代数式.【分析】此题的等量关系:进价×(1+提高率)=售价列出代数式即可.【解答】解:商品的售价为1.3a,故答案为:1.3a【点评】此题考查列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系进行解题.有关销售问题中的提高30%名词要理解透彻,正确应用.18.任写一个与﹣a2b是同类项的单项式a2b .【考点】同类项.【专题】开放型.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可解答.【解答】解:与﹣a2b是同类项的单项式是a2b(答案不唯一).故答案是:a2b.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.19.已知(a﹣2)2+|b+3|=0,则a﹣b= 5 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,a﹣2=0,b+3=0,解得a=2,b=﹣3,所以,a﹣b=2﹣(﹣3)=2+3=5.故答案为:5.【点评】本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.20.定义计算“☆”,对于两个有理数a,b,有a☆b=a+b﹣ab,例如:﹣3☆2=5.则(﹣2☆3)☆0= 7 .【考点】有理数的混合运算.【专题】新定义.【分析】根据题中的新定义化简所求式子,计算即可得到结果.【解答】解:根据题意得:(﹣2☆3)☆0=(﹣2+3+6)☆0=7☆0=7+0﹣0=7.故答案为:7【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三.解答题(21题6分,22题至29题每题5分)21.直接写出计算结果(1)﹣8﹣8= ﹣16 (2)﹣24×(﹣1)= 44(3)﹣3÷3×= ﹣(4)5+5÷(﹣5)= 4(5)3﹣(﹣1)2= 2 (6)x2y﹣x2y= x2y .【考点】合并同类项;有理数的混合运算.【分析】(1)根据有理数的减法,可得答案;(2)有理数的乘法,可得答案;(3)有理数的乘除法,可得答案;(4)根据有理数的混合运算,可得答案;(5)根据有理数的混合运算,可得答案;(6)根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:(1)﹣8﹣8=﹣16 (2)﹣24×(﹣1)=44(3)﹣3÷3×=﹣(4)5+5÷(﹣5)=4(5)3﹣(﹣1)2=2 (6)x2y﹣x2y=x2y,故答案为:﹣16,44,﹣,4,2, x2y.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.22.(﹣1.5)+4+2.75+(﹣5)【考点】有理数的加法.【分析】根据加法结合律,可得答案.【解答】解:原式=[(﹣1.5)+(﹣5)]+(4+2.75)=﹣7+7=0.【点评】本题考查了有理数的加法,利用结合律是解题关键,同号结合,同形结合,凑整结合,相反数结合.23.计算:(﹣28)÷(﹣6+4)+(﹣1)×5.【考点】有理数的混合运算.【专题】计算题.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=﹣28÷(﹣2)﹣5=14﹣5=9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.﹣12﹣(1﹣0.5)××[2﹣(﹣3)2].【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1﹣××(﹣7)=﹣1+=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.(+﹣)÷(﹣)【考点】有理数的混合运算.【分析】根据有理数的除法和乘法分配律可以解答本题.【解答】解:( +﹣)÷(﹣)=(+﹣)×(﹣36)==(﹣18)+(﹣30)+21=﹣27.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.26.(4a2b﹣5ab2)﹣(3a2b﹣4ab2).【考点】整式的加减.【专题】计算题.【分析】先去括号,然后合并同类项即可得出答案.【解答】解:原式=4a2b﹣5ab2﹣3a2b+4ab2=a2b﹣ab2.【点评】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.27.(3a﹣2)﹣3(a﹣5)【考点】整式的加减.【专题】计算题.【分析】先去括号,然后合并同类项可得出答案.【解答】解:原式=3a﹣2﹣3a+15=13.【点评】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.28.先化简,再求值:﹣(x2+3x)+2(4x+x2),其中x=﹣2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=﹣x2﹣3x+8x+2x2=x2+5x,当x=﹣2时,原式=4﹣10=﹣6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.29.已知x2﹣3x﹣1=0,求代数式2x﹣2[x﹣(2x2﹣3x+2)]﹣2x2的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,已知等式变形后代入计算即可求出值.【解答】解:原式=2x﹣2x+4x2﹣6x+4﹣2x2=2(x2﹣3x)+4,由x2﹣3x﹣1=0,得到x2﹣3x=1,则原式=2+4=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.四.解答题(第30题4分,第31题5分)30.已知数a、b、c在数轴上的位置如图所示,化简|a|+|b|+|a+b|﹣|b﹣c|.【考点】整式的加减;数轴;绝对值.【分析】根据数轴判断a、b、a+b、b﹣c与0的大小关系.【解答】解:由数轴可知:a<0,b>0,a+b<0,b﹣c<0,∴原式=﹣a+b﹣(a+b)+(b﹣c)=﹣a+b﹣a﹣b+b﹣c=﹣2a+b﹣c【点评】本题考查利用数轴比较数的大小关系,涉及绝对值的性质,整式加减等知识.31.按照规律填上所缺的单项式并回答问题:(1)a、﹣2a2、3a3、﹣4a4,5a5,﹣6a6;(2)试写出第2007个单项式2007a2007;第2008个单项式﹣2008a2008;(3)试写出第n个单项式(﹣1)n+1na n.【考点】单项式.【分析】(1)通过观察题意可得:每一项都是单项式,其中系数为n×(﹣1)n+1,字母是a,x的指数为n的值;(2)通过观察题意可得:每一项都是单项式,其中系数为n×(﹣1)n+1,字母是a,x的指数为n 的值;(3)通过观察题意可得:每一项都是单项式,其中系数为n×(﹣1)n+1,字母是a,x的指数为n 的值,即可得出答案.【解答】解:(1)a、﹣2a2、3a3、﹣4a4,5a5,﹣6a6;故答案为:5a5,﹣6a6;(2)第2007个单项式:2007a2007;第2008个单项式:﹣2008a2008;故答案为:2007a2007;﹣2008a2008;(3)第n个单项式的系数为:n×(﹣1)n+1,次数为n,故第n个单项式为:(﹣1)n+1na n.故答案为:(﹣1)n+1na n.【点评】此题考查了找规律的单项式题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.五.附加题(10分)32.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,(1)a2是a1的差倒数,则a2= ;(2)a3是a2的差倒数,则a3= 4 ;(3)a4是a3的差倒数,则a4= ﹣,…依此类推,则a2013= 4 .【考点】规律型:数字的变化类;倒数.【分析】(1)根据定义由a2=可得;(2)由a3=可得;(3)由a4=可得a4,继而可知数列以﹣,,4三个数依次不断循环出现,据此可得答案.【解答】解:(1)根据题意,知a2===,故答案为:;(2)a3===4,故答案为:4;(3)a4===﹣,因此数列以﹣,,4三个数依次不断循环出现.∴2013÷3=671,∴a 2013=a 3=4, 故答案为:﹣,4.【点评】本题主要考查数字的变化规律;得到相应的数据及变化规律是解决本题的关键.33.已知:a ,b 互为相反数,c ,d 互为倒数,x=3(a ﹣1)﹣(a ﹣2b ),y=c 2d+d 2﹣(+c ﹣2),求:﹣的值.【考点】代数式求值.【分析】根据题意得a+b=0,cd=1,求得x ,y ,再代入求值即可. 【解答】解:∵a ,b 互为相反数,c ,d 互为倒数, ∴a+b=0,cd=1,∴x=3(a ﹣1)﹣(a ﹣2b )=3a ﹣3﹣a+2b=2a+2b ﹣3=2(a+b )﹣3=﹣3, y=c 2d+d 2﹣(+c ﹣2)=c 2d+d 2﹣d 2﹣c+2=2, 原式=﹣==;当x=﹣3,y=2时,原式==﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.。
)))))、)9.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费 元(用含a 、b 的式子表示). 10.2xy-的系数是a ,次数是b ,则a +b = . 11.若313m x y +与126n x y +是同类项,则m +n = .12.把多项式x 2-2-3x 3+5x 按x 的升幂排列为 . 13.已知多项式3x 2-4x 的值为9,则6x 2-8x -6的值为 .14.在有理数的原有运算法则中,我们定义一个新运算“★”如下:x ≤ y 时,x ★y = x 2;x >y 时,x ★y = y . 则(-2★-4)★1的值为 .15.计算:(-3. 14)+(+4. 96)+(+2. 14)+(-7. 96).16.计算:(-3)2-60 ÷22×110+|-2|.17.计算:2x2y3+(-4 x2y3)-(-3 x2y3). 18.计算:(3a2-2a)-2(a2-a-1).19.已知A = 3x2+4xy,B = x2+3xy-y2,求2B-A.20.先化简,再求值:5x2-[3x-2(2x-3)+7x2],其中x=1 2 .得分评卷人四、解答题(每小题7分,共28分)21.小明做了如下一道有理数混合运算的题目:﹣34÷(﹣27)-[(﹣2)×(﹣43)+(﹣2)]3= 81÷(﹣27)-[ 83+(-8)]= ……思考:(1)请用圆圈圈出小明第一步计算中的错误;(2)正确的解答这道题.22.老师设计了一个数学实验,给甲、乙、丙三名同学各一张写有已化为最简的整式的卡片,规则是两位同学的整式相减等于第三位同学的整式,则实验成功. 甲、乙、丙的卡片如图所示,丙的卡片有一部分看不清楚了.(1)计算出甲减乙的结果,并判断甲减乙能否使实验成功;(2)嘉琪发现丙减甲可以使实验成功,请求出丙的整式.甲乙丙(第22题)2x2-3x-1x2-2x+3+223.长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,15 个站点如图所示. 某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A 站下车时,本次志愿者服务活动结束. 约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,-2,-6,+8,+3,-4,-9,+8. (1)请通过计算说明A 站是哪一站;(2)若相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?(第23题)24.如图,长为50 cm ,宽为x cm 的大长方形被分割为8小块,除阴影A 、B 外,其余6块是形状、大小完全相同的小长方形,其较短一边长为a cm.(1)由图可知,每个小长方形较长的一边长是 cm (用含a 的代数式表示); (2)当x = 40时,求图中两块阴影A 、B 的周长和. (第24题)红咀子南部新城市政府卫星广场繁荣路工农广场东北师大儿童公园人民广场胜利公园长春站长春站北一匡街庆丰路北环25.如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动;同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t (秒). (1)当t = 0.5时,求点Q 到原点O 的距离; (2)当t = 2.5时,求点Q 到原点O 的距离;(3)当点Q 到原点O 的距离为4时,求点P 到原点O 的距离.(第25题)QP OA26.为丰富校园体育生活,某校增设网球兴趣小组,需要采购某品牌网球训练拍30支,网球x筒(x>30). 经市场调查了解到该品牌网球拍定价100元/支,网球20元/筒,现有甲、乙两家体育用品商店有如下优惠方案:方案一:甲商店:买一支网球拍送一筒网球;方案二:乙商店:网球拍与网球均按定价90%付款.