当前位置:文档之家› 东南大学传感器实验报告测控技术与仪器

东南大学传感器实验报告测控技术与仪器

东南大学传感器实验报告测控技术与仪器
东南大学传感器实验报告测控技术与仪器

《传感器与检测技术》

实验报告

姓名:学号:

院系:仪器科学与工程学院专业:测控技术与仪器实验室:机械楼5楼同组人员:

评定成绩:审阅教师:

传感器第一次实验

实验一 金属箔式应变片——单臂电桥性能实验

一、实验目的

了解金属箔式应变片的应变效应及单臂电桥工作原理和性能。

二、基本原理

电阻丝在外力作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压 1/4o U EK ε=,其中K 为应变灵敏系数,/L L ε=?为电阻丝长度相对变化。

三、实验器材

主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等。

四、实验步骤

1. 根据接线示意图安装接线。

2. 放大器输出调零。

3. 电桥调零。

4.

应变片单臂电桥实验。

系统灵敏度 (即直线斜率),非线性误差= =

五、思考题

单臂电桥工作时,作为桥臂电阻的应变片应选用:(1)正(受拉)应变片;(2)负(受压)应变片;(3)正、负应变片均可以。

答:(3)正、负应变片均可以。因为是单臂工作,所以对工作臂的应变片应该没有正负要

求,可以调成工作臂的位置或输出电压接线方向,使电压表测得正电压值。

实验三 金属箔式应变片——全桥性能实验

一、实验目的

了解全桥测量电路的优点

二、基本原理

全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。当应变片初始阻值R1=R2=R3=R4、其变化值1234R R R R ?=?=?=?时,其桥路输出电压3o U EK ε=。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差都得到了改善。

三、实验器材

主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等。

四、实验步骤

1.根据接线示意图安装接线。

2.放大器输出调零。

3.电桥调零。

4.应变片全桥实验

系统灵敏度

V/Kg (即直线斜率),非线性误差δ=

=

可见全桥的灵敏度是单臂电桥的4倍,且非线性度下降。

五、思考题

1.测量中,当两组对边电阻值R 相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以;(2)不可以。 答:(2)不可以。电桥平衡条件为:R1R3=R2R4。

2.某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,能否利用四组应变片组成电桥,是否需要外加电阻。

答:左图中,2列2行共4个应变片对称分布于测试棒上,检测试件横向拉力,如果已知试件泊松比则可知试件纵向应变。任取一行2个应变片接入电桥一臂作为工作臂,或者接入电桥对臂,选取外加电阻使电桥平衡;

右图中,左边一列应变片检测试件纵向拉力,左边一列检测横向,可以选取左边一列接入电桥一臂,或者接入电桥对臂,选取外加电阻使电桥平衡,根据泊松比算出试件的纵向应变。

3.金属箔式应变片单臂、半桥、全桥性能比较

比较单臂、半桥、全桥输出时的灵敏度和非线性度,根据实验结果和理论分析,阐述原因,得出相应的结论。

答:根据实验结果可知,全桥的灵敏度最高,线性度最好。

理论上,灵敏度: 单臂 4E S =

,半桥 2

E

S = ,全桥 S E =。 非线性度:单臂100%2K K ε

δε

=

?+(K 为应变计灵敏系数)

, 半桥 0δ=,全桥 0δ=。

全桥的输出特性为相邻臂为和,相对臂为差,其和差特性能消除非线性误差。。

实验五差动变压器的性能实验

一、实验目的

了解差动变压器的工作原理和特性。

二、基本原理

差动变压器由一只初级线圈和二只次级线圈及一个铁芯组成,根据内外层排列不同,有两段式和三段式,本实验采用三段式。

当被测物体移动时差动变压器的铁芯也随着轴向位移,从而使初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化。将两只次级反向串接,引出差动电势输出。其输出电势反映出被测物体的移动量。

三、实验器材

主机箱、差动变压器、差动变压器实验模板、测微头、双踪示波器、万用表、导线等。

四、实验步骤

1.按照接线图连接线路。

2.差动变压器L1的激励电压从主机箱中的音频振荡器的Lv端引入,音频振荡器的频率为4~5KHz,本次实验选取4561Hz,输出峰峰值为2V。

3.松开测微头的紧固螺钉,移动测微头的安装套使变压器次级输出的Vp-p较小。然后拧紧螺钉,仔细调节测微头的微分筒使变压器的次级输出Vp-p为最小值(零点残余电压,约为0.035v),定义为位移的相对零点。

4.从零点开始旋动测微头的微分筒,每隔0.2mm(微分筒转过20格)从示波器上读出示波器的输出电压Vp-p,记入表格中。一个方向结束后,退到零点反方向做相同的实验。

5.根据测得数据画出V op-p —X曲线,做出位移为±1mm、±3mm时的灵敏度和非线性误差。

数据表格如下:

实验曲线如下:

位移为1mm时,灵敏度为122.136V/m,非线性度δ= =;

位移为-1mm时,灵敏度为122.5V/m,非线性度δ= =

差动式变压器使用了差动式次级线圈,使输出的非线性较好。

五、思考题

1.用差动变压器测量,振动频率的上限受什么影响?

答:受自感线圈的自感系数、互感线圈的互感系数、导线的集肤效应和铁损等的影响,电路系统存在一个上限频率,若输入频率过大会导致输出电压幅度变小,传感器灵敏度下降。

2.试分析差动变压器与一般电源变压器的异同?

答:它们都利用电磁感应原理工作。但是差动式变压器初级线圈和次级线圈的互感系数是可变的,当铁芯处于中间位置时,差动次级输出为0,当铁芯上下移动,互感系数变化,根据次级输出可以计算出铁芯的位移,由此可以测量诸如位移、速度等物理量;而一般的电源变

压器互感系数固定,主要用于把输入低压变为高压输出或把输入低压变为高压输出。

传感器第二次实验

实验九电容式传感器的位移实验

一、实验目的

了解电容式传感器结构及其特点。

二、基本原理

利用电容C=εA/d的关系式,通过相应的结构和测量电路,可以选择ε、A、d三个参数中保持二个参数不变,而只改变其中一个参数,就可以组成测介质的性质(ε变)、测位移(d变)和测距离、液位(A变)等多种电容传感器。

本实验采用的传感器为圆筒式变面积差动结构的电容式位移传感器,如图3-6所示:由二个圆筒和一个圆柱组成。

设圆筒的半径为R;圆柱的半径为r;圆柱的长为x,则电容量为C=ε2 x/ln(R/r)。图中C1、C2是差动连接,当图中的圆柱产生X位移时,电容量的变化量为C=C1-C2=ε2 2 X/ln(R/r),式中ε2 、ln(R/r)为常数,说明C与位移X成正比,配上配套测量电路就能测量位移。

图3-6 电容式位移传感器结构

三、实验器材

主机箱、电容传感器、电容传感器实验模板、测微头。

四、实验步骤

图3-7 电容传感器位移实验原理图

1、按图3-8将电容传感器装于电容传感器实验模板上,实验模板的输出Vo1接主机箱电压表的Vin。

2、将实验模板上的Rw调节到中间位置(方法:逆时针转到底再顺时传3圈)。

3、将主机箱上的电压表量程(显示选择)开关打到2v档,合上主机箱电源开关;旋转测微头改变电容传感器的动极板位置使电压表显示0v,再转动测微头(向同一个方向)5圈,记录此时测微头读数和电压表显示值,此点为实验起点值;

此后,反方向每转动测微头1圈即△X=0.5mm位移读取电压表读数,共转10圈读取相应的电压表读数(单行程位移方向做实验可以消除测微头的回差);将数据填入表3-7并作出X—V实验曲线。

4、根据表3-7数据计算电容传感器的系统灵敏度S和非线性误差δ

S U X mv mm

?=,/-137.5/

=??=;

U mv

X mm

-619

?=,1

δ=??=。

?=,619

x mm

7.5

x yFS

=,/100% 1.21%

yFS mm

五、思考题

试设计利用ε的变化测谷物湿度的传感器原理及结构?能否叙述一下在设计中应考虑哪些因素?

