传感器实验报告详解
- 格式:doc
- 大小:310.50 KB
- 文档页数:8
传感器与检测技术实验报告一、实验目的本次实验旨在深入了解传感器与检测技术的基本原理和应用,通过实际操作和数据测量,掌握常见传感器的特性和检测方法,培养我们的实践能力和解决问题的思维。
二、实验设备与材料1、传感器实验箱,包含各类常见传感器,如电阻式传感器、电容式传感器、电感式传感器、光电式传感器等。
2、数字万用表、示波器。
3、实验连接导线若干。
三、实验原理1、电阻式传感器电阻式传感器是将被测量的变化转换为电阻值的变化。
常见的有应变式电阻传感器和热敏电阻传感器。
应变式电阻传感器基于电阻应变效应,当受到外力作用时,其电阻丝发生形变,从而导致电阻值的变化;热敏电阻传感器则根据温度的变化改变自身电阻值。
2、电容式传感器电容式传感器是将被测量的变化转换为电容值的变化。
主要有变极距型、变面积型和变介质型电容传感器。
其工作原理基于电容的定义式 C =εS/d,其中ε 为介质的介电常数,S 为两极板的相对面积,d 为两极板间的距离。
3、电感式传感器电感式传感器是利用电磁感应原理将被测量转换为电感量的变化。
包括自感式和互感式传感器。
自感式传感器通过改变线圈的自感系数来反映被测量;互感式传感器则是根据互感系数的变化进行测量。
4、光电式传感器光电式传感器是把被测量的变化转换成光信号的变化,然后通过光电元件转换成电信号。
常见的有光电管、光电倍增管、光敏电阻、光敏二极管和光敏三极管等。
四、实验内容与步骤1、电阻式传感器实验(1)连接应变式电阻传感器到实验电路,施加不同的外力,用数字万用表测量电阻值的变化,并记录数据。
(2)将热敏电阻传感器接入电路,改变环境温度,测量电阻值,绘制温度电阻曲线。
2、电容式传感器实验(1)分别连接变极距型、变面积型和变介质型电容传感器到实验电路,改变相应的参数,如极距、面积或介质,用示波器观察输出电压的变化。
(2)记录不同参数下的输出电压值,分析电容值与输出电压的关系。
3、电感式传感器实验(1)连接自感式传感器,改变磁芯位置或气隙大小,测量电感值的变化。
传感器实验实验报告传感器实验实验报告引言:传感器是一种能够将各种物理量、化学量或生物量转换为可测量电信号的装置。
它在各个领域中都有着广泛的应用,如环境监测、医疗诊断、智能家居等。
本次实验旨在通过对不同类型传感器的测试和比较,深入了解传感器的原理和性能。
实验一:温度传感器温度传感器是一种常见的传感器类型,用于测量环境中的温度。
我们选择了一款热敏电阻温度传感器进行测试。
实验中,我们将传感器连接到一个电路板上,并使用示波器测量输出电压随温度的变化。
通过改变环境温度,我们观察到传感器输出电压与温度之间的线性关系。
这表明该传感器具有良好的灵敏度和稳定性。
实验二:光照传感器光照传感器是一种能够测量环境中光照强度的传感器。
我们选择了一款光敏电阻光照传感器进行测试。
实验中,我们将传感器暴露在不同光照条件下,并使用万用表测量输出电阻的变化。
结果显示,传感器输出电阻随光照强度的增加而减小。
这说明该传感器能够准确地感知光照强度,并将其转化为电信号输出。
实验三:湿度传感器湿度传感器是一种用于测量环境湿度的传感器。
我们选择了一款电容式湿度传感器进行测试。
实验中,我们将传感器放置在一个密封的容器中,并通过改变容器内的湿度来模拟不同湿度条件。
通过连接传感器到一个数据采集系统,我们能够实时监测到传感器的输出信号。
结果显示,传感器的输出电容随湿度的增加而增加。
这说明该传感器对湿度变化非常敏感,并能够准确地测量环境湿度。
实验四:气体传感器气体传感器是一种能够检测环境中气体浓度的传感器。
我们选择了一款气敏电阻气体传感器进行测试。
实验中,我们将传感器暴露在不同浓度的气体环境中,并使用示波器测量输出电阻的变化。
结果显示,传感器的输出电阻随气体浓度的增加而减小。
这表明该传感器能够准确地感知气体浓度,并将其转化为电信号输出。
结论:通过本次实验,我们深入了解了不同类型传感器的原理和性能。
温度传感器、光照传感器、湿度传感器和气体传感器在各自的应用领域中都具有重要的作用。
1. 了解传感器的基本原理、结构及其应用。
2. 掌握传感器的测试方法及数据分析。
3. 熟悉常用传感器的工作原理及性能特点。
4. 提高实验操作技能和数据分析能力。
二、实验原理传感器是一种能够感受被测非电量并将其转换为电信号的装置。