(1)方案一:到甲商店购买,需要支付元;方案二:到乙商店购买,需要支付元(用含x的代数式表示);(2)若x = 10,请通过计算说明学校采用以上哪个方案较为优惠;(3)已知x = 100,如果到甲店购买30支球拍(送30筒球),剩余的网球到乙店购买,能更省钱吗?如果可以更省钱,请直接写出比方案一省多少钱?名校调研系列卷·七年上期中测试 数学(人教版)参考答案一、1. A 2. C 3. B 4. D 5. C 6. B 二、填空题:7. > 8. 5.619. (4a +10b ) 10.11. 312. -2+5x +x 2-3x 313. 1214. 16三、15. 解:原式=(-3. 14+2. 14)+(+4. 96-7. 96)= -1-3 =-4. 16. 解:原式= 9-60×14×110+2 = 9-32+2 =192. 17. 解:原式= 2x 2y 3-4x 2y 3+3x 2y 3 = x 2y 3. 18. 解:原式= 3a 2-2a -2a 2+2a +2 = a 2+2.四、19. 解:2B -A =2(x 2+3xy -y 2)-(3x 2+4xy )= 2x 2+6xy -2y 2-3x 2-4xy =-x 2+2xy -2y 2 .20. 解:5x 2-[3x -2(2x -3)+7x 2] = 5x 2-(3x -4x +6+7x 2)= 5x 2-3x +4x -6-7x 2=-2x 2+x -6.当x =12时,原式=-2×(12)2+12-6 =12 +12-6 =-6. 21. 解:(1) ; (2)﹣34÷(﹣27)- [(﹣2)×(﹣43)+(﹣2)]3=-81÷(﹣27)-(83-2)3 = 3-(23)3 = 3-827=19227.22. 解:(1)根据题意,得:2x 2-3x -1-(x 2-2x +3)= 2x 2-3x -1-x 2+2x -3 = x 2-x -4,则甲减乙不能是实验成功;(2)根据题意,得,丙表示的整式为2x 2-3x -1+ x 2-2x +3 = 3x 2-5x +2.五、23. 解:(1)+5-2-6+8+3-4-9+8= 3,答:A 站是工农广场站;(2)(5+2+6+8+3+4+9+8)×1. 3 = 45×1. 3 = 58. 5(千米), 答:这次王红志愿服务期间乘坐地铁行进的路程是58. 5千米.24. 解:(1)(50-3a );(2)2 [50-3a +(x -3a )]+2 [3a +x -(50-3a )]= 2(50+x -6a )+2(6a +x -50) = 100+2x -12a +12a +2x -100 = 4x .当x = 40时,原式= 4×40 = 160 .32= 81÷(-27)-[83+(-8)]= ……六、25. 解:(1)当t = 0. 5时,AQ = 4t = 4×0. 5= 2,∵OA = 8,∴OQ = OA-AQ = 8-2 = 6,∴点Q到原点O的距高为6;(2)当t = 2. 5时,点Q运动的距离为4t = 4×2. 5 = 10,∴OQ =10-8 = 2,∴点Q到原点O的距离为2;(3)当点Q到原点O的距离为4时,∵OQ = 4,∴当点Q向左运动时,OA = 8,则AQ = 4,∴t = 1,∴OP = 2;当点Q向右运动时,OQ = 4,∴点Q运动的距离是8+4 = 12,∴运动时间t=12÷4 = 3,∴OP = 2×3 = 6,∴点P到原点O的距离为2或6.26. 解:(1)甲商店购买需付款30×100+(x-30)×20 = 20x+30×(100-20)=(20x+2400)元;乙商店购买需付款100×90%×30+20×90%×x =(18x+2700)元.故答案为:(20x+2400),(18x+2700);(2)当x = 100时,甲商店需20×100+2400 = 4400(元);乙商店需18×100+2700 = 4500(元);所以甲离店购买合算;(3)先在甲商店购买30支球拍,送30筒球需3000元,差70筒球在乙商店购买需1260元,共需4260元,4400-4260 = 140(元),比方案一省140元钱.。
2019-2020学年北京市东城区七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣5的相反数是()A.B.C.5D.﹣52.(3分)北京大兴国际机场于2019年9月25日正式投入使用,新机场的运行将进一步满足北京地区的航空运输需求,增强国家民航竞争力,促进南北城区的均衡发展和京津冀协同发展.根据规划,2022年大兴国际机场客流量将达到4500万人次.4500用科学记数法表示为()A.45×102B.4.5×103C.4.5×102D.4.5×1043.(3分)下列四个数中,最小的数是()A.﹣3B.|﹣7|C.﹣(﹣1)D.﹣4.(3分)若x=2是关于x的方程2x+a=3的解,则a的值是()A.1B.﹣1C.7D.﹣75.(3分)下列计算正确的是()A.7a+a=7a2B.5y﹣3y=2C.x3﹣x=x2D.2xy2﹣xy2=xy26.(3分)把方程去分母后,正确的是()A.3x﹣2(x﹣1)=1B.3x﹣2(x﹣1)=6C.3x﹣2x﹣2=6D.3x+2x﹣2=67.(3分)如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=165°,那么∠COD等于()A.15°B.25°C.35°D.45°8.(3分)下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④9.(3分)实数m,n在数轴上的对应点如图所示,则下列各式子正确的是()A.m>n B.﹣n>|m|C.﹣m>|n|D.|m|<|n|10.(3分)如图是某一立方体的侧面展开图,则该立方体是()A.B.C.D.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)某天最高气温为8℃,最低气温为﹣1℃,则这天的最高气温比最低气温高℃.12.(2分)单项式5xy3的次数是.13.(2分)计算﹣3a﹣(b﹣3a)的结果是.14.(2分)写出一个能与合并的单项式.15.(2分)如图,某海域有三个小岛A,B,O,在小岛O处观测到小岛A在它北偏东60°的方向上,观测到小岛B在它南偏东38°的方向上,则∠AOB的度数是.16.(2分)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x个人共同出钱买鸡,根据题意,可列一元一次方程为.17.(2分)已知线段AB=10cm,点D是线段AB的中点,直线AB上有一点C,并且BC=2cm,则线段DC =.18.(2分)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2020个图形中共有个〇.三、解答题(19-20题每题8分,21-25题每题5分,26题6分,27题7分,共54分)解答应写出文字说明,演算步骤或证明过程19.(8分)计算:(1)3×(﹣2)+(﹣5)﹣(﹣20)(2)﹣23÷(﹣)﹣×(﹣2)220.(8分)解方程:(1)5x+2=3(x+2)(2)21.(5分)先化简,再求值:4(3a2b﹣ab2)﹣2(3ab2﹣a2b)﹣14a2b,其中a=1,b=﹣.22.(5分)按照下列要求完成作图及问题解答:如图,已知点A和线段BC.(1)连接AB;(2)作射线CA;(3)延长BC至点D,使得BD=2BC;(4)通过测量可得∠ACD的度数是;(5)画∠ACD的平分线CE.23.(5分)一个角的余角比它的补角的还少40°,求这个角的度数.24.(5分)根据题意,补全解题过程:如图,∠AOB=90°,OE平分∠AOC,OF平分∠BOC.求∠EOF的度数.解:因为OE平分∠AOC,OF平分∠BOC所以∠EOC =∠AOC,∠FOC =.所以∠EOF=∠EOC﹣=(∠AOC﹣)==°.25.(5分)一般情况下,对于数a和b,+≠(“≠”不等号),但是对于某些特殊的数a和b,.我们把这些特殊的数a和b,称为“理想数对”,记作<a,b>.例如当a=1,b=﹣4时,有,那么<1,﹣4>就是“理想数对”.(1)<3,﹣12>,<﹣2,4>可以称为“理想数对”的是;(2)如果<2,x>是“理想数对”,那么x=;(3)若<m,n>是“理想数对”,求的值.26.(6分)为鼓励居民节约用电,某市试行每月阶梯电价收费制度,具体执行方案如下:档次每户每月用电量(度)执行电价(元/度)第一档小于或等于2000.50.7第二档大于200且小于或等于450时,超出200的部分第三档大于450时,超出450的部1分(1)一户居民七月份用电300度,则需缴电费元.(2)某户居民五、六月份共用电500度,缴电费290元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于450度.①请判断该户居民五、六月份的用电量分别属于哪一个档次?并说明理由.②求该户居民五、六月份分别用电多少度?27.(7分)已知M,N两点在数轴上所表示的数分别为m,n且满足|m﹣12|+(n+3)2=0.(1)则m=,n=;(2)若点P从N点出发,以每秒1个单位长度的速度向右运动,同时点Q从M点出发,以每秒1个单位长度的速度向左运动,经过多长时间后P,Q两点相距7个单位长度?(3)若A,B为线段MN上的两点,且NA=AB=BM,点P从点N出发,以每秒2个单位长度的速度向左运动,点Q从M点出发,以每秒4个单位长度的速度向右运动,点R从B点出发,以每秒3个单位长度的速度向右运动,P,Q,R同时出发,是否存在常数k,使得PQ﹣kAR的值与它们的运动时间无关,为定值.若存在,请求出k和这个定值;若不存在,请说明理由.2019-2020学年北京市东城区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.【解答】解:根据相反数的定义得:﹣5的相反数为5.故选:C.2.【解答】解:将4500用科学记数法表示为4.5×103,故选:B.3.【解答】解:∵﹣3<﹣<﹣(﹣1)<|﹣7|,∴所给的四个数中,最小的数是﹣3.故选:A.4.【解答】解:∵x=2是关于x的方程2x+a=3的解,∴2×2+a=3,解得a=﹣1.故选:B.5.【解答】解:A.7a+a=8a,故本选项不合题意;B.5y﹣3y=2y,故本选项不合题意;C.x3与﹣x,故本选项不合题意;D.2xy2﹣xy2=xy2,正确,故本选项符合题意.故选:D.6.【解答】解:﹣=1,方程两边都乘以6得:3x﹣2(x﹣1)=6,故选:B.7.【解答】解:∵三角板的两个直角都等于90°,所以∠BOD+∠AOC=180°,∵∠BOD+∠AOC=∠AOB+∠COD,∵∠AOB=165°,∴∠COD等于15°.故选:A.8.【解答】解:①②现象可以用两点可以确定一条直线来解释;③④现象可以用两点之间,线段最短来解释.故选:D.9.【解答】解:因为m、n都是负数,且m<n,|m|>|n|,A、m>n是错误的;B、﹣n>|m|是错误的;C、﹣m>|n|是正确的;D、|m|<|n|是错误的.故选:C.10.【解答】解:A、两个圆所在的面是相对的,不相邻,故A错误;B、C中空白的圆圈不与白色的三角形相邻,故B、C错误;D、正确.故选:D.二、填空题(本大题共8小题,每小题2分,共16分)11.【解答】解:8﹣(﹣1)=8+1=9℃.即这天的最高气温比最低气温高9℃.故答案为:912.【解答】解:单项式5xy3的次数是4次.故答案是:4.13.【解答】解:﹣3a﹣(b﹣3a)=﹣3a﹣b+3a=﹣b.故答案为:﹣b.14.【解答】解:一个能与合并的单项式x3y(答案不唯一).故答案为:x3y(答案不唯一).15.【解答】解:∵OA是表示北偏东60°方向的一条射线,OB是表示南偏东38°方向的一条射线,∴∠AOB=180°﹣60°﹣38°=82°,故答案是:82°.16.【解答】解:设有x个人共同买鸡,根据题意得:9x﹣11=6x+16.故答案为:9x﹣11=6x+16.17.【解答】解:∵点D是线段AB的中点,∴BD=0.5AB=0.5×10=5cm,(1)C在线段AB延长线上,如图.DC=DB+BC=5+2=7cm;(2)C在线段AB上,如图.DC=DB﹣BC=5﹣2=3cm.则线段DC=7cm或3cm.18.【解答】解:由图可得,第1个图象中〇的个数为:1+3×1=4,第2个图象中〇的个数为:1+3×2=7,第3个图象中〇的个数为:1+3×3=10,第4个图象中〇的个数为:1+3×4=13,……∴第2019个图形中共有:1+3×2020=1+6060=6061个〇,故答案为:6061.三、解答题(19-20题每题8分,21-25题每题5分,26题6分,27题7分,共54分)解答应写出文字说明,演算步骤或证明过程19.【解答】解:(1)3×(﹣2)+(﹣5)﹣(﹣20)=﹣6﹣5+20=9(2)﹣23÷(﹣)﹣×(﹣2)2=﹣8÷(﹣)﹣×4=48﹣1=4720.【解答】解:(1)5x+2=3(x+2),去括号,得5x+2=3x+6,移项,合并同类项,得2x=4,系数化为1,得x=2;(2)=1﹣,去分母得:2(x+3)=12﹣3(3+2x),去括号得:2x+6=12﹣9﹣6x,移项合并得:8x=﹣3,解得:x=﹣.21.