答:由于是测谷物的湿度的,当此传感器放在谷物里面时,根据谷物的呼吸作用,用传感器检测呼吸作用的水分程度,从而判断出谷物的湿度,当电容的S与D为恒定值时C=f(ε),稻谷的含水率不同,介电常数也不同,可确定谷物含水率,传感器为两个板,谷物从传感器之间穿过。在设计过程中应考虑:感应器是否于谷物接触的充分、谷物是否均匀的从传感器之间穿过,而且要注意直板传感器的边缘效应。

实验十一压电式传感器振动测量实验

一、实验目的

了解压电传感器的测量振动原理和方法。

二、基本原理

压电式传感器由惯性质量块和受压的压电片等组成。工作时传感器感受与试件相同的振动频率,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶体上产生正比于运动速度的表面电荷。

三、实验器材

主机箱、差动变压器实验模板、振动源、示波器。

四、实验步骤

1、按照连线图将压电传感器安装在振动台上,振动源的低频输入接主机箱的低频振荡器,其它连线按照图示接线。

2、合上主机箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察低通滤波器输出波形。

3、用示波器的两个通道同时观察低通滤波器输入和输出波形;在振动台正常振动时用手指敲击振动台,同时观察输出波形的变化。

4、改变振动源的频率,观察输出波形的变化。

低频振荡器的幅度旋钮固定至最大,调节频率,用频率表监测,用示波器读出峰峰值填入表格。

实验曲线:

五、思考题

根据实验结果,可以知道振动台的自然频率大致是多少?传感器输出波形的相位差大致为多少?

答:根据实验曲线可知,振动台的自然频率大约为11Hz 。

6,108t ms T ms ?==,所以00636020108ms

ms

?Φ=

?=。

实验十二 电涡流传感器位移实验

一、实验目的

了解电涡流传感器测量位移的工作原理和特性。

二、基本原理

通过交变电流的线圈产生交变磁场,当金属体处于交变磁场时,根据电磁感应原理,金属体内产生电流,该电流在金属体内自行闭合,并呈旋涡状,故称为涡流。

涡流的大小与金属体的电阻率、导磁率、厚度、线圈激磁电流频率及线圈与金属表面的距离x 等参数有关。

电涡流的产生必然要消耗一部分磁场能量,从而改变激磁线圈阻抗,涡流传感器就是基于这种涡流效应制成的。电涡流工作在非接触状态,当线圈与金属体表面的距离x 以外的所有参数一定时可以进行位移测量。

三、实验器材

主机箱、电涡流传感器实验模板、电涡流传感器、测微头、被测体(铁圆片)。

四、实验步骤

1、观察传感器结构,根据示意图安装测微头、被测体、电涡流传感器并接线。

2、调节测微头使被测体与传感器端部接触,将电压表显示选择开关切换到20V 档,检查接线无误后开启主机箱电源开关,记下电压表读数,然后每隔0.1mm 读一个数,直到输出几乎不变为止。将数据填入下表:

3、画出V-X 曲线,根据曲线找出线性区域及正、负位移测量时的最佳工作点(即曲线线性段的中点)。试计算测量范围为1mm 与3mm 时的灵敏度和非线性度(可以用端点法或其他拟合直线)。

测量范围1mm :

灵敏度: 1.41V V ?=,1X mm ?= 所以

最佳工作点

/ 1.41/S V X V mm =??=

非线性度:0.0081, 1.41m V V yFs V ?== 所以 /100%0.57%m V yFs δ=??= 测量范围3mm :

灵敏度: 4.17V V ?=,3X mm ?= 所以 / 1.39/S U X mm =??=。

非线性度: 0.0578, 4.17m V V yFs V ?== 所以 /100% 1.39%m V yFs δ=??=

五、思考题

1、电涡流传感器的量程与哪些因素有关,如果需要测量±5mm 的量程应如何设计传感器? 答:电涡流传感器的量程就是传感器的线性范围,它受到线圈半径。被测体的性质及形状和厚度等因素影响。

2、用电涡流传感器进行非接触位移测量时,如何根据量程使用选用传感器? 答:要保证所测量的位移在所选的传感器量程范围内。

传感器第三次实验

实验十五 直流激励时线性霍尔传感器的位移特性实验

一、实验目的

了解霍尔式传感器原理与应用。

二、基本原理

根据霍尔效应,霍尔电势H H B U K I =?,当霍尔元件处在梯度中运动时,它的电势会发生变化,利用这一性质可以进行位移测量。

三、实验器材

主机箱、霍尔传感器实验模板、霍尔传感器、测微头。

四、实验步骤

1、按示意图接线,将主机箱上的电压表量程开关打到2V 档。

2、检查接线无误后,开启电源,调节测微头使霍尔片处在两磁钢的中间位置,再调节RW1使数显表指示为零。

3、向某个方向调节测微头2mm ,记录电压表读数作为实验起始点;

再反向调节测微头,没增加0.2mm 记下一个读数,将数据记录入表格:

做出V-X 曲线,计算不同测量范围时的灵敏度和非线性误差。

±2mm 时灵敏度:

1965m ,4V V X mm ?=?= 所以 /491.25m /S U V V mm =??=。 非线性度:

95m ,1965m m V V yFs V ?== 所以 /100%0.48%m V yFs δ=??=

五、思考题

本实验中霍尔元件位移的线性度实际上反映的是什么量的变化? 答:反映的是磁场的变化。

实验十七 霍尔转速传感器测量电机转速实验

一、实验目的

了解霍尔转速传感器的应用。

二、基本原理

利用霍尔效应表达式:H H B U K I =?,当被测圆盘上装上N 只磁性体时,圆盘每转一周磁场就变化N 此。每转一周霍尔电势就同频率相应变化,输出电势通过放大、整和计数电路计数就可以测量被测物体的转速。

三、实验器材

主机箱、霍尔转速传感器、振动源。

四、实验步骤

1、根据示意图将霍尔转速传感器安装于霍尔架上,传感器的端面对准转盘上的磁钢并调节升降杆使传感器端面与磁钢间距离大约为2~3mm 。

2、在接线前,先合上主机箱电源开关,将主机箱中的转速调节电源2~24V 旋钮调到最小,接入电压表,监测大约为1.25V ;