本实验主要涉及以下传感器:1. 温度传感器:利用温度变化引起电阻或电压变化的原理,将温度信号转换为电信号。
2. 压力传感器:利用弹性元件的形变引起电阻或电压变化的原理,将压力信号转换为电信号。
3. 光电传感器:利用光电效应将光信号转换为电信号。
三、实验设备与器材1. 温度传感器2. 压力传感器3. 光电传感器4. 温度计5. 压力计6. 光强计7. 数据采集器8. 示波器9. 电路板10. 连接线1. 温度传感器测试(1)将温度传感器连接到数据采集器上。
(2)调整温度计,使其与温度传感器处于同一温度环境中。
(3)启动数据采集器,记录温度传感器输出电压随温度变化的数据。
(4)分析数据,绘制温度-电压曲线。
2. 压力传感器测试(1)将压力传感器连接到数据采集器上。
(2)调整压力计,使其与压力传感器处于同一压力环境中。
(3)启动数据采集器,记录压力传感器输出电压随压力变化的数据。
(4)分析数据,绘制压力-电压曲线。
3. 光电传感器测试(1)将光电传感器连接到数据采集器上。
(2)调整光强计,使其与光电传感器处于同一光照环境中。
(3)启动数据采集器,记录光电传感器输出电压随光强变化的数据。
(4)分析数据,绘制光强-电压曲线。
五、实验结果与分析1. 温度传感器测试结果:根据实验数据,绘制温度-电压曲线。
从曲线可以看出,温度传感器输出电压与温度呈线性关系,验证了传感器的基本原理。
2. 压力传感器测试结果:根据实验数据,绘制压力-电压曲线。
从曲线可以看出,压力传感器输出电压与压力呈线性关系,验证了传感器的基本原理。
3. 光电传感器测试结果:根据实验数据,绘制光强-电压曲线。
从曲线可以看出,光电传感器输出电压与光强呈线性关系,验证了传感器的基本原理。
传感器试验报告范文一、实验目的:通过对传感器进行试验,了解它的性能指标和特点,并掌握传感器在不同环境下的适用范围。
二、实验材料:1.传感器:温度传感器、压力传感器、光敏传感器。
2.仪器设备:示波器、万用表、电源、计算机。
三、实验过程:1.温度传感器试验:连接温度传感器、示波器和电源。
调节电源输出电压,观察示波器上的波形变化。
测量传感器的输出电压随温度的变化,并绘制图表。
2.压力传感器试验:将压力传感器与示波器和电源连接。
通过调节电源的输出电压,观察示波器上的波形变化,并记录传感器的输出电压随压力的变化情况。
绘制图表进行分析。
3.光敏传感器试验:连接光敏传感器、示波器和电源,调节电源输出电压,观察示波器上的波形变化。
通过遮挡传感器的光线,观察传感器的输出电压变化情况,并记录数据进行分析。
四、实验结果:1.温度传感器试验结果:温度传感器的输出电压随温度的变化呈线性关系,即温度越高,输出电压越高。
通过绘制图表,可以得出明确的温度-电压曲线。
2.压力传感器试验结果:压力传感器的输出电压随压力的变化呈线性关系,即压力越大,输出电压越高。
通过绘制图表,可以得出明确的压力-电压曲线。
3.光敏传感器试验结果:光敏传感器的输出电压随光强的变化呈非线性关系。
在光线较弱的情况下,输出电压较低,光线较强时,输出电压较高。
通过绘制图表,可以得出明确的光强-电压曲线。
五、实验讨论:从实验结果可以看出,不同的传感器有不同的特点和性能指标。
温度传感器对温度变化敏感,可以精确测量温度;压力传感器对压力变化敏感,可以精确测量压力;光敏传感器对光强变化敏感,可以精确测量光强。
因此,在实际应用中,需要根据需要选择合适的传感器。
六、实验总结:通过本次传感器试验,我们深入了解了传感器的性能指标和特点,以及它们在不同环境下的适用范围。
这对于我们在实际应用中选择合适的传感器具有重要的指导意义。
同时,本次试验还让我们掌握了使用示波器、万用表等仪器设备进行传感器测试的方法和技巧。
一、实验目的1. 了解传感器的基本原理和检测方法。
2. 掌握不同类型传感器的应用和特性。
3. 通过实验,验证传感器检测的准确性和可靠性。
4. 培养动手能力和分析问题的能力。
二、实验原理传感器是将物理量、化学量、生物量等非电学量转换为电学量的装置。
本实验主要涉及以下几种传感器:1. 电阻应变式传感器:利用应变片将应变转换为电阻变化,从而测量应变。
2. 电感式传感器:利用线圈的自感或互感变化,将物理量转换为电感变化,从而测量物理量。
3. 电容传感器:利用电容的变化,将物理量转换为电容变化,从而测量物理量。