【解答】解:原式=12a2b﹣4ab2﹣6ab2+2a2b﹣14a2b=﹣10ab2,当a=1,b=﹣时,原式=﹣.22.【解答】解:如图,就是按照要求完成的作图:(4)通过测量可得∠ACD的度数是152°.故答案为:152°.23.【解答】解:设这个角为x,则90°﹣x+40°=(180°﹣x),解得x=30°.答:这个角的度数为30°.24.【解答】解:因为OE平分∠AOC,OF平分∠BOC 所以∠EOC=∠AOC,∠FOC==∠BOC.所以∠EOF=∠EOC﹣∠FOC=(∠AOC﹣∠BOC)=∠AOB=45°.故答案为:∠BOC、∠FOC、∠BOC、∠AOB、45.25.【解答】解:(1)对于数对〈3,﹣12〉,有,因此〈3,﹣12〉是“理想数对”;对于数对<﹣2,4>,,,0,所以<﹣2,4>不是理想数对;故答案为<3,﹣12>.(2)因为<2,x>是“理想数对”,所以,解得x=﹣8故答案为﹣8.(3)由题意,〈m,n〉是“理想数对”,所以,即n=﹣4m=3[9n﹣4m﹣8n+m]﹣4m﹣12=3n+12m﹣12将n=﹣4m代入,原式=﹣12答:代数式的值是﹣12.26.【解答】解:(1)200×0.5+100×0.7=170(元);故答案是:170;(2)①因为两个月的总用电量为500度,所以每个月用电量不可能都在第一档;假设该用户五、六月每月用电均超过200度,此时的电费共计200×0.5+200×0.5+100×0.7=270(元),而270<290,不符合题意;又因为六月份用电量大于五月份,所以五月份用电量在第一档,六月份用电量在第二档;②设五月份用电x度,则六月份用电(500﹣x)度,根据题意,得0.5x+200×0.5+0.7×(500﹣x﹣200)=290.解得x=100,500﹣x=400.答:该户居民五、六月份分别用电100度、400度.27.【解答】解:(1)∵|m﹣12|+(n+3)2=0,∴m﹣12=0,n+3=0,∴m=12,n=﹣3.故答案为:12;﹣3.(2)当运动时间为t秒时,点P对应的数是﹣3+t,点Q对应的数是12﹣t,依题意,得:|﹣3+t﹣(12﹣t)|=7,即2t﹣15=7或2t﹣15=﹣7,解得:t=11或t=4.答:经过4秒或11秒后P,Q两点相距7个单位长度.(3)∵A,B为线段MN上的两点,且NA=AB=BM,∴点A对应的数是﹣3+5=2,点B对应的数是12﹣5=7.当运动时间为t秒时,点P对应的数是﹣3﹣2t,点Q对应的数是12+4t,点R对应的数是7+3t,∴PQ=|﹣3﹣2t﹣(12+4t)|=15+6t,AR=|2﹣(7+3t)|=5+3t,∴PQ﹣kAR=15+6t﹣k(5+3t)=15﹣5k+(6﹣3k)t,∴当k=2时,PQ﹣kAR与它们的运动时间无关,为定值,该定值为5.第11页(共11页)。
北京市七年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)等于()A . 2B . -2C . ±2D .2. (2分) (2020七上·射阳月考) 下列计算正确的是()A .B .C .D .3. (2分) (2019七上·北京期中) 下列方程中,是一元一次方程的是()A .B .C .D .4. (2分)下列各组中的两个项不属于同类项的是()A . 3x2y和-2x2yB . -xy和2yxC . -1和1D . a2和325. (2分) (2018七上·如皋期中) 一只蚂蚁从数轴上的点A出发爬了6个单位长度到了原点,则点A所示().A . 6B .C .D .6. (2分) 1.0239精确到百分位的近似值是()A . 1.0239B . 1.024C . 1.02D . 1.07. (2分) (2020七下·四川期中) 如图所示,∠1=20°,∠AOB=90°,点C、O、D在同一直线上,则∠2的度数为()A . 70°B . 80°C . 160°D . 110°8. (2分) (2019七上·沭阳期末) 甲从点A出发沿北偏东35°方向走到点B,乙从点A出发沿南偏西20°方向走到点C,则∠BAC等于()A . 15°B . 55°C . 125°D . 165°9. (2分)若(1﹣m)2+|n﹣2|=0,则m+n的值为()A . -1B . 3C . -3D . 210. (2分) (2019八上·皇姑期末) 在数轴上的位置如图所示,那么化简的结果是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2019七上·施秉月考) -23等于________.12. (1分) (2016七上·南开期中) 若x2+x+2的值为3,则代数式2x2+2x+5的值为________.13. (1分) (2020七上·朝阳期中) 若关于x的多项式不含x的二次项,则________.14. (1分) (2018八上·晋江期中) 已知m2﹣n2=16,m+n=6,则m﹣n=________.15. (1分) (2017七上·武汉期中) 有理数a,b,c在数轴上的位置如图所示,则|a﹣c|﹣|a﹣b|﹣|b﹣c|=________.16. (1分) (2019八上·永春月考) 一个非零自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比如16=52﹣32 ,故16是一个“智慧数”,在自然数列中,从1开始起,第1个智慧数是________第2019个“智慧数”是________.三、解答题 (共9题;共64分)17. (2分) (2020七上·无锡月考) 已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发,速度为每秒2个单位,点N从点B出发,速度为M点的3倍,点P从原点出发,速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?(3)当时间t满足t1<t≤t2时,M、N两点之间,N、P两点之间,M、P两点之间分别有55个、44个、11个整数点,请直接写出t1 , t2的值.18. (10分) (2019七上·北京期中) 小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?19. (10分) (2020七上·德江期末) 解方程:(1)(2)20. (5分)若|a|=21,|b|=27,且|a+b|=-(a+b),求a-b的值.21. (5分) (2019七上·吉林月考) 七年级甲、乙两班参加义务劳动,在接受一项任务时,若甲班单独做需小时完成,若乙班单独做需小时完成,现在由甲班单独做小时,剩下部分由甲、乙两班合作,则完成这项任务一共需要多少小时?22. (15分) (2020七上·巴南月考) 接龙中学课外兴趣辅导足球训练课上,一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,,+8,+2,;(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?23. (5分)(1)计算:﹣14﹣(1﹣0.5)×(2)解方程:=2.24. (1分) (2020八上·南昌期末) 将三角尺的直角顶点放在直尺的一边上,若,,则的度数是________.25. (11分)李老师刚买了一套2室2厅的新房,其结构如图3-3-5所示(单位:米).施工方已经把卫生间和厨房根据合同约定铺上了地板砖,李老师打算把卧室1铺上地毯,其余铺地板砖.问:(1)他至少需要多少平方米的地板砖?(2)如果这种地砖板每平方米m元,那么李老师至少要花多少钱?参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共9题;共64分)答案:17-1、答案:17-2、答案:17-3、考点:解析:答案:18-1、答案:18-2、答案:18-3、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、考点:解析:。
2019-2020学年交大附中七年级(上)期中数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣5的相反数是()A.﹣5B.﹣C.5D.2.(3分)2019年国庆,建国70周年阅兵式邀请了包括优秀共产党员、人民满意的公务员、时代楷模、最美人物、大国工匠、优秀农民工等近1500名各界的先进模范人物代表参加观礼,将1500用科学记数法表示为()A.1.5×102B.15×102C.1.5×103D.0.15×1043.(3分)下列各式中结果为负数的是()A.﹣(﹣3)B.|﹣3|C.(﹣3)2D.﹣324.(3分)下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=15.(3分)实数a,b在数轴上的位置如图所示,以下说法正确的是()A.a+b>0B.|a﹣b|=a﹣bC.|b|>|a|D.(a+1)(b﹣1)>06.(3分)如果a、b互为相反数a≠0),x、y互为倒数,那么代数式的值是()A.0B.1C.﹣1D.27.(3分)如果|a+2|+(b﹣3)2=0,则a b的值是()A.﹣6B.6C.﹣8D.88.(3分)已知(m2﹣1)x2+(m﹣1)x+7=0是关于x的一元一次方程,则m的值为()A.±1B.﹣1C.1D.以上答案都不对9.(3分)下列结论正确的是()A.a一定比﹣a大B.不是单项式C.﹣3ab2和b2a是同类项D.x=3是方程﹣x+1=4的解10.(3分)小明和小勇一起玩猜数游戏,小明说:“你随便选定三个一位数,按下列步骤进行计算:①把第一个数乘以2;②加上2;③乘以5;④加上第二个数;⑤乘以10;⑥加上第三个数;只要你告诉我最后的得数,我就能知道你所选的三个一位数.”小勇表示不相信,但试了几次,小明都猜对了,请你利用所学过的数学知识来探索该“奥秘”并回答当“最后的得数”是567时,小勇最初选定的三个一位数分别是()A.5,6,7B.6,7,8C.4,6,7D.5,7,8二、填空题(每空2分,满分18分,将答案填在答题纸上)11.(2分)写出一个系数是2,且含有字母a,b的3次单项式(答案不唯一).12.(2分)“a,b两数和的5倍”这句话用代数式可以表示为.13.(2分)计算=.14.(2分)数轴上与原点距离为4个单位长度表示的数是.15.(4分)比较大小:;.16.(2分)若关于x的方程2x+a﹣6=0的解是x=2,则a的值等于.17.(2分)用“☆”定义一种新运算:对于任意有理数a,b,都有a☆b=ab+a2,则3☆(﹣2)=.18.(2分)一列方程如下排列:的解是x=2的解是x=3的解是x=4……根据观察所得到的规律,请你写出一个解是x=10的方程:.三、计算题:(本大题共4个小题,每小题8分,共16分).19.(8分)(1)25﹣9+(﹣12)﹣(﹣7);(2)20.(8分)(1)2(m2n+5mn3)﹣5(2mn3﹣m2n);(2)2x﹣2[x﹣(2x2﹣3x+2)]﹣3x2.四、解方程:(本大题共2个小题,每小题10分,共10分).21.(10分)(1)5(x﹣6)=﹣4x﹣3;(2).五、化简求值(本大题共2个小题,每小题6分,共12分).22.(6分)设A=x﹣4(x+y)+(x﹣y)(1)当x=﹣,y=1时,求A的值;(2)若使求得的A的值与(1)中的结果相同,则给出的x,y的值还可以是.23.(6分)已知a﹣b=2,ab=﹣1,求(4a﹣5b﹣ab)﹣(2a﹣3b+5ab)的值.六、探究题(本大题共4个小题,第24、第25小题3分,第26、27小题4分,共14分).24.(3分)你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答会告诉你方法.(1)阅读下列材料:问题:利用一元一次方程将化成分数.解:设=x.方程两边都乘以10,可得7.=10x.由=x和7.=10x,可得7.﹣0.即7=10x﹣x.(请你体会将方程两边都乘以10起到的作用)解得,即0.7=.填空:将0.写成分数形式为.(2)请你仿照上述方法把小数1.化成分数,要求写出利用一元一次方程进行解答的过程.25.(3分)在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.(1)仿照图1,在图2中补全562的“竖式”;(2)仿照图1,用“列竖式”的方法计算一个十位数字是a的两位数的平方,过程部分如图3所示,则这个两位数为(用含a的代数式表示).26.(4分)观察下面的等式:3﹣1=﹣|﹣1+2|+31﹣1=﹣|1+2|+3(﹣2)﹣1=﹣|4+2|+3回答下列问题:(1)填空:﹣1=﹣|6+2|+3;(2)已知2﹣1=﹣|x+2|+3,则x的值是;(3)设满足上面特征的等式最左边的数为y,则y的最大值是,此时的等式为.27.(4分)阅读下列材料:我们给出如下定义:数轴上给定两点A,B以及一条线段PQ,若线段AB的中点R在线段PQ上(点R 可以与点P或Q重合),则称点A与点B关于线段PQ径向对称.下图为点A与点B关于线段PQ径向对称的示意图.