关闭主机箱电源,将霍尔转速传感器、转动电源按照示意图分别接到主机箱的相应电源和频率/转速表的Fin 上。

3、合上主机箱电源开关,在小于12V 的范围内调节主机箱的转速调节电源,观察电机转动及转速表的显示情况。

画出电机的v~n 特性曲线。

五、思考题

1、利用霍尔元件测转速,在测量上是否有限制? 答:有。当被测体是磁性体时不能用霍尔元件测量。

2、本实验装置上用了六只磁钢,能否用一只磁钢? 答:可以,但是会降低分辨率。

实验十八 磁电式转速传感器测电机转速

一、实验目的

了解磁电式测量转速的原理。

二、基本原理

基于电磁感应原理,N 匝线圈所在磁场的磁通变化时,线圈中的感应电势:

d e N

dt

Φ

=-发生变化,因此当转盘上嵌入N 个磁棒时,每转一周线圈感应电势产生N 次变化,通过放大、整形和计数等电路即可测量转速。

三、实验器材

主机箱、磁电式传感器、转动源。

四、实验步骤

磁电式转速传感器不用接电源,其余和实验十七相同。

画出电机v~n特性曲线:

五、思考题

为什么磁电式转速传感器不能测很低速的转动,能说明理由么?

磁电式转速传感器是利用旋转体改变磁路,使磁通量发生变化,从而使其线圈产生感应电压,如果转速很慢,旋转体改变磁路也很慢,磁通量的变化也很慢,感应电压就会很小,就无发正确地测定转速。

传感器第四次实验

实验二十七发光二极管(光源)的照度标定实验

一、实验目的

了解发光二极管的工作原理;做出工作电流与光照度的对应关系及工作电压与光照度的对应关系曲线,为以后实验做好准备。

二、基本原理

半导体发光二极管是由Ⅲ-Ⅳ族化合物制成,其核心是PN结。因此它具有一般二极管的正向导通及反向截止、击穿特性。此外,在一定条件下,它还有发光特性。

当加上正向激励电压或电流时,在外电场的作用下,在PN结附近产生导带电子和介带空穴,电子由N区注入P区,空穴由P区注入N区,进入对方区域的少数载流子一部分与多数载流子复合而发光。

假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。

除了这种发光复合外,还有些电子被非发光中心捕获,再与空穴复合,每次释放的能量不大,以热能的形式辐射出来。

发光的复合量相对于非发光的复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光,所以光仅在靠近PN结面数um以内产生。发光二级管的发光颜色由制作二极管的半导体化合物决定。本实验使用纯白高亮发光二极管。

三、实验器材

主机箱(0~20mv可调恒流源、电流表、0~24V可调电压源、照度表),照度计探头,发光二极管,遮光筒。

四、实验步骤

1、按照示意图7-2接线,注意+、—极性。

2、检查接线无误后,合上主机箱电源开关。

3、调节主机箱中恒流源电流大小(电压表量程20mA档),即改变发光二极管的工作电流大小就可以改变光源的光照度值。拔去发光二极管的其中一根线头,则光照度为0。

按表7-1进行标定实验(调节恒流源),得到照度~电流对应值。

4、关闭主机箱电源,再按图7-3配置接线,注意+、—极性。

5、合上主机箱电源,调节主机箱的0~24v 可调电压(电压表量程2v档)就可以改变发光二极管的光照度。

表7-1 发光二极管的电流、电压与照度的对应关系

6、根据表7-1画出发光二极管的电流~照度、电压~照度特性曲线。

图7-1 发光二极管的电流-照度图(横坐标电流A,纵坐标照度Lx)

图7-2发光二极管的电压-照度图(横坐标电流A,纵坐标照度Lx)

实验二十八光敏电阻特性实验

一、实验目的

了解光敏电阻的光照特性和伏安特性

二、基本原理

在光线作用下,电子吸收光子的能量,从键合状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。

光电导效应是半导体材料的一种体效应。光照愈强,器件自身的电阻越小。基于这种效应的光电器件称光电敏电阻,光敏电阻无极性,其工作特性与入射光光强、波长和外加电压有关。

三、实验步骤

1、亮电阻和暗电阻的测量

(1)将光敏电阻和电流表串联,两端并联电压表(内接法),电压表正极接一上拉电阻至VCC。光敏电阻接受一个发光二级管的光照,中间有一个遮光筒。调节发光二级光的供电电压,查表7-1,使光照度为100Lx。

(2)10s左右读取光敏电阻电流值,作为亮电流I亮。

(3)缓慢调节二极管供电电压减到0V,10s左右读取电流值,作为暗电流I暗。

(4)根据以下公式,计算亮阻和暗阻(照度100Lx):

I亮=1.67mA,U亮=10V,R亮=U/I=6kΩ

I暗=0mA,U暗=10V,R暗=U/I=∞

2、光照特性测量

光敏电阻的两端电压为定值时,光敏电阻的光电流随光照强度的变化而变化,它们之间的关系是非线性的。

调节不同光照度,做出光电流与光照度的曲线图。

表7-2 光照特性实验数据

图7-3光敏电阻光电流-光照度曲线

3、伏安特性的测量

光敏电阻在一定光照强度下,光电流随外加电压的变化而变化。

测量时,光照强度为定值下,光敏电阻输入6档电压,测得光敏电阻上的电流值如表7-3,在同一坐标图中做出不同照度的三条伏安特性曲线。

表7-3 光敏电阻伏安特性实验数据

图7-4 光敏电阻伏安特性

四、思考

为什么测光电阻亮阻和暗阻要经过10s后才读数?这是光敏电阻的缺点,只能应用于什么状态?

答:这说明光电阻的光电导效应有响应时间,不能用于快速动态检测的场合。

实验三十一硅光电池实验

一、实验目的

了解光电池的光照、光谱特性,熟悉其应用。

二、基本原理

光电池是根据光生伏特效应制成的,不需加偏压就能把光能转换成电能的P-N结的光电池器件。当光照射到光电池的P-N结上时,便在P-N结两端产生电动势。这种现象叫做“光生伏特效应”,将光能转化为电能。该效应与材料、光的强度、波长等有关。

三、实验器材

主机箱、安装架、光电器件实验(一)模板、滤色片、普通光源、滤色镜、照度计探

DSP实验报告

东南大学自动化学院 实验报告 课程名称: DSP技术及课程设计 实验名称:直流无刷电机控制综合实验 院(系):自动化专业:自动化 姓名:ssb 学号:08011 实验室:304 实验组别: 同组人员:ssb1 ssb2 实验时间:2014年 6 月 5 日评定成绩:审阅教师:

目录 1.实验目的和要求 (3) 1.1 实验目的 (3) 1.2 实验要求 (3) 1.2.1 基本功能 (3) 1.2.2 提高功能 (3) 2.实验设备与器材配置 (3) 3.实验原理 (3) 3.1 直流无刷电动机 (3) 3.2 电机驱动与控制 (5) 3.3 中断模块 (7) 3.3.1 通用定时器介绍及其控制方法 (7) 3.3.2 中断响应过程 (7) 3.4 AD模块 (8) 3.4.1 TMS320F28335A 芯片自带模数转换模块特性 (8) 3.4.2 模数模块介绍 (8) 3.4.3 模数转换的程序控制 (8) 4.实验方案与实验步骤 (8) 4.1 准备实验1:霍尔传感器捕获 (8) 4.1.1 实验目的 (8) 4.1.2 实验内容 (9) 4.1.2.1 准备 (9) 4.1.2.2 霍尔传感器捕获 (9) 4.2 准备实验2:直流无刷电机(BLDC)控制 (10) 4.2.1 程序框架原理 (10) 4.2.1.1 理解程序框架 (10) 4.2.1.2 基于drvlib281x库的PWM波形产生 (11) 4.2.2 根据捕获状态驱动电机运转 (12) 4.2.2.1 目的 (12) 4.2.2.2 分析 (12) 4.3 考核实验:直流无刷电机调速控制系统 (13) 4.3.1 初始化工作 (13) 4.3.2 初始化定时器0.... . (13) 4.3.3初始化IO口 (13) 4.3.4中断模块.... (13) 4.3.5 AD模块 (14) 4.3.6在液晶屏显示 (15) 4.3.7电机控制 (17) 4.3.7.1 控制速度方式选择 (17) 4.3.7.2 控制速度和转向 (18) 4.3.8延时子函数 (19) 4.3.9闭环PID调速 (19)

东南大学电路实验实验报告

电路实验 实验报告 第二次实验 实验名称:弱电实验 院系:信息科学与工程学院专业:信息工程姓名:学号:

实验时间:年月日 实验一:PocketLab的使用、电子元器件特性测试和基尔霍夫定理 一、仿真实验 1.电容伏安特性 实验电路: 图1-1 电容伏安特性实验电路 波形图:

图1-2 电容电压电流波形图 思考题: 请根据测试波形,读取电容上电压,电流摆幅,验证电容的伏安特性表达式。 解:()()mV wt wt U C cos 164cos 164-=+=π, ()mV wt wt U R sin 10002cos 1000=??? ? ? -=π,us T 500=; ()mA wt R U I I R R C sin 213.0== =∴,ππ40002==T w ; 而()mA wt dt du C C sin 206.0= dt du C I C C ≈?且误差较小,即可验证电容的伏安特性表达式。 2.电感伏安特性 实验电路: 图1-3 电感伏安特性实验电路 波形图:

图1-4 电感电压电流波形图 思考题: 1.比较图1-2和1-4,理解电感、电容上电压电流之间的相位关系。对于电感而言,电压相位 超前 (超前or 滞后)电流相位;对于电容而言,电压相位 滞后 (超前or 滞后)电流相位。 2.请根据测试波形,读取电感上电压、电流摆幅,验证电感的伏安特性表达式。 解:()mV wt U L cos 8.2=, ()mV wt wt U R sin 10002cos 1000=??? ? ? -=π,us T 500=; ()mA wt R U I I R R L sin 213.0===∴,ππ 40002==T w ; 而()mV wt dt di L L cos 7.2= dt di L U L L ≈?且误差较小,即可验证电感的伏安特性表达式。 二、硬件实验 1.恒压源特性验证 表1-1 不同电阻负载时电压源输出电压 电阻()Ωk 0.1 1 10 100 1000 电源电压(V ) 4.92 4.98 4.99 4.99 4.99 2.电容的伏安特性测量

传感器实验报告

传感器实验报告(二) 自动化1204班蔡华轩 U2 吴昊 U5 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔 记下位移X 与输出电压值,填入表7-1。

5、根据表7-1 数据计算电容传感器的系统灵敏度S 和非线性误差δf。 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S= 非线性误差δf=353=% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理

光纤压力传感器实验

光纤压力传感器实验 一、实验目的 1、了解并掌握传导型光纤压力传感器工作原理及其应用 二、实验内容 l、传导型光纤压力传感光学系统组装调试实验; 2、发光二极管驱动及探测器接收实验; 3、传导型光纤压力传感器测压力原理实验。 三、实验仪器 1、光纤压力传感器实验仪1台 2、气压计1个 3、气压源l套 4、光纤1根 5、2#迭插头对若干 6、电源线1根 四、实验原理 通常按光纤在传感器中所起的作用不同,将光纤传感器分成功能型(或 称为传感型)和非功能型(传光型、结构型)两大类。功能型光纤传感器使 用单模光纤,它在传感器中不仅起传导光的作用,而且又是传感器的敏感元件。但这类传感器的制造上技术难度较大,结构比较复杂,且调试困难。 非功能型光纤传感器中,光纤本身只起传光作用,并不是传感器的敏感元件。它是利用在光纤端面或在两根光纤中间放置光学材料、机械式或光学式的敏感元件感受被测物理量的变化,使透射光或反射光强度随之发生变化。所以这种传感器也叫传输回路型光纤传感器。它的工作原理是:光纤把测量对象辐射的光信号或测量对象反射、散射的光信号直接传导到光电元件上,实现对被测物理量的检测。为了得到较大的受光量和传输光的功率,这种传感器所使用的光纤主要是孔径大的阶跃型多模光纤。光纤传感器的特点是结构简单、可靠,技术上容易实现,便于推广应用,但灵敏度较低,测量精度也不高。 本实验仪所用到的光纤压力传感器属于非功能型光纤传感器。 本实验仪重点研究传导型光纤压力传感器的工作原理及其应用电路设计。在传导型光纤压力传感器中,光纤本身作为信号的传输线,利用压力一电一光一光一电的转换来实现压力的测量。主要应用在恶劣环境中,用光纤代替普通电缆传送信号,可以大大提高压力测量系统的抗干扰能力,提高测量精度。 相关参数: l、光源 高亮度白光LED,直径5mm

传感器与检测技术实验报告

“传感器与检测技术”实验报告 学号: 913110200229 姓名:杨薛磊 序号: 83

实验一电阻应变式传感器实验 (一)应变片单臂电桥性能实验 一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。 二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 三、需用器件与单元:主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流 1位数显万用表(自备)。 稳压电源、电压表;应变式传感器实验模板、托盘、砝码; 4 2 四、实验步骤: 应变传感器实验模板说明:应变传感器实验模板由应变式双孔悬臂梁载荷传感器(称重传感器)、加热器+5V电源输入口、多芯插头、应变片测量电路、差动放大器组成。实验模板中的R1(传感器的左下)、R2(传感器的右下)、R3(传感器的右上)、R4(传感器的左上)为称重传感器上的应变片输出口;没有文字标记的5个电阻符号是空的无实体,其中4个电阻符号组成电桥模型是为电路初学者组成电桥接线方便而设;R5、R6、R7是350Ω固定电阻,是为应变片组成单臂电桥、双臂电桥(半桥)而设的其它桥臂电阻。加热器+5V是传感器上的加热器的电源输入口,做应变片温度影响实验时用。多芯插头是振动源的振动梁上的应变片输入口,做应变片测量振动实验时用。

