第一章 初等模型
- 格式:ppt
- 大小:3.61 MB
- 文档页数:158
第一节初等模型解决实际问题,应尽可能用简单而且初等的方法建模,方法简单而初等,容易被更多的人理解接受和采用,就更有价值。
下面举的例子,虽然不是很复杂,但告诉我们,只要仔细地观察生活,你就会发现,在我们周围处处存在着可用数学解决的问题。
一、代数法建模[例8.1.1] 椅子问题在我们周围的日常生活中,到处都会遇到数学问题,就看我们是否留心观察和善于联想,比如有这样一个问题(你或许认为这个问题与数学毫不相干):4条腿长度相等的椅子放在起伏不平的地面上,4条腿能否一定同时着地?模型假设:(1)椅子的四条腿一样长,4脚的连线是正方形。
(2)地面是数学上的光滑曲面,即沿任意方向,切面能连续移动。
建模的关键在于恰当地寻找表示椅子位置的变量,并把要证明的“着地”这个结论归结为某个简单的数学关系。
假定椅子中心不动,4条腿着地点视为几何学上的点,用A、B、C、D表示,将AC、BD连线看作x轴、y轴,建立如图8.1.1所示的坐标系。
引入坐标系后,将几何问题代数化,即用代数方法去研究这个几何问题。
图8.1.1人们习惯于,当一次放不平稳椅子时,总是转动一下椅子(这里假定椅子中心不动),因而将转动椅子联想到坐标轴的旋转。
设为对角线AC转动后与初始位置x轴夹角,如果定义距离为椅脚到地面的竖直长度。
则“着地”就是椅脚与地面的距离等于零,由于椅子位于不同位置,椅脚与地面距离不同,因而这个距离为的函数,设──A、C两脚与地面距离之和;──B、D两脚与地面距离之和。
因地面光滑,显然,连续,而椅子在任何位置总有三只脚可同时“着地”,即对任意的,,总有一个为零,有。
不失一般性,设于是椅子问题抽象成如下数学问题:假设:,是的连续函数,且对任意,。
求证:存在,使得。
证明:令,则将椅子转动,对角线互换,由和,有,,从而。
而在上连续,由介值定理,必存在使得。
即。
又因对任意,从而。
即在方向上椅子四条腿能同时“着地”。
椅子问题的解决是学习运用类比法的一个很好实例,从中可受到一定启发,学习到一些建模技巧:转动椅子与坐标轴旋转联系起来;用一元变量表示转动位置;巧妙地将“距离”用的函数表示,而且只设两个函数,(注意椅子有4只脚!);由三点定一平面得到;利用转动并采用了介值定理使得问题解决得非常巧妙而简单。
《数学建模》课程教学大纲课程编号: 90907011学时:32学分:2适用专业:本科各专业开课部门:各学院一、课程的性质与任务数学建模是研究如何将数学方法和计算机知识结合起来用于解决实际问题的一门边缘交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。
本课程主要介绍初等模型、简单优化模型、微分方程模型、概率统计模型、数学规划模型等模型的基本建模方法及求解方法。
通过数学模型有关概念、特征的学习和数学模型应用实例的介绍,培养学生数学推导和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力,综合分析能力;培养学生应用数学方法解决实际问题的能力。
三、实践教学的基本要求(无)四、课程的基本教学内容及要求第一章数学模型概述1.教学内容数学模型与数学建模、数学建模的基本方法和步骤、数学模型的特点和分类。
2.重点与难点重点:数学模型与数学建模。
难点:数学建模的基本方法和步骤。
3.课程教学要求了解数学模型与数学建模过程;了解数学建模竞赛规程;掌握几个简单的智力问题模型。
第二章初等模型1.教学内容双层玻璃窗的功效、动物的身长与体重。
2.重点与难点重点:初等方法建模的思想与方法。
难点:初等方法建模的思想与方法。
3.课程教学要求了解比例模型及其应用。
第三章简单的优化模型1.教学内容存贮模型、最优价格。
2.重点与难点重点:存贮模型。
难点:存贮模型。
3.课程教学要求掌握利用导数、微分方法建模的思想方法;能解决简单的经济批量问题和连续问题模型。
第四章数学规划模型1.教学内容线性规划建模、非线性规划建模,奶制品的生产与销售、接力队的选拔与选课策略、钢管和易拉罐下料。
2.重点与难点重点:线性规划方法建模、非线性规划建模。
难点:非线性规划方法建模、Lingo软件的使用。