解答下列问题:如图1,在数轴上,点O为原点,点A表示的数为﹣1,点M表示的数为2.(1)①点B,C,D分别表示的数为﹣3,,3,在B,C,D三点中,与点A关于线段OM径向对称;②点E表示的数为x,若点A与点E关于线段OM径向对称,则x的取值范围是;(2)在数轴上,点H,K,L表示的数分别是﹣5,﹣4,﹣3,当点H以每秒1个单位长度的速度向正半轴方向移动时,线段KL同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t(t>0)秒,问t为何值时,线段KL上至少存在一点与点H关于线段OM径向对称.参考答案与试题解析一、选择题:1.解:只有符号不同的两个数称为互为相反数,则﹣5的相反数为5,故选:C.2.解:1500=1.5×103.故选:C.3.解:A、﹣(﹣3)=3,是正数,故本选项不符合题意;B、|﹣3|=3是正数,故本选项不符合题意;C、(﹣3)2=9是正数,故本选项不符合题意;D、﹣32=﹣9是负数,故本选项符合题意.故选:D.4.解:A、3a和2b不是同类项,不能合并,A错误;B、2a3和3a2不是同类项,不能合并,B错误;C、3a2b﹣3ba2=0,C正确;D、5a2﹣4a2=a2,D错误,故选:C.5.解:由图,得a<﹣1<0<b<1.A、a+b<0,故A错误;B、|a﹣b|=b﹣a,故B错误;C、|a|>|b|,故C错误;D、(a+1)(b﹣1)>0,故D正确;故选:D.6.解:根据题意得:a+b=0,xy=1,=﹣1,则原式=0﹣1+1=0,故选:A.7.解:根据题意得:,解得:,则a b=(﹣2)3=﹣8.故选:C.8.解:由题意,得m2﹣1=0且m﹣1≠0,解得m=﹣1,故选:B.9.解:A、当a=0时,a=﹣a,故本选项不符合题意;B、是单项式,故本选项不符合题意;C、﹣3ab2和b2a是同类项,故本选项符合题意;D、x=﹣3是方程﹣x+1=4的解,x=3不是方程的解,故本选项不符合题意.故选:C.10.解:设三个数为a,b,c,则计算结果为100a+10b+c+100,奥妙为:答案减100后,百位是a(第1个数),十位为b(第2个数),个位是c(第3个数).∴小勇最初选定的三个一位数分别:4,6,7.故选:C.二、填空题(每空2分,满分18分,将答案填在答题纸上)11.解:单项式的系数已确定,字母a、b的次数可按照3=1+2=2+1的方式分配,故所求单项式为:2a2b 或2ab2.12.解:“a,b两数和的5倍”这句话用代数式可以表示为5(a+b).故答案为:5(a+b).13.解:,=×12+×12﹣×12,=3+2﹣6,=5﹣6,=﹣1.14.解:数轴上与原点距离为4个单位长度表示的数是±4.故答案为:±4.15.解:∵,∴;∵,,∴.故答案为:<;>16.解:把x=2代入方程得:4+a﹣6=0,解得:a=2.故答案为:2.17.解:根据题中的新定义得:原式=﹣6+9=3,故答案为:318.解:方程+=1的解为x=10.故答案为:+=1.三、计算题:(本大题共4个小题,每小题8分,共16分).19.解:(1)原式=25﹣9﹣12+7=11;(2)原式=×(﹣8)×=﹣2.20.解:(1)原式=2m2n+10mn3﹣10mn3+5m2n=7m2n;(2)原式=2x﹣2x+4x2﹣6x+4﹣3x2=x2﹣6x+4.四、解方程:(本大题共2个小题,每小题10分,共10分).21.解:(1)去括号得:5x﹣30=﹣4x﹣3,移项合并得:9x=27,解得:x=3;(2)去分母得:4x+2=6+1﹣10x,移项合并得:14x=5,解得:x=.五、化简求值(本大题共2个小题,每小题6分,共12分).22.解:(1)A=x﹣4(x+y)+(x﹣y)=x﹣4x﹣y+x﹣y=﹣2x﹣2y,当x=﹣,y=1时,原式=﹣2×(﹣)﹣2×1=﹣1;(2)﹣2x﹣2y=﹣2(x+y)=﹣1,则x+y=,若使求得的A的值与(1)中的结果相同,则给出的x,y的值还可以是:x=0,y=(答案不唯一).故答案为:x=0,y=(答案不唯一).23.解:(4a﹣5b﹣ab)﹣(2a﹣3b+5ab)=4a﹣5b﹣ab﹣2a+3b﹣5ab=2a﹣2b﹣6ab,=2(a﹣b)﹣6ab,当a﹣b=2,ab=﹣1时,原式=2×2﹣6×(﹣1)=10.六、探究题(本大题共4个小题,第24、第25小题3分,第26、27小题4分,共14分). 24.解:(1)设0.=x,则4+x=10x,∴x=.故答案是;(2)设0.=m,方程两边都乘以100,可得100×0.=100m.由0.=0.3232…,可知100×0.=32.3232…=32+0.即32+m=100m可解得m=,∴1.=1.25.解:(1)如图所示:(2)设这个两位数的个位数字为b,依题意有20a×b=a×100,解得b=5,故这个两位数为10a+5.故答案为:10a+5.26.解:(1)∵﹣|6+2|+3=﹣5,﹣4﹣1=﹣5,故答案为﹣4;(2)由所给式子可知,x+2=2,∴x=0,故答案为0;(3)∵y﹣1=﹣|2﹣y+2|+3,∴y=﹣|y﹣4|+4,当y≥4时,y=﹣y+8,∴y=4;当y<4时,式子恒成立,∴y=4时最大,此时4﹣1=﹣|﹣2+2|+3,故答案为4,4﹣1=﹣|﹣2+2|+3.27.解:(1)①根据径向对称的定义,点C,D与点A关于线段OM径向对称.②当点O是AE的中点时,x=1,当点M是AE的中点时x=5,∴满足条件的x的值为1≤x≤5.故答案为C,D,1≤x≤5.(2)若点H与点E关于线段OM径向对称,设点E表示的数为x,则x的取值范围是5﹣t≤x≤9﹣t,∴满足条件的t的值满足:5﹣t﹣(﹣3)≤3t≤9﹣t﹣(﹣4),解得2≤t≤.。
北京市人大附中2019-2020学年七年级上学期第一次月考数学试卷数学一、选择题(每题4分,共32分)下面各题均有四个选項,其中只有一个是符合题意的1.(4分)在﹣5,﹣2.3,0,0.89五个数中,负数共有()A.2个B.3个C.4个D.5个2.(4分)﹣5的绝对值是()A.5 B.﹣5 C.D.±53.(4分)如图,数轴上两点A,B表示的数互为相反数()A.﹣1 B.1 C.﹣2 D.24.(4分)下列几种说法中,正确的是()A.有理数分为正有理数和负有理数B.整数和分数统称有理数C.0不是有理数D.负有理数就是负整数5.(4分)a为有理数,下列说法正确的是()A.﹣a为负数B.a一定有倒数C.|a﹣2|为正数D.|a|+2为正数6.(4分)如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C 表示的数为1()A.7 B.3 C.﹣3 D.﹣27.(4分)如果a、b异号,且a+b<0,则下列结论正确的是()A.a>0,b>0B.a<0,b<0C.a,b异号,且正数的绝对值较大D.a,b异号,且负数的绝对值较大8.(4分)已知a,b是有理数,|ab|=﹣ab(ab≠0),b下列正确的是()A.B.C.D.二、填空题(每小题4分,本大题共32分)9.(4分)﹣1的相反数是.10.(4分)比较大小:﹣3﹣2.1,﹣(﹣2)﹣|﹣2|(填>”,“<”或“=”).11.(4分)请写出一个比﹣3大的非负整数:.12.(4分)数轴上点P表示的数是﹣2,那么到P点的距离是3个单位长度的点表示的数是.13.(4分)如果a为有理数,且|a|=﹣a,那么a的取值范围是.14.(4分)已知a>0,b<0,|b|>|a|,﹣a,b,﹣b四个数的大小关系.15.(4分)已知点O为数轴的原点,点A,B在数轴上若AO=8,且点A表示的数比点B表示的数小,则点B表示的数是.16.(4分)已知x,y均为整数,且|x﹣y|+|x﹣3|=1.三、解答题(本大题共52分,17题,18题各8分,19-20题各7分,第21、22题8分)17.(8分)计算(1)(﹣6)+(﹣13).(2)(﹣)+.18.(8分)画数轴,并在数轴上表示下列数:﹣3、﹣2.7、﹣、1,再将这些数用“<”连接.19.(7分)已知|a|=3,|b|=3,a、b异号20.(7分)若|x﹣2|+|2y﹣5|=0,求x+y的值.21.(8分)出租车司机小张某天下午的运营是在一条东西走向的大道上.如果规定向东为正,他这天下午先向东走了15千米,又向西走了13千米,又向西走了11千米,又向东走了10千米(1)请你用正负数表示小张向东或向西运动的路程;(2)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?(3)离开下午出发点最远时是多少千米?(4)若汽车的耗油量为0.06升/千米,油价为4.5元/升,这天下午共需支付多少油钱?22.(8分)已知数轴上三点A、O、B对应的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)当x=时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是;(4)若点P到点A,点B,点O的距离之和最小.四.【附加】23.在某种特制的计算器中有一个按键,它代表运算.例如:上述操作即是求的值,运算结果为1.回答下面的问题:(1)小敏的输入顺序为﹣6,,﹣8,,运算结果是;(2)小杰的输入顺序为1,,,,,﹣2,,,,,,3,,运算结果是;(3)若在,,,,,,,,0,,,,,,,,这些数中,任意选取两个作为a、b的值运算,则所有的运算结果中最大的值是.北京市人大附中2019-2020学年七年级上学期第一次月考数学试卷参考答案一、选择题(每题4分,共32分)下面各题均有四个选項,其中只有一个是符合题意的1.【分析】根据小于零的数是负数,可得答案.【解答】解:在﹣5,﹣2.7,0,﹣4,负数有﹣5,﹣3.3,共有3个.故选:B.【点评】本题考查了有理数,解题的关键是明确小于零的数是负数.2.【分析】根据绝对值的含义和求法,可得﹣5的绝对值是:|﹣5|=5,据此解答即可.【解答】解:﹣5的绝对值是:|﹣5|=2.故选:A.【点评】此题主要考查了绝对值的含义和求法的应用,要熟练掌握,解答此题的关键是要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.3.【分析】利用数形结合的思想,数轴上A、B表示的数互为相反数,说明A,B到原点的距离相等,并且点A在点B的右边,可以确定这两个点的位置,即它们所表示的数.【解答】解:数轴上A、B表示的数互为相反数,所以它们到原点的距离都为2,所以点B表示的数﹣2,故选:C.【点评】练掌握数轴的有关知识和相反数的定义.数轴有原点,方向和单位长度,数轴上的点与实数一一对应;若两个数互为相反数,则它们的和为0.利用数轴可以很好的解决有关实数的问题.4.【分析】按照有理数的分类做出判断.【解答】解:A、有理数分为正有理数,故错误;B、整数和分数统称为有理数;C、0是有理数;D、负有理数就是负整数和负分数;故选:B.【点评】此题考查了有理数,掌握有理数的分类是本题的关键,注意0是整数,但它既不是正数,也不是负数.5.【分析】根据绝对值进行判断即可.【解答】解:因为a为有理数,A、当a<0时,错误;B、当a=0时,错误;C、当a=6时,不是正数;D、无论a取任何数,是正数;故选:D.【点评】此题考查正数和负数,关键是根据绝对值的非负性解答.6.【分析】首先设点A所表示的数是x,再根据平移时坐标的变化规律:左减右加,以及点C的坐标列方程求解.【解答】解:设A点表示的数为x.列方程为:x﹣2+5=8,x=﹣2.故选:D.【点评】本题考查数轴上点的坐标变化和平移规律:左减右加.7.【分析】两数异号,两数之和小于0,说明两数都是负数或一正一负,且负数的绝对值大.综合两个条件可选出答案.【解答】解:∵a+b<0,∴a,b同为负数,且负数的绝对值大,∵a,b异号,∴a、b异号.故选:D.【点评】此题主要考查了有理数的乘法和加法,解题的关键是熟练掌握计算法则,正确判断符号.8.【分析】根据题中的两个等式,分别得到a与b异号,a为负数,b为正数,且a的绝对值大于b的绝对值,采用特值法即可得到满足题意的图形.【解答】解:∵|ab|=﹣ab(ab≠0),|a+b|=|a|﹣b,∴|a|>|b|,且a<0在原点左侧,得到满足题意的图形为选项C.故选:C.【点评】此题考查了绝对值的代数意义、几何意义,及异号两数的加法法则.其中绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0.几何意义为:|a|表示在数轴上表示a的点到原点的距离.此类题目比较简单,可根据题中已知的条件利用取特殊值的方法进行比较,以简化计算.二、填空题(每小题4分,本大题共32分)9.【分析】根据相反数的定义分别填空即可.【解答】解:﹣1的相反数是1.故答案为:1.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.10.【分析】第一个根据两个负数比大小,其绝对值大的反而小比较即可,第二个根据正数都大于一切负数比较即可.【解答】解:∵|﹣3|=3,|﹣7.1|=2.5,﹣|﹣2|=﹣2,∴﹣3<﹣2.1,﹣(﹣2)>﹣|﹣2|,故答案为:<,>.【点评】本题考查了相反数,绝对值和有理数的大小比较,能熟记有理数的大小比较法则的内容是解此题的关键.11.【分析】此题答案不唯一,写出一个符合的即可.