压力传感器的特性试验

压力传感器的特性及非平衡电桥信号转换技术 【实验目的】 (1)了解应变压力传感器的组成、结构及工作参数。 (2)了解非电量的转换及测量方法 —— 电桥法。 (3)掌握非平衡电桥的测量技术。 (4)掌握应变压力传感器灵敏度及物体重量的测量。 (5)了解多个应变压力传感器的线性组成、调整与定标。 【实验原理】 压力传感器是把一种非电量转换成电信号的传感器。弹性体在压力(重量)作用下产生形变(应变),导致(按电桥方式连接)粘贴于弹性体中的应变片产生电阻变化。 压力传感器的主要指标是它的最大载重(压力)、灵敏度、输出输入电阻值、工作电压(激励电压)(V IN )范围、输出电压(V OUT )范围。 压力传感器是由特殊工艺材料制成的弹性体以及电阻应变片、温度补偿电路组成,并采用非平衡电桥方式连接,最后密封在弹性体中。 1. 弹性体 一般由合金材料冶炼制成,加工成S 形、长条形、圆柱形等。为了产生一定弹性,挖空或部分挖空其内部。 2. 电阻应变片 金属导体的电阻R 与其电阻率ρ、长度L 、截面A 的大小有关。 L R A ρ= (4.3.1) 导体在承受机械形变过程中,电阻率、长度、截面都要发生变化,从而导致其电阻变化。 R L A R L A ρρ????=+- (4.3.2) 这样就把所承受的应力转变成应变,进而转换成电阻的变化。因此电阻应变片能将弹性体上应力的变化转换为电阻的变化。 电阻应变片一般由基底片、敏感栅、引线及履盖片用黏合剂黏合而成。电阻应变片的结构如图4.3.1所示。 电阻应变片结构示意 图4.3.1 1—敏感栅(金属电阻丝);2—基底片;3—覆盖层;4—引出线 (1)敏感栅。敏感栅是感应弹性应变的敏感部分。敏感栅由直径约0.01~0.05 mm 的高电阻系数的细丝弯曲成栅状,它实际上是一个电阻元件,是电阻应变片感受构件应变的敏感部分。敏

东南大学传感器技术复习要点

绪论 1传感器的基本概念:能感受规定的被测量,并按一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。 2传感器构成法: 自源型、辅助能源型、外源型、相同敏感元件的补偿型、差动结构补偿型、不同敏感元件的补偿型、反馈型 3传感器按照传感机理分类:结构型,以敏感元件结构参数变化实现信号转换; 物性型,以敏感元件物性效应实现信号转换。 第一章传感器技术基础 1传感器的一般数学模型:静态模型、动态模型 2传感器的特性和指标 传感器的静态模型:线性度、回差(滞后)、重复性、灵敏度、分辨力、阀值、稳定性、漂移、静态误差; 传感器的动态模型:频率响应特性、阶跃响应特性、典型环节的动态响应、幅频特性、相频特性。 3改善传感器性能的技术途径: 结构、材料与参数的合理选择,差动技术,平均技术,稳定性处理,屏蔽、隔离与干扰控制,零示法、微差法与闭环技术,补偿、校正与“有源化”,集成化、智能化与信息融合。 4合理选择传感器的基本原则和方法: 依据测量对象和使用条件确定传感器类型、线性范围和量程、灵敏度、精度、频率响应特性、稳定性。 5传感器的标定和校准 静态标定:静态标定主要用于检测、测试传感器的静态特性指标,如:静态灵敏度、非线性、回差、重复性等; 动态标定:动态标定主要用于检测、测试传感器的动态特性指标,如:动态灵敏度、频率响应和固有频率等。 第二章电阻式传感器 1概念:通过电阻参数的变化来实现电测非电量的目的。 2电阻应变计的主要特性 静态特性:灵敏系数、横向效应及横向效应系数、机械滞后、蠕变和零漂、应变极限 动态特性:对正弦应变波、阶跃应变波的响应,疲劳寿命。 3温度效应及其补偿 热补偿原因:在实际应用应变计时,工作温度可能偏离室温,甚至超出常温范围,导致工作特性改变,影响输出。(这种单纯由温度变化引起应变计电阻变化的现象,叫应变计的温度效应。)在工作温度变化较大时,这种热输出干扰必须加以补偿。

传感器测试实验报告

实验一 直流激励时霍尔传感器位移特性实验 一、 实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势U H =K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为kx U H ,式中k —位移传感器的灵敏度。这样它就可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。1、3为电源±5V , 2、4为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 图9-1 直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动记下一个读数,直到读数近似不变,将读数填入表9-1。 表9-1 X (mm ) V(mv) 作出V-X 曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V ,否则将可能烧毁霍尔元件。 六、思考题:

本实验中霍尔元件位移的线性度实际上反映的时什么量的变化 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。 实验二集成温度传感器的特性 一、实验目的: 了解常用的集成温度传感器基本原理、性能与应用。 二、基本原理: 集成温度传器将温敏晶体管与相应的辅助电路集成在同一芯片上,它能直接给出正比于绝对温度的理想线性输出,一般用于-50℃-+150℃之间测量,温敏晶体管是利用管子的集电极电流恒定时,晶体管的基极—发射极电压与温度成线性关系。为克服温敏晶体管U b电压生产时的离散性、均采用了特殊的差分电路。集成温度传感器有电压型和电流型二种,电流输出型集成温度传感器,在一定温度下,它相当于一个恒流源。因此它具有不易受接触电阻、引

自动检测技术实验一

东南大学自动化学院 实验报告课程名称:检测技术 第1 次实验

实验名称:实验一、三、五、八、九 院(系):自动化专业:自动化 :学号: 实验室:实验组别: 同组人员:实验时间:2013 年11月16日 评定成绩:审阅教师: 实验一金属箔式应变片——单臂电桥性能实验一、基本原理 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应。 描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压Uo1= EKε/4。 二、实验器材及连线 主机箱(±4V、±15V、电压表)、应变传感器实验模板、托盘、砝码、万用表、导线等。

图2-1 应变式传感器安装示意图 图2-2 应变传感器实验模板、接线示意图图2-3 单臂电桥工作原理图 三、实验步骤 1、根据图2-3 工作原理图、图2-2 接线示意图安装接线。 2、放大器输出调零 将实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(Vi=0);调节放大器的增益电位器RW3 大约到中间位置(先逆时针旋到底,再顺时针旋转2 圈);将主机箱电压表的量程切换开关打到2V 档,合上主机箱电源开关;调节实验模板放大器的调零电位器RW4,使电压表显示为零。 3、电桥调零

拆去放大器输入端口的短接线,将暂时脱开的引线复原。调节实验模板上的桥路平衡电位器RW1,使电压表显示为零。 4、应变片单臂电桥实验 在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500 g)砝码加完。实验结果填入表2-1,画出实验曲线。 表2-1 重量(g) 20 40 60 80 100 120 140 160 180 200 电压(mv) 15.2 30.5 45.9 61.5 77.0 92.4 108.0 132.8 148.3 163.9 拟合方程为:0.834 4.1933 U W =?- 重量20 40 60 80 100 120 140 160 180 200

东南大学数字图像处理实验报告

数字图像处理 实验报告 学号:04211734 姓名:付永钦 日期:2014/6/7 1.图像直方图统计 ①原理:灰度直方图是将数字图像的所有像素,按照灰度值的大小,统计其所出现的频度。 通常,灰度直方图的横坐标表示灰度值,纵坐标为半个像素个数,也可以采用某一灰度值的像素数占全图像素数的百分比作为纵坐标。 ②算法: clear all PS=imread('girl-grey1.jpg'); %读入JPG彩色图像文件figure(1);subplot(1,2,1);imshow(PS);title('原图像灰度图'); [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255 GP(k+1)=length(find(PS==k))/(m*n); %计算每级灰度出现的概率end figure(1);subplot(1,2,2);bar(0:255,GP,'g') %绘制直方图 axis([0 255 min(GP) max(GP)]); title('原图像直方图') xlabel('灰度值') ylabel('出现概率') ③处理结果:

原图像灰度图 100 200 0.005 0.010.0150.020.025 0.030.035 0.04原图像直方图 灰度值 出现概率 ④结果分析:由图可以看出,原图像的灰度直方图比较集中。 2. 图像的线性变换 ①原理:直方图均衡方法的基本原理是:对在图像中像素个数多的灰度值(即对画面起主 要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并。从而达到清晰图像的目的。 ②算法: clear all %一,图像的预处理,读入彩色图像将其灰度化 PS=imread('girl-grey1.jpg'); figure(1);subplot(2,2,1);imshow(PS);title('原图像灰度图'); %二,绘制直方图 [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255

传感器实验报告详解

五邑大学 《传感器与电测技术》 实验报告 实验时间:2016年11月16日-17日实验班级:班 实验报告总份数: 4 份 实验教师:

信息工程学院(系) 611 实验室 __交通工程_____专业 班 学号 姓名_______协作者______________ 成绩:

实验一熟悉IAR 集成开发环境下C程序的编写 一.实验目的 1、了解IAR 集成开发环境的安装。 2、掌握在IAR 环境下程序的编辑、编译以及调试的方法。 二.实验设备 1、装有IAR 开发环境的PC 机一台 2、物联网开发设计平台所配备的基础实验套件一套 3、下载器一个 三.实验要求 1、熟悉IAR 开发环境 2、在IAR 开发环境下编写、编译、调试一个例程 3、实验现象节点扩展板上的发光二极管 D9 被点亮 三、问题与讨论 根据提供的电路原理图等资料,修改程序,点亮另一个LED 灯D8。(分析原理,并注释。) 先定义IO口,再初始化,最后点亮

一、实验目的与要求 1、理解光照度传感器的工作原理 2、掌握驱动光照度传感器的方法 二、实验设备 1、装有IAR 开发工具的PC 机一台 2、下载器一个 3、物联网开发设计平台一套 三、实验要求 1、编程要求:编写光照度传感器的驱动程序 2、实现功能:检测室内的光照度 3、实验现象:将检测到的数据通过串口调试助手显示,用手遮住传感器,观察数据变化。 四、实验讨论 讨论:光敏电阻的工作原理?光敏电阻是否为线性测量元件,为什么?常用于什么测量场合? 1.它的工作原理是基于光电效应。在半导体光敏材料两端装上电极引线,将其 封装在带有透明窗的管壳里就构成光敏电阻。为了增加灵敏度,两电极常做成梳状。半导体的导电能力取决于半导体导带内载流子数目的多少。当光敏电阻受到光照时,价带中的电子吸收光子能量后跃迁到导带,成为自由电子,同时产生空穴,电子—空穴对的出现使电阻率变小。光照愈强,光生电子—空穴对就越多,阻值就愈低。当光敏电阻两端加上电压后,流过光敏电阻的电流随光照增大而增大。入射光消失,电子-空穴对逐渐复合,电阻也逐渐恢复原值,电流也逐渐减小 2.不是线性测量元件,可以说光敏电阻在照度固定时是线性的。光敏电阻的阻 值随光照的增强而减少,但这个关系不是线性的。 3.常用作开关式光电转换器

实验九.进气管绝对压力传感器检修

实验九:进气管绝对压力传感器检测 一、实验目的和要求: 1.掌握进气管绝对压力传感器的结构及工作原理。 2.掌握进气管绝对压力传感器的检测方法。 二、实验设备及器材 丰田8A电喷发动机故障实验台1台、数字万用表几块、手动真空泵 三、实验内容及步骤 本次实验的内容主要是检测进气管绝对压力传感器。 在汽油机上,进气管绝对压力传感器是用来测量进气管内气体的绝对压力,并将信号送入ECU,作为燃油喷射控制和点火控制的主控制信号。进气管绝对压力传感器按照检测原理分为压敏电阻式、电容式、膜盒式、表面弹性波式等,但目前应用最广泛的是压敏电阻式和电容式。这里主讲述压敏电阻式进气管绝对压力传感器的检测方法,与ECU的连接电路如图1所示。 图1 压敏电阻式进气管绝对压力传感器电路 ECU通过Vcc端子给传感器提供标准的5V参考电压,传感器信号经PIM端子输送给ECU,E2为搭铁端子。 检测步骤如下: 1.电源电压检测: 点火开关置于“OFF”位置,拆开线束插接器。然后将点火开关置于“ON”位置(不起动发动机),在线束侧用万用表电压当测量线束插接器电源端子Vcc 和搭铁端子E2之间的电压,其电压值应为4.5~5.5V。如有异常,应检查进气管绝对压力传感器与ECU 之间的线路是否导通。若断路,应更换或修理线束。 2.输出信号电压检测: 将点火开关置于“ON”位置(不起动发动机),拆下连接进气歧管绝对压力传感器与进气歧管的真空软管,然后用真空泵向进气歧管绝对压力传感器内施加真空,同时在ECU侧用万用表电压挡测量端子PIM与E2之间的传感器输出信号电压,将测量的数据填入表1中。 表1 输出信号电压测量记录表

东南大学自控实验报告实验三闭环电压控制系统研究

东南大学自控实验报告实验三闭环电压控制系统研究

东南大学 《自动控制原理》 实验报告 实验名称:实验三闭环电压控制系统研究 院(系):专业: 姓名:学号: 实验室: 416 实验组别: 同组人员:实验时间:年 11月 24日评定成绩:审阅教师:

实验三闭环电压控制系统研究 一、实验目的: (1)经过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)经过开、闭环实验数据说明闭环控制效果。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表示、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。因此,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就能够“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式能够做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。 (2)自动控制的根本是闭环,尽管有的系统不能直接感受到它的

闭环形式,如步进电机控制,专家系统等,从大局看,还是闭环。闭环控制能够带来想象不到的好处,本实验就是用开环和闭环在负载扰动下的实验数据,说明闭环控制效果。自动控制系统性能的优劣,其原因之一就是取决调节器的结构和算法的设计(本课程主要用串联调节、状态反馈),本实验为了简洁,采用单闭环、比例调节器K。经过实验证明:不同的K,对系性能产生不同的影响,以说明正确设计调节器算法的重要性。 (3)为了使实验有代表性,本实验采用三阶(高阶)系统。这样,当调节器K值过大时,控制系统会产生典型的现象——振荡。本实验也能够认为是一个真实的电压控制系统。 三、实验设备: THBDC-1实验平台 四、实验线路图: 五、实验步骤: (1)如图接线,建议使用运算放大器U8、U10、U9、U11、U13。