4. 压电式传感器:利用压电效应,将物理量转换为电荷变化,从而测量物理量。
三、实验仪器与设备1. 电阻应变式传感器实验装置2. 电感式传感器实验装置3. 电容传感器实验装置4. 压电式传感器实验装置5. 数字万用表6. 示波器7. 信号发生器8. 振动台四、实验步骤1. 电阻应变式传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
(3)观察数字万用表和示波器显示的应变值和电压值。
(4)分析应变值和电压值之间的关系,验证电阻应变式传感器的检测原理。
2. 电感式传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
(3)观察数字万用表和示波器显示的电感值和电压值。
(4)分析电感值和电压值之间的关系,验证电感式传感器的检测原理。
3. 电容传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
(3)观察数字万用表和示波器显示的电容值和电压值。
(4)分析电容值和电压值之间的关系,验证电容传感器检测原理。
4. 压电式传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
一、实验目的1. 理解并掌握传感器的基本工作原理。
2. 学习不同类型传感器的应用及其特性。
3. 通过实验验证传感器在实际测量中的应用效果。
二、实验原理传感器是将非电物理量(如温度、压力、位移等)转换为电信号的装置。
实验中,我们将使用以下几种传感器进行实验:1. 温度传感器:将温度转换为电信号。
2. 压力传感器:将压力转换为电信号。
3. 位移传感器:将位移转换为电信号。
三、实验器材1. 温度传感器:热敏电阻、热电偶等。
2. 压力传感器:压力变送器、压力传感器等。
3. 位移传感器:电涡流位移传感器、磁电式位移传感器等。
4. 测量电路:放大器、滤波器、A/D转换器等。
5. 计算机及数据采集软件。
四、实验步骤1. 温度传感器实验(1)将热敏电阻或热电偶安装在实验装置上,并连接到测量电路。
(2)使用计算机及数据采集软件采集温度变化时的电信号。
(3)分析采集到的数据,验证温度传感器的工作原理。
2. 压力传感器实验(1)将压力传感器安装在实验装置上,并连接到测量电路。
(2)施加不同压力,采集压力变化时的电信号。
(3)分析采集到的数据,验证压力传感器的工作原理。
3. 位移传感器实验(1)将位移传感器安装在实验装置上,并连接到测量电路。
(2)移动实验装置,采集位移变化时的电信号。
(3)分析采集到的数据,验证位移传感器的工作原理。
五、实验结果与分析1. 温度传感器实验结果通过实验,我们发现温度变化时,热敏电阻或热电偶的电阻值或电动势发生变化,与温度呈线性关系。
这验证了温度传感器的工作原理。
2. 压力传感器实验结果实验结果表明,压力变化时,压力传感器的输出电压与压力呈线性关系。
这验证了压力传感器的工作原理。
3. 位移传感器实验结果实验结果表明,位移变化时,位移传感器的输出电压与位移呈线性关系。
这验证了位移传感器的工作原理。
六、实验结论通过本次实验,我们掌握了传感器的基本工作原理,并学会了不同类型传感器的应用及其特性。
传感器检测实验报告传感器检测实验报告一、引言传感器是一种能够将物理量转化为电信号的装置,广泛应用于各个领域,如工业自动化、环境监测、医疗诊断等。
本实验旨在通过对传感器的检测,了解其工作原理、性能参数以及应用范围。
二、实验目的1. 了解传感器的基本工作原理;2. 掌握传感器的性能参数检测方法;3. 分析传感器的应用场景。
三、实验装置与方法1. 实验装置:传感器、信号采集器、示波器等;2. 实验步骤:a. 连接传感器与信号采集器;b. 设置示波器参数;c. 对传感器进行检测。
四、实验结果与分析1. 传感器工作原理传感器通过感受外界物理量的变化,转化为电信号输出。
常见的传感器类型有温度传感器、压力传感器、光敏传感器等。
不同类型的传感器有不同的工作原理,如热敏电阻式温度传感器利用温度变化导致电阻值的变化,从而输出电信号。
2. 传感器性能参数检测a. 灵敏度:传感器对被测量物理量变化的响应能力。
通过改变被测量物理量,记录传感器输出信号的变化,计算灵敏度。
b. 线性度:传感器输出信号与被测量物理量之间的线性关系程度。