【解答】解:比﹣3大的非负整数有0,6,2…,故答案为:0.【点评】本题考查了有理数的大小比较和非负整数的意义,能求出符合的数是解此题的关键,注意:非负整数是指正整数和0.12.【分析】在数轴上表示出P点,找到与点P距离3个长度单位的点所表示的数即可.此类题注意两种情况:要求的点可以在已知点﹣2的左侧或右侧.【解答】解:根据数轴可以得到在数轴上与点A距离3个长度单位的点所表示的数是:﹣5或5.故答案为:﹣5或1.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.13.【分析】根据绝对值的性质解答即可.【解答】解:当a≤0时,|a|=﹣a,故答案为:a≤0【点评】此题考查绝对值,关键是根据非正数的绝对值是它的相反数解答.14.【分析】先在数轴上标出a、b、﹣a、﹣b的位置,再比较即可.【解答】解:∵a>0,b<0,∴b<﹣a<a<﹣b,故答案为:b<﹣a<a<﹣b.【点评】本题考查了数轴,相反数和有理数的大小比较,能知道a、b、﹣a、﹣b在数轴上的位置是解此题的关键.15.【分析】根据AO=8,先得出点A表示的数,再根据AB=2,分类讨论即可得出点B表示的数.【解答】解:∵AO=8∴点A表示的数为﹣8或4∵AB=2∴当点A表示的数为﹣8,且点A表示的数比点B表示的数小时,点B表示的数为﹣4;当点A表示的数为8,且点A表示的数比点B表示的数小时,点B表示的数为10.故答案为:﹣6或10.【点评】本题考查了数轴上的点所表示的数,分类讨论是解题的关键.16.【分析】根据x﹣y=±1,x﹣3=0,或x﹣3=±1,x﹣y=0四种情况解答即可.【解答】解:因为x,y均为整数,可得:x﹣y=±1,x﹣3=3,x﹣y=0,当x﹣y=1,x﹣7=0,y=2;当x﹣y=﹣7,x﹣3=0,y=7;当x﹣y=0,x﹣3=5,y=4;当x﹣y=0,x﹣4=﹣1,y=2,故答案为:4或8或4或2.【点评】本题考查了绝对值,分类讨论解含绝对值的方程是关键.三、解答题(本大题共52分,17题,18题各8分,19-20题各7分,第21、22题8分)17.【分析】(1)根据有理数的加法法则可以解答本题;(2)先通分,后加减即可解答.【解答】解:(1)(﹣6)+(﹣13)=﹣(6+13).=﹣19;(2)(﹣)+=﹣+=﹣+=﹣.【点评】本题考查有理数的加减法运算,解答本题的关键是明确有理数加减法的计算方法.18.【分析】先在数轴上表示出各个数,再比较即可.【解答】解:﹣3<﹣2.5<﹣<3.【点评】本题考查了数轴和有理数的大小比较,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的各个数,右边的数总比左边的数大.19.【分析】根据|a|=3,|b|=3,a、b异号,可以求得a、b的值,从而可以求得所求式子的值.【解答】解:∵|a|=3,|b|=3,a,∴a=7,b=﹣3或a=﹣3,当a=6,b=﹣3时,当a=﹣3,b=8时,由上可得,a+b的值是0.【点评】本题考查有理数的加法、绝对值,解答本题的关键是明确题意,求出a、b的值.20.【分析】根据“|x﹣2|+|2y﹣5|=0”,结合绝对值的定义,分别得到关于a和关于b的一元一次方程,解之,代入x+y,计算求值即可.【解答】解:根据题意得:x﹣2=0,解得:x=8,2y﹣5=4,解得:y=,则x+y=6+=,即x+y的值为.【点评】本题考查了代数式求值,非负数的性质:绝对值,正确掌握绝对值的定义,一元一次方程的解法,有理数的混合运算是解题的关键.21.【分析】(1)向东为正,则向西为负,再根据距离,即可用正数、负数表示,(2)计算(1)中的数的和,即可得出答案,(3)分别计算出将每一位顾客送到目的地时,距离出发点的距离,比较得出答案,(4)计算出行驶的总路程,即(1)中的各个数的绝对值的和,再根据单价、数量,进而求出总价即可.【解答】解:(1)用正负数表示小张向东或向西运动的路程(单位:千米)为:+15,﹣13,﹣11,﹣8,(2)(+15)+(﹣13)+14+(﹣11)+10+(﹣8)=2千米,答:将最后一名乘客送到目的地时,小张在下午出车点东7千米的地方,(3)将每一位顾客送到目的地,离出发点的距离为,2千米,5千米,7千米,因此最远为16千米,答:离开下午出发点最远时是16千米.(4)0.06×4.5×(15+13+14+11+10+8)=19.17元,答:这天下午共需支付19.17元的油钱.【点评】考查正数、负数、绝对值的意义,以及数轴表示数,理解正负数的意义是解决问题的前提,借助数轴表示是关键.22.【分析】(1)点P位于点A和点B中间时,点P到点A和点B的距离相等;(2)根据点A、点B的距离之和为4,将点P从点A向左移动1个单位或向右移动1个单位,则点P到点A和点B的距离之和为6,据此可解;(3)点P位于点A和点B之间时,点P到点A,点B的距离之和最小,据此可解;(4)点P位于点O时,点P到点A,点B,点O的距离之和最小,据此可解.【解答】解:(1)∵A、B对应的数分别为﹣3,1,如果点P到点A,点B的距离相等,则x=﹣5故答案为:﹣1;(2)∵点A、点B的距离之和为4∴若要使得点P到点A、点B的距离之和是3则点P位于点A左侧一个单位或点P位于点B右侧1个单位,即:x=﹣4或x=8时,点P到点A;(3)∵点P位于点A和点B之间时,点P到点A,此时x的取值范围是﹣3≤x≤1故答案为:﹣5≤x≤1.(4)若点P位于点O时,点P到点A,点O的距离之和最小最小值为线段AB的长,即4.故答案为:7.【点评】本题考查了数轴上的点所表示的数及点与点之间的距离的关系,明确题意,是解题的关键.四.【附加】23.【分析】本题要求同学们能熟练应用计算器,会用科学计算器进行计算.【解答】解:根据题意,分析运算,b中的最小值,故答案为:(1)根据题意有结果为﹣6与﹣6中的较小的数,即﹣8.(2)根据题意由运算的结果为﹣,﹣8,﹣2.(3)找这一列数中,绝对值相差最小,;按运算法则计算可得结果是.(由于本份试卷有些题目的解法不唯一,因此请老师们依据评分酌情给分.)【点评】本题要求学生根据题意中的计算法则,分析出计算的结果;考查学生的分析,处理问题的能力.。
北京市西城区德胜中学2021-2022学年上学期初中七年级期中考试数学试卷考试时间:100分钟一、选择题(本题共20分,每题2分)1.下表是几种液体在标准大气压下的沸点:A .液态氧B .液态氢C .液态氮D .液态氦2.2021年国庆档电影《长津湖》仅10月1日当天的票房就达到了3.88亿元,创下了国庆档电影单日票房的记录.其中3.88亿元用科学记数法可表示为A .738.810⨯元B .93.8810⨯元C .100.38810⨯元D .83.8810⨯元 3.下列说法正确的是 A .10不是整式B .-5是单项式C .32x -的一次项系数是1 D .12x +是单项式4.若37x =是关于x 的方程70x m +=的解,则m 的值为 A .3- B .13- C .3 D .135.下列计算正确的是A .325235m m m +=B .m n mn +=C .220m n nm -=D .3223m m m -=-6.下列计算正确的是A .8(42)8482÷+=÷+÷B .1(1)(2)(1)(1)12-÷-⨯=-÷-= C .3311311636624433434⎛⎫⎛⎫⎛⎫-÷=-⨯=-⨯+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ D .[](2)(2)40--+÷=7.有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是A .4a <-B .0bd >C .0b c +>D .||||a b >8.如果am an =,那么下列等式不一定成立的是A .33am an +=+B .22am an =C .m n =D .2233am an -=- 9.如果a +b +c =0,且|a |>|b |>|c |,则下列式子可能成立的是 A .c >0,b <0B .c <0,b >0C .c >0,a <0D .b =010.图1是长为a ,宽为b (a >b ,a 、b 为定值)的小长方形纸片,将6张如图1的纸片按图2的方式不重叠地放在长方形ABCD 内,已知CD 的长度固定不变,BC 的长度可以变化,图中阴影部分(即两个长方形)的面积分别表示为S 1,S 2,若S =S 1-S 2,且S 为定值,则a ,b 满足的关系是A .a =2bB .a =3bC .a =4bD .a =5b二、填空题(本题共16分,每题2分)11.如图,在数轴上-3的倒数所对应的点是 .12.若单项式32mx y 与单项式 23nx y -是同类项,则m = , n = . 13.写出一个多项式,使得它与多项式m -2n 的和为一个单项式: . 14.用四舍五入法将3.694精确到0.01,所得到的近似值为 .15.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式3()2f x mx nx =++,当1x =时,多项式的值为(1)2f m n =++,若(1)6f =,则(1)f -的值为_______.16.已知a ,b ,c 是ABC ∆的三条边长,化简a b c a b c +-+--的结果为 .17.小华带x 元去买甜点,若全买红豆汤圆刚好可买30杯,若全买豆花,刚好可买40杯.已知豆花每杯比红豆汤圆便宜10元,依题意可列出方程为 .18.华氏温标与摄氏温标是两大国际主流的计量温度的标准.德国的华伦海特用水银代替酒精作为测温物质,他令水的沸点为212度,纯水的冰点为32度,这套记温体系就是华氏温标.瑞典的天文学家安德斯·摄尔修斯将标准大气压下冰水混合物的温度规定为0摄氏度,水的沸点规定为100摄氏度,这套记温体系就是摄氏温标.两套记温体系之间是可以进行相互转化的,部分温度对应表如下:= ;(2)若华氏温度为a ,摄氏温度为b ,则把摄氏温度转化为华氏温度...........的公式为 .三、计算题(本题共40分,第19题20分,第22题10分,其余每题5分)19.(1)3511114662⎛⎫---- ⎪⎝⎭ (2)13(16)(1)45⨯-÷- (3))25.03161(12-+⨯- (4)213(12)6(1)2-+-⨯--÷-20.化简并求值:()22222(2)3()x xy y xy x y ⎡⎤-+--+⎣⎦,其中x 、y 的取值如图所示.21.已知22b b a =-,求3232)2()2(2a a a b b a -+---的值. 22.解方程(1)3(202)10x x --= (2)243146x x --=-四、解答题(本题共24分,第23、24、25题每题4分,第26、27题每题6分)23.解一元一次方程的过程就是通过变形,把一元一次方程转化为x a =的形式.下面是解方程20.30.410.50.3x x -+-=的主要过程,请在如图的矩形框中选择与方程变形对应的依据,并将它前面的序号填入相应的括号中.解:原方程可化为203104153x x -+-=( ) 去分母,得3(203)5(104)15x x --+=( )去括号,得609502015x x ---=( ) 移项,得605015920x x -=++( ) 合并同类项,得1044x =(乘法分配律) 系数化为1,得 4.4x =(等式的基本性质2)24.已知关于x 的方程372x x m -=+的解是方程335x x -=-的解的2倍,求22m m +-的值.25.我们学习过了有理数的五种运算和研究运算的方法,现在定义了一个新运算:a △b =■,原文的内容被遮盖住了,根据下面各式,回答问题:观察下列式子: 1△3=1×4+3=7; 3△(-1)=3×4-1=11; (-8)△5=(-8)×4+5=-27; (-4)△(-3)=(-4)×4-3=-19.(1)请你补全定义内容:a △b = ;(用含a 、b 的代数式表示)(2)当a ≠b 时,这种新定义的运算是否满足交换律,即a △b =b △a 是否成立,请说明理由;(3)如果a △(-6)=3△a ,请求出a 的值. 26.列方程解决实际问题.........某通讯公司推出以下收费套餐,小明选择套餐A ,小王选择套餐B ,设小明通话时间为1t 分钟,小王通话时间为2t 分钟.(1)请用含1、2的代数式表示小明和小王的通话费用.(2)若小明4月份通话时间为390分钟,小王通话费用和小明相同,求小王通话时间. (3)若小明和小王5月份通话时间和通话费用都一样,求通话时间.27.对于数轴上的点P 、Q ,给出如下定义:若点P 到点Q 的距离为d (d ≥0),则称d 为点P 到点Q 的追击值,记作d [PQ ] .例如,在数轴上点P 表示的数是5,点Q 表示的数是2,则点P 到点Q 的追击值为d [PQ ]=3.(1)点M ,N 都在数轴上,点M 表示的数是1,且点M 到点N 的追击值d [MN ]=a (a ≥0),则点N 表示的数是 (用含a 的代数式表示).(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B ,点A 从点C 出发,以每秒4个单位长度的速度沿数轴正方向运动,点B 表示的数是b ,以每秒1个单位长度的速度沿数轴正方向运动,设运动时间为t(t≥0).