3.课程教学要求掌握线性规划建模方法;了解对偶单纯形的经济意义;了解Lingo数学软件在解决规划问题中的作用。
‘第一章初等数学模型很多问题只要用到初等数学知识就能完成建模过程,而没有必要用高等数学的方法。
其实,只要能达到建模的目的和要求,所用的数学理论越简单越好,因为要用于解决实际问题,是要给大家看的,当然越简单越好。
只有迫不得以非用高深数学知识不可,才选择高深的数学知识。
下面举几个只要用初等数学就能解决的问题,我们把它称为初等数学模型。
第一节利息的计算与银行的按揭模型一. 资金的时间价值如果你拥有一笔资金,你绝对不会把它长期的放在抽屉里,而是存入银行或进行其他投资,例如买股票、债券或其他的投资。
这是因为资金具有时间价值。
资金的时间价值是指资金随时间推移而发生的增价。
在投资决策中,考察资金的时间价值,正是考察使用该资金进行投资所须放弃的利益,即机会成本。
机会成本是所放弃的诸方案中盈利最大方案的利润值。
例如某资金若投资于某工程,就放弃了将其存入银行或贷给他人的机今。
假设有资金100万元,银行的年利率为10%,贷给他人的年利率为12%,则从机会成本的角度计算,这笔资金的时间价值应为12%(或者说12万元)。
一笔资金如果不用于投资则不会有资金增值,如果资金不存入银行,不购买股票,也不进行其他投资,而是把资金锁在自已的抽屉里,随着时间的推移,不仅不会增值,或许还会贬值。
资金拥有者应当把资金投入到创造增值的活动中去,并有权获得资金时间价值带来的回报。
资金的价值随时间的变化而变化,其原因有如下几种:(1)通货膨胀:在通货膨胀情况下,用商品和劳务购买力所表示的货币价值不断下降。
(2)风险:现在手头的100元是确定的,而明天是否仍是100元是不确定的,这种不确定性就是风险。
风险对于投资者而言,是非常重要的。
(3)个人消费偏好:不同的人有不同的消费习惯(或不同的消费偏好),许多人偏好眼前的消费,而不是将来的消费。
(4)投资的机会:货币(或资金)正如其他商品一样,也具有价值,如现在得到的一万元现金与一年后得到的一万元相比,人们都会选择前者,因为现在的一万元存在投资的机会,如存入银行,假若年利率为6%,则一年后将得到10600元。
初等模型一、席位分配问题二、方桌问题三、银行存款与借贷问题四、围棋盘的问题五、市场稳定(平衡)问题一、席位分配问题某学校有200名学生,甲系100人,乙系60人,丙系40人,若学生会设20个代表席位,最简单的分配方法是按比例分配,三个系分别获得的名额为10,6,4名代表。
现丙系有6人转入其他两个系学习,此时,三个系的人数分别为:甲系103人,乙63人,丙系34人,若仍按比例分配席位,则出现小数,而代表名额必须是整数。
据此,先分配整数部分,再根据小数部分的大小把余下的名额逐个分配下去,直至全部分配完成。
根据这一做法,先分配整数部分,应是19个名额,还剩1个名额,此时,按比例应分配名额丙系应得的小数部分最大,应给丙系,于是分配如下:席位分配表(20个席位)为避免表决提案时出现10:10的情形,决定增加一个席位,于是按照比例分配的方法重新分配席位。
结果如下:席位分配表(21个席位)对比以上两种情况,发现总名额增加了1个,丙系分配得到的名额反而减少了1个,这对丙系来说是极大的不公平,说明这种按比例分配的方法存在着缺陷,这并不是一种公平的分配方法。
那么,这里的公平,到底应怎么体现呢?所谓代表,就是1个名额能代替多少人,如果代替的人多了,当然就不公平,如果代替的人少了,当然占有优势,那么该如何分配才是公平的呢?下面引入一些新概念,即使用1个名额所代表的人数作为衡量公平的依据。
并先从两方入手,进行一些简单的计算。
设A 、B 两方人数分别是1p 和2p ,分别占有1n 和2n 个席位,则双方每个席位所代表的人数分别是11n p 和22n p 。
要达以完全公平,即要求2211n pn p =,但这两个数通常并不相等,于是产生不公平,而不公平达到什么程度呢?当然是两个数越接近越公平,差距越大越不公平,因而引入概念:2211n p n p -称为绝对不公平度。
例如(1)1201=p ,91=n ,1002=p ,112=n ,则有2.42211=-n p n p (2)1201=p ,101=n ,1002=p ,102=n ,则有22211=-n p n p 以上说明(2)比(1)更公平。