通过改变被测量物理量,记录传感器输出信号,绘制曲线,判断线性度。
c. 分辨率:传感器能够检测到的最小变化量。
通过改变被测量物理量,记录传感器输出信号的变化,计算分辨率。
d. 响应时间:传感器从感受到物理量变化到输出信号变化所需的时间。
通过改变被测量物理量,记录传感器输出信号的变化,计算响应时间。
3. 传感器应用场景a. 工业自动化:传感器在工业生产中广泛应用,如温度传感器用于监测设备温度,压力传感器用于监测管道压力等。
b. 环境监测:传感器用于监测环境中的各种物理量,如光敏传感器用于检测光照强度,湿度传感器用于检测空气湿度等。
c. 医疗诊断:传感器在医疗设备中起着重要作用,如心率传感器用于监测患者心率,血压传感器用于测量患者血压等。
五、实验总结通过本次实验,我们了解了传感器的工作原理、性能参数检测方法以及应用场景。
第1篇一、实验背景随着科技的飞速发展,传感器技术在各个领域都得到了广泛的应用。
传感器作为一种将非电学量转换为电学量的装置,对于信息采集、处理和控制具有至关重要的作用。
本实验旨在通过一系列传感器实验,加深对传感器基本原理、工作原理和应用领域的理解。
二、实验目的1. 了解传感器的定义、分类和基本原理。
2. 掌握常见传感器的结构、工作原理和特性参数。
3. 熟悉传感器在信息采集、处理和控制中的应用。
4. 培养动手操作能力和分析问题、解决问题的能力。
三、实验内容本次实验共分为以下几个部分:1. 压电式传感器实验- 实验目的:了解压电式传感器的测量振动的原理和方法。
- 实验原理:压电式传感器由惯性质量块和受压的压电片等组成。
工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。
- 实验步骤:1. 将压电传感器装在振动台面上。
2. 将低频振荡器信号接入到台面三源板振动源的激励源插孔。
3. 将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。
将压电传感器实验模板电路输出端Vo1,接R6。
将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。
4. 合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。
5. 改变低频振荡器的频率,观察输出波形变化。
2. 电涡流传感器位移特性实验- 实验目的:了解电涡流传感器测位移的原理和方法。
- 实验原理:电涡流传感器利用电磁感应原理,当传感器靠近被测物体时,在物体表面产生涡流,通过检测涡流的变化来测量物体的位移。
- 实验步骤:1. 将电涡流传感器安装在实验平台上。
2. 调整传感器与被测物体的距离,观察示波器波形变化。
3. 改变被测物体的位移,观察示波器波形变化。
3. 光纤式传感器测量振动实验- 实验目的:了解光纤传感器动态位移性能。
一、实验目的1. 了解各类传感器的基本原理、工作特性及测量方法。
2. 掌握传感器实验仪器的操作方法,提高实验技能。
3. 分析传感器在实际应用中的优缺点,为后续设计提供理论依据。
二、实验内容本次实验主要包括以下几种传感器:电容式传感器、霍尔式传感器、电涡流式传感器、压力传感器、光纤传感器、温度传感器、光敏传感器等。
1. 电容式传感器实验(1)实验原理:电容式传感器利用电容的变化来测量物理量,其基本原理为平板电容 C 与极板间距 d 和极板面积 S 的关系式C=ε₀εrS/d。
(2)实验步骤:搭建实验电路,将传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
2. 霍尔式传感器实验(1)实验原理:霍尔式传感器利用霍尔效应,将磁感应强度转换为电压信号,其基本原理为霍尔电压 U=KBIL。
(2)实验步骤:搭建实验电路,将霍尔传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
3. 电涡流式传感器实验(1)实验原理:电涡流式传感器利用涡流效应,将金属导体中的磁通量变化转换为电信号,其基本原理为电涡流电压 U=KfB。
(2)实验步骤:搭建实验电路,将电涡流传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