传感器与检测技术实验报告

“传感器与检测技术”实验报告 学号:913110200229 姓名:杨薛磊 序号:83

实验一电阻应变式传感器实验 (一)应变片单臂电桥性能实验 一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。 二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 三、需用器件与单元:主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流 1位数显万用表(自备)。 稳压电源、电压表;应变式传感器实验模板、托盘、砝码; 4 2 四、实验步骤: 应变传感器实验模板说明:应变传感器实验模板由应变式双孔悬臂梁载荷传感器(称重传感器)、加热器+5V电源输入口、多芯插头、应变片测量电路、差动放大器组成。实验模板中的R1(传感器的左下)、R2(传感器的右下)、R3(传感器的右上)、R4(传感器的左上)为称重传感器上的应变片输出口;没有文字标记的5个电阻符号是空的无实体,其中4个电阻符号组成电桥模型是为电路初学者组成电桥接线方便而设;R5、R6、R7是350Ω固定电阻,是为应变片组成单臂电桥、双臂电桥(半桥)而设的其它桥臂电阻。加热器+5V是传感器上的加热器的电源输入口,做应变片温度影响实验时用。多芯插头是振动源的振动梁上的应变片输入口,做应变片测量振动实验时用。 1、将托盘安装到传感器上,如图1—4所示。 图1—4 传感器托盘安装示意图

压阻式压力传感器的压力测量实验

实验二压阻式压力传感器的压力测量实验 一、实验目的: 了解扩散硅压阻式压力传感器测量压力的原理和方法。 二、基本原理: 扩散硅压阻式压力传感器在单晶硅的基片上扩散出P型或N型电阻条,接成电桥。在压力作用下根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,我们把这一变化引入测量电路,则其输出电压的变化反映了所受到的压力变化。 图一压阻式压力传感器压力测量实验 三、需用器件与单元: 主机箱、压阻式压力传感器、压力传感器实验模板、引压胶管。 四、实验步骤: 1、将压力传感器安装在实验模板的支架上,根据图二连接管路和电路(主机箱内的气源部分,压缩泵、贮气箱、流量计已接好)。引压胶管一端插入主机箱面板上气源的快速接口中(注意管子拆卸时请用双指按住气源快速接口边缘往内压,则可轻松拉出),另一端口与压力传感器相连。压力传感器引线为4芯线: 1端接地线,2端为U0+,3端接+4V电源, 4端为Uo-,接线见图9-2。

2、实验模板上R W2用于调节放大器零位,R W1 调节放大器增益。按图9-2将实 验模板的放大器输出V02接到主机箱(电压表)的Vin插孔,将主机箱中的显示选 择开关拨到2V档,合上主机箱电源开关,R W1 旋到满度的1/3位置(即逆时针旋 到底再顺时针旋2圈),仔细调节R W2 使主机箱电压表显示为零。 3、输入气压,压力上升到4Kpa左右时调节调节Rw2(低限调节),,使电压表显示为相应的0.4V左右。再仔细地反复调节旋钮使压力上升到19Kpa左右时调节差动放大器的增益电位器Rw1(高限调节),使电压表相应显示1.9V左右。 4、再使压力慢慢下降到4Kpa,调节差动放大器的调零电位器,使电压表显示为相应的0.400V。再仔细地反复调节汽源使压力上升到19Kpa时调节差动放大器的增益电位器,使电压表相应显示1.900V。 5、重复步骤4过程,直到认为已足够精度时仔细地逐步调节流量计旋钮,使压力在4-19KPa之间变化,每上升3KPa气压分别读取电压表读数,将数值列于表1。 作业: 1、画出实验曲线,并计算本系统的灵敏度和非线性误差。实验完毕,关闭所有电源。

自动检测技术实验一

自动检测技术实验一-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

东南大学自动化学院 实验报告课程名称:检测技术 第 1 次实验 实验名称:实验一、三、五、八、九 院(系):自动化专业:自动化 姓名:学号: 实验室:实验组别: 同组人员:实验时间:2013 年 11 月 16 日评定成绩:审阅教师:

实验一金属箔式应变片——单臂电桥性能实验一、基本原理 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应。 描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压Uo1= EKε/4。 二、实验器材及连线 主机箱(±4V、±15V、电压表)、应变传感器实验模板、托盘、砝码、万用表、导线等。 图2-1 应变式传感器安装示意图

图2-2 应变传感器实验模板、接线示意图图2-3 单臂电桥工作原理图 三、实验步骤 1、根据图2-3 工作原理图、图2-2 接线示意图安装接线。 2、放大器输出调零 将实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(Vi =0);调节放大器的增益电位器RW3 大约到中间位置(先逆时针旋到底,再顺时针旋转2 圈);将主机箱电压表的量程切换开关打到2V 档,合上主机箱电源开关;调节实验模板放大器的调零电位器RW4,使电压表显示为零。 3、电桥调零 拆去放大器输入端口的短接线,将暂时脱开的引线复原。调节实验模板上的桥路平衡电位器RW1,使电压表显示为零。 4、应变片单臂电桥实验

传感器检测技术实验报告

《传感器与检测技术》 实验报告 姓名:学号: 院系:仪器科学与工程学院专业:测控技术与仪器实验室:机械楼5楼同组人员: 评定成绩:审阅教师: 传感器第一次实验

实验一 金属箔式应变片——单臂电桥性能实验 一、实验目的 了解金属箔式应变片的应变效应及单臂电桥工作原理和性能。 二、基本原理 电阻丝在外力作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压 1/4o U EK ε=,其中K 为应变灵敏系数,/L L ε=?为电阻丝长度相对变化。 三、实验器材 主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等。 四、实验步骤 1. 根据接线示意图安装接线。 2. 放大器输出调零。 3. 电桥调零。 4. 应变片单臂电桥实验。

050 100150200 246810x y untitled fit 1y vs. x 由matlab 拟合结果得到,其相关系数为0.9998,拟合度很好,说明输出电压与应变计上的质量是线性关系,且实验结果比较准确。 系统灵敏度 (即直线斜率),非线性误 差= = 五、思考题 单臂电桥工作时,作为桥臂电阻的应变片应选用:(1)正(受拉)应变片;(2)负(受压)应变片;(3)正、负应变片均可以。 答:(1)负(受压)应变片;因为应变片受压,所以应该选则(2)负(受压)应变片。 实验三 金属箔式应变片——全桥性能实验 一、实验目的 了解全桥测量电路的优点

东南大学模电第八次实验有源滤波器要点

东南大学电工电子实验中心 实验报告 学号:04009543 姓名:顾馨月 第8次 实验名称:有源滤波器实验 提交报告时间:2011年月日 完成名次: 成绩:审批教师:团雷鸣