①当b=5时,问t为何值时,点A到点B的追击值d[AB]=3;②当时间t不超过3秒时,要想使点A到点B的追击值d[AB]都满足不大于9个单位长度,请直接写出b的取值范围.【试题答案】一、选择题(本题共20分,每题2分)二、填空题(本题共16分,每题2分)三、计算题(本题共40分,第19题20分,第22题10分,其余每题5分)19.(1)14 (2) 52(3) -3 (4) -9 20. 解:原式=27x xy -………………………2分 当x =2,y =-1时,………………………3分 原式=18 ………………………5分 21.解:2224a b b =--原式22()4a b b =--………………………3分∵22b b a =-∴原式=0………………………5分 22.(1)x =10 (2) x =103-四、解答题(本题共24分,第23、24、25题每题4分,第26、27题每题6分)23.③②④①24.解:∵372x x m -=+的解为7x m =+,………………………1分335x x -=-的解为2x =,………………………2分又∵方程372x x m -=+的解是方程335x x -=-的解的2倍, ∴74m +=∴3m =-.………………………3分 ∴224m m +-=………………………4分 25.解:(1)4a +b ;………………………1分(2)a △b =b △a 不成立,理由如下:………………………2分 由(1)知,a △b =4a +b .b△a=4b+a.当a△b=b△a时,4a+b=4b+a,此时a=b,与a≠b相矛盾,所以a△b=b△a不成立;………………………3分(如果用举反例的方法也可以)(3)由a△(-6)=3△a得,4a-6=3×4+a.解得a=6.………………………4分26. 解:(1)设小明的通话费用为y1元,小王的通话费用为y2元,当0≤t1≤150,y1=58;当t1>150,y1=58+0.25(t1-150)=0.25t1+20.5;…1分当0≤t1≤350,y2=88;当t1>350,y2=88+0.20(t2-350)=0.2t2+18;……2分(没有化简不扣分,t值边界没有取0不扣分)(2)∵t1=390>150,∴y1=0.25×390+20.5=118,………………………3分∵y1=y2,∴0.2t2+18=118,解得t2=500;………………………4分(3)当0≤t≤150,y1≠y2,当150<t≤350,y1=y2,t1=t2,20.5+0.25t1=88,解得t1=270=t2,………………………5分当t>350,y1=y2,t1=t2,20.5+0.25t=18+0.2t,解得t=-50(舍去).………………………6分∴小明和小王5月份通话时间和通话费用都一样,通话时间为270分钟.27. 解:(1)1+a或1-a.………………………2分(每个1分)(2)①根据题意,点A所表示的数为1+4t,点B所表示的数为5+t,∴AB=|5+t-(1+4t)|=|4-3t|,∵d[AB]=3,∴|4-3t|=3,当4-3t=3时,解得t=13,当4-3t=-3时,解得t=73∴t的值为13或73………………………4分(每个答案1分)②当点B在点A左侧或者重合时,此时b≤1,随着时间的增大,A和B之间的距离会越来越大,∵t不超过3秒时,要想使点A到点B的追击值d[AB]都满足不大于9个单位长度即当t=3时,d[AB]最大值为9,此时A:13,B:b+3,d[AB]= 13-(b+3)=10-b∴10-b=9,解得b= 1,∴b= 1.当点B在点A右侧时,此时b>1,在A、B不重合的情况下,A和B之间的距离会越来越小,即当t=0时,d[AB]最大值为9,此时A:1,B:b,d[AB]= b-1∴b-1=9,解得b=10,∴1<b≤10,综合两种情况,b的取值范围是1≤b≤10.……………………6分(边界没取等号扣1分;一个边界正确,另一个边界不正确扣1分)。
北京市第四中学2022-2023学年七年级上学期期中数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.飞机上升了-50米,实际上是()A .上升50米B .下降-50米C .先上升50米,再下降50米D .下降50米2.在代数式2532x x -,22x y π,1x ,5-,a 中,单项式的个数是()A .2个B .3个C .4个D .5个3.下列各式正确的是()A .853--=-B .437a b ab +=C .54x x x-=D .()275---=4.方程2x =x -2的解是()A .1B .-1C .-2D .25.如图,a b 、两个数在数轴上的位置如图所示,则下列各式正确的是()A .0a b +<B .0ab <C .0b a -<D .>0ab6.下列说法正确的是()A .1.8和1.80的精确度相同B .5.7万精确到0.1C .6.610精确到千分位D .1300000用科学记数法表示为51310⨯7.下列方程变形中,正确的是()A .由03y=,得3y =B .由23x =,得23x =C .由23a a -=,得3a =D .由2131b b -=+,得2b =8.有一数值转换器,原理如图所示,若开始输入x 的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,依次继续下去⋯⋯第2019次输出的结果是()A .6B .8C .4D .39.《庄子》中记载:“一尺之捶,日取其半,万世不竭.”这句话的意思是一尺长的木棍,每天截取它的一半,永远也截不完.若按此方式截一根长为1的木棍,第5天截取后木棍剩余的长度是()A .5112-B .4112-C .512D .41210.如图所示,动点P 从第一个数0的位置出发,每次跳动一个单位长度,第一次跳动一个单位长度到达数1的位置,第二次跳动一个单位长度到达数2的位置,第三次跳动一个单位长度到达数3的位置,第四次跳动一个单位长度到达数4的位置,……,依此规律跳动下去,点P 从0跳动6次到达1P 的位置,点P 从0跳动21次到达2P 的位置,……,点1P 、2P 、3P ……n P 在一条直线上,则点P 从0跳动()次可到达14P的位置.A .887B .903C .909D .1024二、填空题11.2-的相反数是___________.12.单项式2335x yz -的系数是______.13.比较大小:23-______34-.14.若23a b +=,则742b a ++=______.15.代数式2(1)2m +-有最小值为______.16.若a ,b 互为倒数,c ,d 互为相反数,1m =,则()20222ab c d m -++的值为______.17.已知一个长为6n ,宽为2n 的长方形,如图1所示,沿图中虚线裁剪成四个相同的小长方形,按图2的方式拼接,则阴影部分正方形的边长是___________.(用含n 的代数式表示)18.将1,3,5,…,199,这100个自然数任意分成50组,每组两个数,将其中一个数记为x ,另一个数记为y ,代入代数式()14x y x y +--中计算,求出其结果,50组都代入后可得50个值,则这50个值的和的最小值是_________________.三、解答题19.计算(1)()()2935+---+;(2)()11124263⎛⎫-+⨯- ⎪⎝⎭;(3)731081557⎛⎫-÷⨯-⨯ ⎪⎝⎭;(4)()337911660.355⎛⎫⎛⎫⨯-+-⨯-+⨯ ⎪ ⎪⎝⎭⎝⎭;(5)(23213[22)3.34⎛⎫⎤-+⨯+--÷- ⎪⎦⎝⎭20.化简()()222222122+----a b ab a b ab ab .21.已知(x+2)2+|y ﹣12|=0,求5x2y ﹣[2x2y ﹣(xy2﹣2x2y )﹣4]﹣2xy2的值.22.解方程.(1)4752x x -=-;(2)()()371323x x x --=-+.23.有一列数,按一定规律排列成1-,3,9-,27,81-,243,⋯其中某三个相邻数的和是1701,这三个数各是多少?请列方程求解.24.小亮在解关于x 的一元一次方程312x -+□=3时,发现正整数□被污染了;(1)小亮猜□是5,请解一元一次方程31532x -+=;(2)若老师告诉小亮这个方程的解是正整数,则被污染的正整数是多少?25.材料阅读:传说夏禹治水时,在黄河支流洛水中浮现出一只大乌龟,背上有一个很奇怪的图案,这个图案被后人称为“洛书”,即现在的三阶幻方.三阶幻方又叫九宫格,它是由九个数字组成的一个三行三列的矩阵.三阶幻方有“和幻方”和“积幻方”.图1所示的是“和幻方”,其每行、每列、每条对角线上的三个数字之和均相等.(1)=a ______,b =______;(2)如图2是一个满足条件的三阶幻方的一部分,则图中字母m 表示的数是______;(3)图3所示是“积幻方”,其每行、每列、每条对角线上的三个数字之积均相等,则n m =______.26.某路公交车从起点经过A 、B 、C 、D 站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数)起点ABCD 终点上车的人数181512750下车的人数3-4-10-11-(1)到终点下车______人;(2)车行驶在哪两站之间车上的乘客最多?______站和______站;(3)若每人乘坐一站需买票1元,问该车出车一次能收入多少钱?写出算式.27.如图,点A 、O 、C 、B 为数轴上的点,O 为原点,A 表示的数是﹣8,C 表示的数是2,B 表示的数是6.我们将数轴在点O 和点C 处各弯折一次,弯折后CB 与AO 处于水平位置,线段OC 处产生了一个坡度,我们称这样的数轴为“折坡数轴”,其中O 为“折坡数轴”原点,在“折坡数轴”上,每个点对应的数就是把“折坡数轴”拉直后对应的数.记AB 为“折坡数轴”拉直后点A 和点B 的距离:即AB =AO +OC +CB ,其中AO 、OC 、CB 代表线段的长度.(1)若点T 为“折坡数轴”上一点,且16TA TB +=,请求出点T 所表示的数;(2)定义“折坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.动点P 从点A 处沿“折坡数轴”以每秒2个单位长度的速度向右移动到点O ,再上坡移动,当移到点C 时,立即掉头返回(掉头时间不计),在点P 出发的同时,动点Q 从点B 处沿“折坡数轴”以每秒1个单位长度的速度向左移动到点C ,再下坡到点O ,然后再沿OA 方向移动,当点P 重新回到点A 时所有运动结束,设点P 运动时间为t 秒,在移动过程中:①点P 在第秒时回到点A ;②当t =时,2PQ PO =.(请直接写出t 的值)28.请观察下列各式:110.11010-==,22110.011010010-===,33110.00110100010-===,⋯一般地,10的n -(n 为正整数)次幂等于0.0001=⋯(小数点后面有n 位),所以可以利用这种方法表示一些很小的数,例如:40.000536 5.360.0001 5.3610-=⨯=⨯;80.00000007287.280.000000017.2810--=-⨯=-⨯.像上面这样,把一个绝对值小于1的数表示成10n a -⨯的形式(其中1||10a < ,n 是正整数),使用的也是科学记数法.请阅读上述材料,完成下列各题:(1)下列选项中,正确使用科学记数法表示的数是______A .537.510⨯B .94.8310--⨯C .80.25810-⨯D .1290.610-⨯(2)已知1米等于910纳米,一微型电子元件的直径约50000纳米,用科学记数法可以表示成______米.29.将n 个0或1排列在一起组成了一个数组,记为()12,,n A t t t = ,其中,12,,,n t t t ⋅⋅⋅都取0或1,称A 是一个n 元完美数组(2n ≥且n 为整数).例如:()0,1,()1,1都是2元完美数组,()0,0,1,1,()10,0,1,都是4元完美数组,但()3,2不是任何完美数组.定义以下两个新运算:新运算1:对于x 和y ,()x y x y x y =+--*,新运算2:对于任意两个n 元完美数组()12,,,n M x x x = 和()12,,,n N y y y = ,()112212n n M N x y x y x y ⊗=++⋅⋅⋅+***,例如:对于3元完美数组()1,1,1M =和()0,0,1N =,有()100212M N ⊗=++=.(1)在()0,0,0,()2,0,1,()1,1,1,1,()1,1,0中是3元完美数组的有:______;(2)设()()1,0,1,1,1,1A B ==,则A B ⊗=______;(3)已知完美数组()1,1,1,0M =求出所有4元完美数组N ,使得2M N ⊗=;(4)现有m 个不同的2022元完美数组,m 是正整数,且对于其中任意的两个完美数组C ,D 均有:0C D ⊗=;则m 的最大可能值是多少?写出答案,并给出此时这些完美数组的一个构造.30.