4. 压力传感器实验(1)实验原理:压力传感器利用应变电阻效应,将力学量转换为易于测量的电压量,其基本原理为应变片电阻值的变化与应力变化成正比。
(2)实验步骤:搭建实验电路,将压力传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
5. 光纤传感器实验(1)实验原理:光纤传感器利用光纤的传输特性,将信息传感与信号传输合二为一,其基本原理为光纤传输的损耗与被测物理量有关。
(2)实验步骤:搭建实验电路,将光纤传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
6. 温度传感器实验(1)实验原理:温度传感器利用电阻或热电偶的特性,将温度变化转换为电信号,其基本原理为电阻或热电偶的电阻或电动势随温度变化。
传感器原理及应用实验报告的传感器原理及应用实验报告1. 引言传感器是一种能够将物理量转化为可测量的电信号的装置,广泛应用于各个领域,如工业控制、医疗监护、环境监测等。
本实验旨在探究传感器的工作原理,并通过一系列的应用示例,展示传感器在实际应用中的优势和价值。
2. 传感器的工作原理传感器的工作原理基于不同的物理原理,常见的有电阻、电容、磁性、光电等原理。
以电阻式传感器为例,其基本原理是通过测量感应电阻的变化来获得目标物理量的信息。
当被测量物理量发生变化时,传感器内部的电路会产生相应的变化,这种变化可以通过电压、电流等形式的输出信号来实现。
3. 传感器的分类与应用3.1 光电传感器光电传感器利用光敏元件(如光电二极管、光电三极管等)对光信号进行感知,并将其转化为电信号。
光电传感器广泛应用于工业自动化控制、安防监控、光电测距等领域。
3.2 压力传感器压力传感器通过测量物体受到的外部压力,将其转化为电信号。
压力传感器在汽车制造、气体检测、医疗器械等领域有着重要的应用。
3.3 温度传感器温度传感器通过测量物体的温度变化,将其转化为电信号。
温度传感器广泛应用于气象观测、温控设备、冷链物流等领域。
3.4 加速度传感器加速度传感器用于测量物体的加速度或振动状态,常见于汽车安全系统、运动监测、智能手机等设备中。
3.5 湿度传感器湿度传感器用于测量空气中的湿度水分含量,广泛应用于农业、气象观测、室内环境监测等领域。
4. 传感器应用实例4.1 工业领域在工业自动化领域,传感器起着至关重要的作用。
通过使用温度传感器和压力传感器,可以实现对生产过程中温度和压力的监测与控制,提升生产效率和质量。
4.2 医疗监护传感器在医疗监护领域也广泛应用。
心电传感器可以实时监测患者的心电图数据;血氧传感器可以测量血氧饱和度;体温传感器可以监测患者体温的变化,及时发现异常情况。
4.3 环境监测传感器在环境监测领域具有重要作用。
空气质量传感器可以检测空气中的恶劣气体浓度;水质传感器可以监测水质的污染程度;土壤湿度传感器可以及时监测土壤的湿度状况。
五邑大学
《传感器与电测技术》
实验报告
实验时间:2016年11月16日-17日实验班级:班
实验报告总份数: 4 份
实验教师:
信息工程学院(系) 611 实验室
__交通工程_____专业
班
学号
姓名_______协作者______________
成绩:
实验一熟悉IAR 集成开发环境下C程序的编写
一.实验目的
1、了解IAR 集成开发环境的安装。
2、掌握在IAR 环境下程序的编辑、编译以及调试的方法。
二.实验设备
1、装有IAR 开发环境的PC 机一台
2、物联网开发设计平台所配备的基础实验套件一套
3、下载器一个
三.实验要求
1、熟悉IAR 开发环境
2、在IAR 开发环境下编写、编译、调试一个例程
3、实验现象节点扩展板上的发光二极管 D9 被点亮
三、问题与讨论
根据提供的电路原理图等资料,修改程序,点亮另一个LED 灯D8。
(分析原理,并注释。
)
先定义IO口,再初始化,最后点亮
一、实验目的与要求
1、理解光照度传感器的工作原理
2、掌握驱动光照度传感器的方法
二、实验设备
1、装有IAR 开发工具的PC 机一台
2、下载器一个
3、物联网开发设计平台一套
三、实验要求
1、编程要求:编写光照度传感器的驱动程序
2、实现功能:检测室内的光照度
3、实验现象:将检测到的数据通过串口调试助手显示,用手遮住传感器,观察数据变化。
四、实验讨论
讨论:光敏电阻的工作原理?光敏电阻是否为线性测量元件,为什么?常用于什么测量场合?