实验八 有源滤波器实验 实验目的: 1、 掌握由运算放大器组成的RC 有源滤波器的工作原理 2、 熟练掌握RC 有源滤波器的工程设计方法 3、 掌握滤波器基本参数的测量方法 4、 进一步熟悉MultiSim 软件高级分析功能的使用方法 设计提示: 1、 有源滤波器设计中选择运算放大器主要考虑带宽、增益范围、噪声、动态范围这四个参 数。 (I) 带宽:当为滤波器选择运算放大器时,一个通用的规则就是确保它具有所希望滤波 器频率10倍以上带宽,最好是20倍的带宽。如果设计一个高通滤波器,则要确保运算放大器的带宽满足所有信号通过。 (II) 增益范围:有源滤波器设计需要有一定的增益。如果所选择的运算放大器是一个电 压反馈型的放大器,使用较大的增益将会导致其带宽低於预期的最大带宽,并会在最差的情况下振荡。对一个电流反馈型运算放大器来说,增益取的不合适将被迫使用对於实际应用来说太小或太大的电阻。 (III) 噪声:运算放大器的输入电压和输入电流的噪声将影响滤波器输出端的噪声。在噪 声为主要考虑因素的应用里,你需要计算这些影响(以及电路中的电阻所产生热噪声的影响)以确定所有这些噪声的叠加是否处在有源滤波器可接受的范围内。 (IV) 动态范围:在具有高Q 值的滤波器里面,中间信号有可能大於输入信号或者大於 输出信号。对操作恰当的滤波器来说,所有的这些信号必须能够通过而无出现削波或过度失真的情况 2、 目前已经有很多专业的有源滤波器设计软件如:德州仪器的Filter Pro 、国家半导体 WEBENCH? 中的Active Filter Designer 、Nuhertz Technologies 的Filter Solutions 等。这些软件可以根据您的设计指标要求很快的算出电路参数,很大程度上节省了开发周期。 预习思考: 1、 根据38页实验内容1的指标要求,设计一个低通滤波器,画出电路图,计算各元件参 数。所有的电阻和电容值必须采用标称值代替计算值。 (1) 计算过程: 根据设计要求:截止频率7.0,20==Q kHz f ,利用公式有: 根据现有元件的标称值,选择R f =44k,R F =25k , 使得 57.044 25 ≈=f F R R 逼近计算值。 此时的实际值应为7.0,57.10≈=Q A 当C C C R R R ====2121,时,

东南大学系统实验报告

实验八:抽样定理实验(PAM ) 一. 实验目的: 1. 掌握抽样定理的概念 2. 掌握模拟信号抽样与还原的原理和实现方法。 3. 了解模拟信号抽样过程的频谱 二. 实验内容: 1. 采用不同频率的方波对同一模拟信号抽样并还原,观测并比较抽样信号及还原信号的波形和频谱。 2. 采用同一频率但不同占空比的方波对同一模拟信号抽样并还原,观测并比较抽样信号及还原信号的波形和频谱 三. 实验步骤: 1. 将信号源模块、模拟信号数字化模块小心地固定在主机箱中,确保电源接触良好。 2. 插上电源线,打开主机箱右侧的交流开关,在分别按下两个模块中的电源开关,对应的发光二极管灯亮,两个模块均开始工作。 3. 信号源模块调节“2K 调幅”旋转电位器,是“2K 正弦基波”输出幅度为3V 左右。 4. 实验连线 5. 不同频率方波抽样 6. 同频率但不同占空比方波抽样 7. 模拟语音信号抽样与还原 四. 实验现象及结果分析: 1. 固定占空比为50%的、不同频率的方波抽样的输出时域波形和频谱: (1) 抽样方波频率为4KHz 的“PAM 输出点”时域波形: 抽样方波频率为4KHz 时的频谱: 50K …… …… PAM 输出波形 输入波形

分析: 理想抽样时,此处的抽样方波为抽样脉冲,则理想抽样下的抽样信号的频谱应该是无穷多个原信号频谱的叠加,周期为抽样频率;但是由于实际中难以实现理想抽样,即抽样方波存在占空比(其频谱是一个Sa()函数),对抽样频谱存在影响,所以实际中的抽样信号频谱随着频率的增大幅度上整体呈现减小的趋势,如上面实验频谱所示。仔细观察上图可发现,某些高频分量大于低频分量,这是由于采样频率为4KHz ,正好等于奈奎斯特采样频率,频谱会在某些地方产生混叠。 (2) 抽样方波频率为8KHz 时的“PAM 输出点”时域波形: 2KHz 6K 10K 14K 输入波形 PAM 输出波形

测试技术与传感器实验报告..

测试技术与传感器 实验报告 班级: 学号: 姓名: 任课老师: 年月日

实验一:静压力传感器标定系统 一、实验原理: 压力传感器输入—输出之间的工作特性,总是存在着非线性、滞后和不重复性,对于线性传感器(如压力传感器)而言,就希望找出一条直线使它落在传感器每次测量时实际呈现的标准曲线内,并相对各条曲线上的最大偏离值与该直线的偏差为最小,来作为标定工作直线。标定工作线可以用直线方程=+表示。 y k x b 对压力传感器进行静态标定,就是通过实验建立压力传感器输入量与输出量 =+使它落之间的关系,得到实际工作曲线,然后,找出一条直线y kx b 在实际工作曲线内,由于方程中的x和y是传感器经测量得到的实验数据,因此一般采用平均斜率法或最小二乘法求取拟合直线。本实验通过最小二乘法求取拟合直线,并通过标定曲线得到其精度。即常用静态特性:工作特性直线、满量程输出、非线性度、迟滞误差和重复性。 二、准备实验: 1)调节活塞式压力计底座四个调节旋钮,使整个活塞式压力计呈水平状态如图6所示; 2)松开活塞筒缩紧手柄,将活塞系统从前方绕水平轴转动,使飞轮在水平转轴上方且活塞在垂直位置锁紧,调整活塞系统底座下部滚花螺母,使活塞筒上的水平仪气泡居于中间位置,如图6,并紧固调水平处的滚花螺母; 图6 调节好,已水平 3)被标定三个压力传感器接在截止阀上(参见下图7),打开截止阀、进气调速阀、进油阀,关闭进气阀和排气阀,将微调器的调节阀门旋出15mm左右位置; 4)打开空气压缩机,待空气压缩机压力达到0.4MPa时,关闭压气机。因为对于最大量程为0.25MPa的活塞式压力计,压力必须小于等于0.4MPa。 5)打开采集控制柜开关,检查串口连接情况。双击桌面的“压力传感器静态标定”软件,进入测试系统,如图7所示。

基于单片机的压力传感器实验

课程设计说明书题目:压力传感器设计 学院(系): 年级专业:电子信息科学与技术 学号: 学生姓名: 指导教师:

目录 摘要---------------------------- -------------------------------------------------------------------------2 关键字---------------- ----------------------------------------------------------------------------------2 第一章总体设计方案及模块划分---------------------------------------------------------------2 1.1总体设计方案--------------------------------------------------------------------------------3 1.2模块划分--------------------------------------------------------------------------------------4 1.3设计框图如下图所示-----------------------------------------------------------------------5 第二章各模块设计参数-------------------------------------------------------------------------------5 2.1传感器元件模块------------------------------------------------------------------------------5 2.2 A/D转换模块---------------------------------------------------------------------------------8 2.3控制器处理模块-----------------------------------------------------------------------------12 2.4 AD0809接口电路及LED接口电路------------------------------------------------------14 第三章压力传感器实验数据采集、显示及程序---------------------------------------------14 3.1数据采集及显示-----------------------------------------------------------------------------14 第四章心得体会--------------------------------------------------------------------------------------15 附录-----------------------------------------------------------------------------------------------------16 程序设计--------------------------------------------------------------------------------------16 参考文献资料---------------------------------------------------------------------------------25 实物图--------------------------------------------------------------------------------------25

相关主题
文本预览
相关文档 最新文档