第5章-频域图像增强20161028
- 格式:pdf
- 大小:5.10 MB
- 文档页数:72
第五章图像的增强与变换§5.1 图像增强与变换§5.2 光谱增强§5.3 空间增强§5.4 多源信息的复合§5.1 图像增强与变换图像增强和变换为了突出相关的专题信息,提高图像的视觉效果,使分析者能更容易地识别图像内容,从图像中提取更有用的定量化信息。
按其作用的空间可分两种:光谱增强空间增强§5.2 光谱增强光谱增强对应于每个像元,与像元的空间排列和结构无关。
因此又叫点操作。
1. 彩色合成2. 对比度增强(直方图增强)3. 图像间运算为了充分利用色彩在遥感图像判读和信息提取中的优势,常常利用彩色合成的方法对多光谱图像进行处理,以得到彩色图像。
单波段彩色变换(密度分割)多波段彩色变换(真彩色,假彩色)HLS变换:色调(hue)、明度(lightness)和饱和度(saturation)的色彩模式。
即RGB模式ÆHLS模式。
1. 彩色合成单波段彩色变换(密度分割)(1)求图像的极大值dmax 和极小值d min ;(2)求图像的密度区间ΔD=dmax -d min +1;(3)求分割层的密度差Δd=ΔD/n,其中n为需分割的层数;(4)求各层的密度区间;(5)定出各密度层灰度值或颜色。
1.彩色合成1.彩色合成多波段彩色变换真彩色合成真彩色图像上影像的颜色与地物颜色基本一致。
把红色波段的影像作为合成图像中的红色分量、把绿色波段的影像作为合成图像中的绿色分量、把蓝色波段的影像作为合成图像中的蓝色分量进行合成的结果。
如TM321分别用RGB合成的图像。
假彩色合成假彩色图像是指图像上影像的色调与实际地物色调不一致的图像。
遥感中最常见的假彩色图像是彩色红外合成的标准假彩色图像。
它是在彩色合成时,把近红外波段的影像作为合成图像中的红色分量、把红色波段的影像作为合成图像中的绿色分量、把绿色波段的影像作为合成图像中的蓝色分量进行合成的结果。
如TM432用RGB合成的图像为标准假彩色图像。
5. 图像的频域增强及傅里叶变换傅立叶变换在图像处理中有非常非常的作用。
因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法,比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。
印象中,傅立叶变换在图像处理以下几个话题都有重要作用:1.图像增强与图像去噪绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘;2.图像分割之边缘检测提取图像高频分量3.图像特征提取:形状特征:傅里叶描述子纹理特征:直接通过傅里叶系数来计算纹理特征其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性4.图像压缩可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换;傅立叶变换傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。
连续情况下要求原始信号在一个周期内满足绝对可积条件。
离散情况下,傅里叶变换一定存在。
冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。
棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。
傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。
当我们考虑光时,讨论它的光谱或频率谱。
同样,傅立叶变换使我们能通过频率成分来分析一个函数。
傅立叶变换有很多优良的性质。
比如线性,对称性(可以用在计算信号的傅里叶变换里面);时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变;频移性:函数在时域中乘以,可以使整个频谱搬移w。
这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输);卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。
(图像处理里面这个是个重点)信号在频率域的表现在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。