【清华 数学建模】第二章 初等模型
- 格式:pdf
- 大小:860.97 KB
- 文档页数:21
1 题目:生物学家认为,对于休息状态的热血动物消耗的能量主要用于维持体温,能量与从心脏到全身的血流量成正比,而体温主要通过身体表面散失,建立一个动物体重与心率之间关系的模型,并用下面的数据加以检验。
解:动物消耗的能量P 主要用于维持体温,而体内热量通过表面积S 散失,记动物体重为ω,则3/2-∝∝ωS P 。
P α正比于血流量Q ,而qr Q =,其中q 是动物每次心跳泵出的血流量,r 为心率。
合理地假设q 与ω成正比,于是r P ω∝。
综上可得3/1-∝ωr ,或3/1-=ωk r 。
由所给数据估计得310897.20⨯=k ,将实际数据与模型结果比较如下表:2 题目:一垂钓俱乐部鼓励垂钓者将钓上来的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):先用机理分析,再用数据确定参数。
问题分析本题为了知道鱼的重量,用估计法来通过估计鱼的长度而确定鱼的重量,这种方法只能针对同一种体形相似鱼,但是一般而言世界上没有两种完全相同的东西,所以对于同一种类的鱼也有可能肥瘦不一。
所以在此,我们应该先不妨假设同一种鱼它的整体形状是相似的,密度也大体上是相同的。
模型假设⑴设鱼的重量为;⑵语的身长记为;模型的构成与求解因为我们前面假设了鱼的整体形状是相似的,密度也相同,所以鱼的重量w 与身长l 的立方成正比,即,为这两者之间的比例系数。
即31v k w =,1k 为比例系数。
不过常钓得较肥的鱼的垂钓者不一定认可上面的模型,因为它对肥鱼和瘦鱼同等看待,如果只假定鱼的截面是相似的,则横截面积与鱼身最大周长的平方成正比,于是l d k w 22=,2k 为比例系数。
利用题中给的数据,估计模型中的系数可得:1k =0.0146,2k =0.0322,将实际数据与模型结果比较如下表:结果分析及评注通过上面的一系列分析,可见估计的两个模型基本上都能让垂钓者满意, 上表中我们可以看到,两个模型算得的结果与鱼的实际结果相差不大,所以,在同一种鱼整体形状相似的,密度也相同的情况下,用身体长度去估计它的体重和考虑鱼身的情况下估计鱼的体重都是可行的。