定义1:一般地,从n 个不同元素中取出()m m n ≤个元素,按照一定的顺序排成一列,叫作从n 个不同元素中取出m 个元素的一个排列.例如:1,2,3是1,2,3的一个排列,1,3,2和2,3,1也是1,2,3的一个排列.如果1a ,2a ,3a .,4a .,5a 是1,2,3,4,5的一个排列,那么将这个排列记为{}5a :1a ,2a ,3a ,4a ,5a .定义2:设()1234512345,,,,12345E a a a a a a a a a a =-+-+-+-+-,称上述等式为数列{}5a :1a ,2a ,3a ,4a ,5a 的位差和.(1)求数列1,3,4,2,5的位差和;(2)若位差和()12345,,,,4E a a a a a =,请直接写出满足条件的数列{}5a 的个数参考答案:1.D【详解】解:因为“正”和“负”相对,所以,飞机飞行时比原来的高度高,即上升规定为“+”,则飞机飞行时比原来的高度低,即下降为“-”.故-50米表示下降了50米.故选D 2.B【详解】单项式就是数与字母的乘积,以及单独的数与单独的字母都是单项式,根据定义可判断是单项式的有:2πx ²y 、−5、a ,共有3个.故选:B.3.D【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此判断即可.【详解】解:A 、5813--=-,故本选项错误,不符合题意;B 、4a 与3b 不是同类项,不能合并,故本选项错误,不符合题意;C 、5x 与4x 不是同类项,不能合并,故本选项错误,不符合题意;D 、2(7)5---=,正确,符合题意;故选:D .【点睛】本题考查了合并同类项和有理数的减法运算,解题的关键是掌握合并同类项法则和有理数减法法则.4.C【分析】移项合并同类项即可得解.【详解】22x x =-,解得x =-2,故选C【点睛】本题考查一元一次方程的解法.按照正常的解方程的步骤解题即可.5.B【分析】根据数轴上a b 、的位置可知,0a <,0b >,a b <由此即可求解.【详解】解:根据题意得,0a <,0b >,a b <,∴0a b +>,A 选项不符合题意;0ab <,B 选项符合题意;0b a ->,C 选项不符合题意;0ab<,D 选项不符合题意.故选:B .【点睛】本题主要考查数轴上用字母表示有理数的大小关系,理解和掌握数轴的特点是解题的关键.6.C【分析】根据精确度的定义判断A ;把5.7万化成57000,7所在数位便为精确数位,从而判断B ;根据精确度判断C ;根据科学记数法判断D .【详解】A .1.8精确到十分位,1.80精确到百分位,再者精确度不相同,选项不符合题意;B .因5.7万57000=,所以5.7万精确到千位,选项不符合题意;C .6.610精确到千分位,选项符合题意;D .1300000用科学记数法表示为61.310⨯,选项不符合题意;故选:C .【点睛】此题考查了科学记数法-表示较大的数,较小的数,以及近似数与有效数字,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.C【分析】按照解一元一次方程的步骤进行计算,逐一判断即可解答.【详解】A 、由03y=,得0y =,故A 不符合题意;B 、由23x =,得32x =,故B 不符合题意;C 、由23a a -=,得3a =,故C 符合题意;D 、由2131b b -=+,得2b =-,故D 不符合题意;故选:C .【点睛】本题考查了解一元一次方程,等式的性质,熟练掌握解一元一次方程的步骤是解题的关键.8.D【分析】根据题意和运算程序可以计算出前几次的输出结果,从而可以发现输出结果的变化特点,然后即可求得第2019次输出的结果.【详解】由题意可得,第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是3,第4次输出的结果是8,第5次输出的结果是4,第6次输出的结果是2,第7次输出的结果是7,第8次输出的结果是12,⋯,由上可得,这列数依次以12,6,3,8,4,2,7循环出现,201972883÷=⋯ ,∴第2019次输出的结果是3,故选:D .【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现输出结果的变化特点,求出所求次数的输出结果.9.C【分析】根据分数乘法的意义求得剩下的长度.【详解】由题意,第一天截取后木棍剩余的长度为11122-=;第二天截取后木棍剩余的长度为21111111(12222242-⨯=⨯-==第三天截取后木棍剩余的长度为22231111111(1)2222282-⨯=-==……第n 天截取后木棍剩余的长度为12n∴第5天截取后木棍剩余的长度是512故选C【点睛】本题考查了分数乘法的应用,乘方的意义,掌握有理数乘方的意义是解题的关键.10.B【分析】由题意可得:跳动1236++=个单位长度到1,P 从1P 到2P 再跳动45615++=个单位长度,归纳可得:从上一个点跳动到下一个点跳动的单位长度是连续的三个正整数的和,从而可得答案.【详解】解:由题意可得:跳动1236++=个单位长度到1,P 从1P 到2P 再跳动45615++=个单位长度,······归纳可得:结合143=42,´所以点P 从0跳动到达14P 跳动了:123404142++++++g g g ()1142429032=+´=个单位长度.故选B【点睛】本题考查的是数字规律的探究,有理数的加法运算,掌握“从具体到一般的探究方法及运用发现的规律解题”是关键.11.2【分析】根据“只有符号不同的两个数叫做互为相反数”解答即可.【详解】2-的相反数是:(2)2--=,故答案为:2.【点睛】本题考查了相反数的定义,熟记相反数的概念是解题的关键.12.35-##-0.6【分析】利用单项式系数定义可得答案.【详解】单项式2335x yz -的系数是35-,故答案为:35-.【点睛】此题主要考查了单项式,关键是掌握单项式中的数字因数叫做单项式的系数.13.>【分析】利用两个负数比较大小的方法判断即可.【详解】解:∵23-=23,34-=34,且23<34,∴23->34-,故答案为:>.【点睛】此题考查了有理数的大小比较,熟练掌握两个负数比较大小的方法是解本题的关键.14.13【分析】根据23a b +=,可知24a b +的值,进一步求解即可.【详解】23a b += ,()2422236a b a b ∴+=+=⨯=,7427613b a ∴++=+=,故答案为:13.【点睛】本题考查了代数式求值,熟练掌握整体代入法是解题的关键.15.2-【分析】根据偶次方的非负数性质可得2(1)0m +≥,据此可得代数式2(1)2m +-的最小值.【详解】解:2(1)0m +≥ ,2(1)2022m ∴+-=-=-,∴最小值为2-.故答案为:2-.【点睛】本题考查了非负数性质,掌握偶次方的非负数是解答本题的关键.16.3或1-【分析】根据a ,b 互为倒数,c ,d 互为相反数,1m =,可以得到1ab =,0c d +=,1m =±,然后代入所求式子计算即可.【详解】解:a ,b 互为倒数,c ,d 互为相反数,1m =,1ab ∴=,0c d +=,1m =±,当1m =时,()20222ab c d m-++12022021=-⨯+⨯102=-+3=;当1m =-时,()20222ab c d m-++()12020021=-⨯+⨯-()102=-+-1=-;故答案为:3或1-.【点睛】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.17.2n【分析】根据题意和观察图形,可以得到图2中小长方形的长和宽,从而可以得到阴影部分正方形的边长.【详解】解:由图可得,图2中每个小长方形的长为3n ,宽为n ,则阴影部分正方形的边长是:3n -n =2n ,故答案为:2n .【点睛】本题考查列代数式,解答本题的关键是明确题意,得到小长方形的长和宽,利用数形结合的思想解答.18.1250【分析】假设x>y ,化简()14x y x y +--=12y ,得到当y 是1,3,5,7,L ,99时,这50个值的和最小,,根据求和公式计算即可得到答案.【详解】假设x>y ,∴()14x y x y +--=()1142x y x y y +-+=,∴当50组中的较小的数y 恰好是1,3,5,7,L ,99时,这50个值的和最小,最小值为()1135992++++ =12⨯()5019912502⨯+=,故答案为:1250.【点睛】此题考查代数式的计算,设出x 、y 的大小关系,据此化简是解题的关键.19.(1)1(2)-16(3)25-(4)-21(5)-1【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)根据乘法分配律计算即可;(3)先将除法转化为乘法,再约分即可;(4)先算乘法,再算加法即可;(5)先算乘方和括号内的式子,然后计算括号外的乘除法,最后算加减法即可.【详解】(1)()()2935+---+()2935=+-++1=;(2)()11124263⎛⎫-+⨯- ⎪⎝⎭()()()111242424263=⨯--⨯-+⨯-()1248=-++-16=-;(3)731081557⎛⎫-÷⨯-⨯ ⎪⎝⎭718105857=-⨯⨯⨯25=-;(4)()337911660.355⎛⎫⎛⎫⨯-+-⨯-+⨯ ⎪ ⎪⎝⎭⎝⎭()3791119.85⎛⎫⎡⎤=+-⨯-+ ⎪⎣⎦⎝⎭()680.619.8=⨯-+40.819.8=-+21=-;(5)(23213[22)334⎛⎫⎤-+⨯+--÷- ⎪⎦⎝⎭()2928343=-+⨯-+⨯()296343=-+⨯-+⨯()9412=-+-+1=-.【点睛】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.20.22ab-【分析】根据整式的加减运算法则进行化简即可求出答案.【详解】解:原式2222222222a b ab a b ab ab=+-+--2222222222a b a b ab ab ab =-+--+22ab =-.【点睛】本题考查整式的加减,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.21.162【详解】分析:原式去括号合并得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.详解:原式=5x 2y ﹣2x 2y +xy 2﹣2x 2y +4﹣2xy 2=x 2y ﹣xy 2+4.∵(x +2)2+|y ﹣12|=0,∴x =﹣2,y =12,当x =﹣2,y =12时,原式=2+12+4=612.点睛:本题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解答本题的关键.22.(1)2x =(2)5x =【分析】(1)按照解一元一次方程的步骤:移项,合并同类项,系数化为1,进行计算即可解答;(2)按照解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1,进行计算即可解答.【详解】(1)4752x x -=-,4257x x +=+,612x =,2x =;(2)()()371323x x x --=-+,377326x x x -+=--,372367x x x -+=--,210x -=-,5x =.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程是解题的关键.23.243,729-,2187【分析】设三个数中最前面的数为x ,则另外两个数分别为3x -,9x ,根据三个数之和为1701,即可得出关于x 的一元一次方程,解之即可得出x 的值,再将其代入3x -和9x 中,得出三个数.【详解】设三个数中最前面的数为x ,则另外两个数分别为3x -,9x ,依题意,得:391701x x x -+=,解得:243x =,3729x ∴-=-,92187x =,答:这三个数依次是243,729-,2187.【点睛】本题考查了一元一次方程的应用以及规律型:数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.24.(1)=1x -(2)2【分析】(1)利用去分母,移项,合并同类项,系数化1,可得答案;(2)设被污染的正整数为m ,则有3132x m -+=,求解可得答案.【详解】(1)31532x -+=,去分母,得31106x -+=,移项,合并同类项得33x =-,系数化1,得=1x -;(2)设被污染的正整数为m ,则有3132x m -+=,3126x m -+=,解得723m x -=,723m - 是正整数,m 为正整数,2m ∴=.即被污染的正整数是2.【点睛】此题考查的是一元一次方程的解,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.25.(1)12,6-(2)7(3)169【分析】(1)根据三个数的和为()87832b ++=++-,可求b ,进一步求出a ;(2)根据三个数的和538p m m ++=++,求出p ,再设第一列第2个数、第3个数分别为x ,y ,根据“和幻方”的定义求出3x m =-+,2y m =+,然后再求出m ;(3)根据“积幻方”先求出n ,再求出m ,再代入计算即可求解.