1.它的工作原理是基于光电效应。
在半导体光敏材料两端装上电极引线,将其
封装在带有透明窗的管壳里就构成光敏电阻。
为了增加灵敏度,两电极常做成梳状。
半导体的导电能力取决于半导体导带内载流子数目的多少。
当光敏电阻受到光照时,价带中的电子吸收光子能量后跃迁到导带,成为自由电子,同时产生空穴,电子—空穴对的出现使电阻率变小。
光照愈强,光生电子—空穴对就越多,阻值就愈低。
当光敏电阻两端加上电压后,流过光敏电阻的电流随光照增大而增大。
入射光消失,电子-空穴对逐渐复合,电阻也逐渐恢复原值,电流也逐渐减小
2.不是线性测量元件,可以说光敏电阻在照度固定时是线性的。
光敏电阻的阻
值随光照的增强而减少,但这个关系不是线性的。
3.常用作开关式光电转换器
一、实验目的与要求
1、掌握单片机驱动温湿度传感器SHT10 的方法
2、掌握读时序图的方法
二、实验设备
1、装有IAR 开发工具的PC 机一台
2、下载器一个
3、物联网开发设计平台一套
三、实验要求
1、编程要求:编写温湿度传感器SHT10 的驱动程序
2、实现功能:采集室内的温度和湿度
3、实验现象:将采集到的数据通过串口调试助手显示,用手触摸温湿度传感器,观察数据
的变化。
四、实验讨论
讨论:温湿度传感器SHT10工作原理?
1、温湿度传感器SHT10 简介
SHT10 用于采集周围环境中的温度和湿度,其工作电压为2.4~5.5V,测湿精度为±4.5%RH,25℃时测温精度为±0.5℃。
采用SMD 贴片封装。
SHT10 内部结构示意图
传感器SHT10 既可以采集温度数据也可以采集湿度数据。
它将模拟量转换为数字量输出,所以用户只
需按照它提供的接口将温湿度数据读取出来即可。
内部结构示意图如图2.115 所示。
温湿度传感器输出的模拟信号首先经放大器放大,然后A/D 转换器将放大的模拟信号转换为数字信
号,最后通过数据总线将数据提供给用户使用。
其中校验存储器保障模数转换的准确度,CRC 发生器保障
数据通信的安全。
SCK 数据线负责处理器和SHT10 的通讯同步;DATA 三态门用于数据的读取。
SHIT10 驱动电路原理图
本设计中CC2530 的引脚P0_0 用于SCK,P0_6 用于DATA,如图2.116 所示。
2、温湿度传感器初始化时序
SHT10 用一组“启动传输”时序来表示数据传输的初始化。
如图2.117 所示。
b) SHT10 写时序
SHT10 采用两条串行线与处理器进行数据通信。
SCK 数据线负责处理器和SHT10 的通讯同步;DATA
三态门用于数据的读写。
如图 2.118 所示。
写入湿度测量命令成功后,SHT10 首先会发送一个应答信号(将数据线拉低),而后连续发出两个字节有效数据和一个字节CRC,所以微控制器要在应答之后发送Clock 如图中箭头所示。
微控制器每接收到一个字节都要发给SHT10 一个应答信号,而后SHT10 才会发送下一个字节
综合设计报告
设计无人值守气体,火灾、防盗监控报警系统。
设计无人值守温湿度、雨滴监控报警系统。
设计智能窗帘、LED灯照度自动调节系统。
要求:每人选择一题,结合所学知识,画出所设计系统的结构框图,提供所需核心元件及技术,简要说明工作原理。
实验四.设计智能窗帘、LED灯照度自动调节系统。
1.设计框图
2.原理
由于LED的亮度与工作电流成正比,故调节工作电流即可调节LED的发光亮度。
目前主要有调节正向电流和脉冲调制调光两种调光方法。
由于脉宽调制调光具有不会产生任何色彩偏移、调光精度高、结合数字技术调光、调光范围宽、不闪烁等优点,故本文选用脉冲调制调光。
系统主要由TSL2561采集光照度反馈给PIC16F690处理芯片,经过PIC16F690进行相应的算法处理,输出随光照度规律变化的波形,经过带有接口的驱动电路驱动LED 灯从而实现调光。
3功能
使用恒流LED控制芯片NCL30160作为LED光源驱动电路,采用TSL2561光照度传感器采集室内光照度,通过处理器相应算法进行闭环控制,实现室内的恒照度调光。