【详解】(1)解:依题意有:()87832b ++=++-,解得6b =-,∴387a +=+,解得12a =,故答案为:12,6-.(2)解:根据题意得:538p +=+,解得6p =,53xp 8y m如图所示:根据题意得:5636m y ++=++,5686m x ++=++,解得2y m =+,3x m =-+,()()53238m m m ∴+-+++=++,解得7m =,故答案为:7.(3)解:依题意有:()422233n ⎛⎫⨯=⨯-⨯- ⎪⎝⎭,解得2n =,∴322m -=⨯,解得43m =-,∴2416()39n m =-=.故答案为:169.【点睛】本题考查了一元一次方程的应用,数学常识,根据表格,先求出三个数的和或积是解题的关键,也是本题的突破口.26.(1)29(2)B ,C(3)150元【分析】(1)根据正负数的意义,上车为正数,下车为负数,列出算式即可得解;(2)分别计算相邻两站之间车上的乘客数解答即可;(3)分别计算相邻两站之间车上的乘客数,相加再乘以票价1元,然后计算即可得解.【详解】(1)根据题意可得:到终点前,车上有1815312471051129+-+-+-+-=,即29人;故到终点下车29人.故答案为29;(2)根据图表可知各站之间车上人数分别是:起点A →站,车上有18人,A 站B →站,车上有1815330+-=人,B 站C →站,车上有3012438+-=人,C 站D →站,车上有3871035+-=人,D 站→终点,车上有3551129+-=人,易知B 站和C 站之间人数最多.故答案为B ;C ;(3)根据题意可知:起点A →站,车上有18人,A 站B →站,车上有1815330+-=人,B 站C →站,车上有3012438+-=人,C 站D →站,车上有3871035+-=人,D 站→终点,车上有3551129+-=人,则()18303835291150++++⨯=(元).答:该车出车一次能收入150元.【点睛】本题考查了正数和负数,有理数的混合运算的应用,读懂图表信息,求出各站之间车上人数是解题的关键.27.(1)−9和7;(2)①212;②2或225或315或345【分析】(1)首先判断出点T 的位置,设T 表示的数为x ,根据T 的位置分两种情况列出方程求解即可;(2)①分别根据“时间=路程÷速度”求出点P 运动的时间,再求和即可;②分别求出点Q 在运动时间,结合点P ,点Q 的不同位置,根据2PQ PO =列出方程求解即可.【详解】(1)∵AB =AO +OC +CB =|−8|+6=14,而16TA TB +=,16>AB ,∴T 不在AB 内,设T 表示的数为x ,当T 在点A 的左侧时,TA TB +=TA TA AB++=(−8−x )+(−8−x )+14=16,解得:x =−9;当T 在点B 的右侧时,TA TB +=TB TB AB++=(x -6)+(x -6)+14=16,解得:x =7,故答案为:−9和7;(2)①∵O 为原点,A 表示的数是﹣8,C 表示的数是2,B 表示的数是6∴AO =8,OC =2,∴点P 从A 到O 所需时间为:12AO t ==4,∵OC =2,∴点P 从O 到C 所需时间为:22122OC t ⨯==,返回时,点P 从C 到O 所需时间为:3212242OC t ===⨯,点P 从O 到A 所需时间为:414t t ==,∴点P 运动的总时间t =t 1+t 2+t 3+t 4=212,故点P 在秒212时回到了点A ,故答案为:212;②(Ⅰ)当点P 在AO 上,点Q 在BC 上时,PQ =PO +OC +CQ =(8−2t )+2+(4−t )=14−3t ,PO =8−2t ,∵PQ =2PO ,∴14−3t =2(8−2t ),解得:t =2;(Ⅱ)当P 在OC 上,此时Q 在OC 上,设点Q 在OC 上的时间为t ′,a )当OP +QC =OC ,即t ′+2t ′=2,即t ′=23时,P 、Q 相遇,PQ =OC −OP −QC =2−t ′−2t ′,PO =t ′,由2PQ PO=得:2−t ′−2t ′=2t ′,解得:t ′=25,∴t =4+25225;b )当Q 到达点O 时,点P 刚到OC 的中点,并继续向上走2−1=1(秒),PQ =OP +OQ =t ′+(t ′−1),PO =t ′,由2PQ PO=得:2t′−1=2t′,此时无解;c)当Q在OA上,P在OC向下移动时,PQ=OQ+OP=(t′−1)+[2−2×2(t′−2)],PO=2−2×2(t′−2),由2PQ PO=得,(t′−1)+[2−2×2(t′−2)]=2[2−2×2(t′−2)],解得:t′=115,此时,t=4+t′=31 5;(Ⅲ)当点P重新回到OA上,设P回到O点后运动时间为t″,在t″之间,点P、Q已经运动了4+2+1213=2(秒),此时,Q在OA上走了132−4−1=32,即OQ=32×1=32,a)PQ=OQ−OP=(32+t″)−2t″,PO=2t″,由2PQ PO=得:(32+t″)−2t″=2t″,解得,t″=310,此时,t=310+132345=;2)当P在Q右侧,超过Q后,PQ=OQ−OP=2t″−(32+t″),PO=2t″,由2PQ PO=得:2t″−(32+t″)=2t″,解得,t″=12-(舍去),综上所述,当t =2或225或315或345秒时,2PQ PO =故答案为:2或225或315或345.【点睛】本题综合考查了数轴与有理数的关系,一元一次方程在数轴上的应用,路程、速度、时间三者的关系等相关知识点,重点掌握一元一次方程的应用,易错点是分类计算时不重不漏.28.(1)B(2)5510-⨯【分析】(1)科学记数法的表示形式为10n a ⨯的形式,其中1||10a < ,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正整数;当原数的绝对值1<时,n 是负整数;(2)根据1米等于910纳米,用95000010÷即可.【详解】(1)解:正确使用科学记数法表示的数是94.8310--⨯,故答案为:B ;(2)解:95000010÷米5510-=⨯米,故答案为:5510-⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a < ,n 为整数,表示时关键要正确确定a 的值以及n 的值.29.(1)()0,0,0,()1,1,0(2)2(3)()1,1,0,1N =或()1,0,1,1或()0,1,1,1或()1,1,0,0或()1,0,1,0或()0,1,1,0(4)m 的最大可能值是2023;()1,0,0,0,,0C ⋅⋅⋅,()0,1,0,0,,0D ⋅⋅⋅【分析】(1)根据n 元完美数组的定义判断即可;(2)依据新运算定义()112212n n M N x y x y x y ⊗=++⋅⋅⋅+***进行计算即可;(3)依据新运算定义()112212n n M N x y x y x y ⊗=++⋅⋅⋅+***,尝试使得2M N ⊗=的计算结果即可;(4)根据新运算定义()112212n n M N x y x y x y ⊗=++⋅⋅⋅+***,0C D ⊗=则可知数组C ,D 中对应位置不能同时为1,由数组C ,D 的任意性可知:完美数组中元素最多只能有一个1,即可推出m 的最大可能值是2023,由此推出这些完美数组的一个构造即可.【详解】(1)解:在()0,0,0,()2,0,1,()1,1,1,1,()1,1,0中()2,0,1不是完美数组,()1,1,1,1是4元完美数组,故3元完美数组的有:()0,0,0,()1,1,0;(2)∵()1,0,1A =,()1,1,1B =,∴()()11110111202222A B ⊗=++=++=***;故答案为:2;(3)()x y x y x y =+-- *,∴当1x y ==时,2x y =*,当0x y ==时,0x y =*,当x y ≠时,0x y =*,综上即2x y =*或0,2M N ⊗= ,112233444x y x y x y x y ∴+++=****,()1,1,0,1N ∴=或()1,0,1,1或()0,1,1,1或()1,1,0,0或()1,0,1,0或()0,1,1,0;(4)0C D ⊗= ,C ∴、D 中对应位置的元不能同时为1,每个数组有2022个元,1可以出现在2022个位置,或者全部为0∴m 的最大值为2023,当C 确定后,D 中的对应元与C 中的不同,当()1,0,0,0,,0C ⋅⋅⋅则()0,1,0,0,,0D ⋅⋅⋅.【点睛】本题结合新定义运算考查了有理数的运算,关键在于阅读理解新运算的含义,灵活运用有理数的运算技能技巧,逐步提高符合意识素养.30.(1)4(2)12个【分析】(1)根据定义直接求解即可;(2)根据题意可知1234512345a a a a a -+-+-+-+-的结果可以是11110++++或11200++++两种情况,再列举出每一种情况下的数列顺序即可求解.【详解】(1)()1,3,4,2,511324324554E =-+-+-+-+-=,∴数列1,3,4,2,5的位差和是4;(2)()12345,,,,4E a a a a a = ,1234512345a a a a a ∴-+-+-+-+-的结果可以是11110++++或11200++++两种情况,当1234512345a a a a a -+-+-+-+-结果中有4个1,1个0时,数列{}5a :2,1,4,3,5或1,3,4,2,5或1,3,2,5,4;当1234512345a a a a a -+-+-+-+-结果中有2个1,2个2.时,数列{}5a :3,2.,1,4,5或1,4,3,2,5或1,2,5,4,3或2,3,1,4,5或1,3,4,2,5或1,2,4,5,3或3,1,2,4,5或1,4,2,3,5或1,2,5,3,4;∴满足条件的数列{}5a 的个数共12个.【点睛】本题考查数字的变化规律,弄清定义,根据所给的条件,列举出满足条件的数的排列是解题的关键.。
2019-2020学年北京市西城区七年级上学期期中数学试卷
一、选择题(本大题共10小题,每小题3分,共30分,在每小题所列出的四个选项中,只有一项是符合题目要求的)
1.(3分)﹣2的倒数是()
A.−1
2B.﹣2C.
1
2
D.2
【解答】解:有理数﹣2的倒数是−1 2.
故选:A.
2.(3分)《四库全书》是中国古代规模最大的丛书,该书编撰历经十余年,收录中国古代典籍3500种,装订成36000余册,全书七亿多字,按经、史、子、集四部分类.其中36000用科学记数法可以表示为()
A.0.36×105B.3.6×104C.3.6×105D.0.36×106
【解答】解:36000用科学记数法可以表示为3.6×104.
故选:B.
3.(3分)下列方程中是一元一次方程的是()
A.x+y=3B.2x﹣1=2C.1
x
+1=2D.3x2=4【解答】解:A、不是一元一次方程,故本选项不符合题意;
B、是一元一次方程,故本选项符合题意;
C、不是一元一次方程,故本选项不符合题意;
D、不是一元一次方程,故本选项不符合题意;
故选:B.
4.(3分)在﹣(﹣8),(﹣1)2022,﹣32,﹣1,﹣|﹣3|中,负数共有()A.4 个B.3 个C.2 个D.1 个
【解答】解:∵﹣(﹣8)=8,(﹣1)2022=1,﹣32=﹣9,﹣1,﹣|﹣3|=﹣3,∴负数是﹣32,﹣1,﹣|﹣3|,
即在﹣(﹣8),(﹣1)2022,﹣32,﹣1,﹣|﹣3|中,负数共有3个,
故选:B.
5.(3分)下列运算正确的是()
A.2xy﹣yx=xy B.a3﹣a2=a C.4m﹣m=3D.a2b﹣ab2=ab
【解答】解:A.2xy﹣yx=xy,正确,故本选项符合题意;
B.a3与﹣a2不是同类项,所以不能合并,故本选项不合题意;
C.4m﹣m=3m,故本选项不合题意;
D.a2b与﹣ab2不是同类项,所以不能合并,故本选项不合题意.
故选:A.
6.(3分)下列等式变形不正确的是()
A.若a=b,则ac=bc B.若a=b,则a﹣3=b﹣3
C.若x=y,则x
a =
y
a
D.若
b
a
=
d
c
,则bc=ad
【解答】解:A、若a=b,则ac=bc,变形正确,故本选项正确;
B、若a=b,则a﹣3=b﹣3,变形正确,故本选项正确;
C、若x=y,则x
a =
y
a
(a≠0),故本选项不正确;
D、若b
a =
d
c
,则bc=ad,变形正确,故本选项正确;
故选:C.
7.(3分)有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()
A.a>b B.﹣ab<0C.|a|<|b|D.a<﹣b
【解答】解:∵由图可知a<0<b,且|a|>|b|,
∴a<﹣b.
故选:D.
8.(3分)按如图所示的运算程序,能使输出的结果为10的是()
A.x=3,y=﹣2B.x=﹣3,y=2C.x=2,y=3D.x=3,y=﹣3【解答】解:由题意得:x2+|2y|=10,
当x=2,y=3满足x2+|2y|=10,
故选:C.。