输电线路在线监测覆冰预警
- 格式:pdf
- 大小:780.66 KB
- 文档页数:2
微探架空输电线路覆冰在线监测装置及防护措施
输电线路覆冰是在冰雪天气条件下容易引发的故障之一。
为了保障电网的稳定运行,需要对输电线路上的覆冰情况进行及时监测,并采取相应的防护措施。
微探架空输电线路覆冰在线监测装置及防护措施可以有效地帮助电网运行人员及时发现输电线路上的覆冰情况,以便采取及时有效的措施。
微探架空输电线路覆冰在线监测装置是一种安装在输电线路上的传感器设备,可以实时采集并监测输电线路上的覆冰情况。
该监测装置通过使用先进的图像识别技术,可以准确地检测输电线路上的覆冰情况。
该装置还具备一定的智能分析能力,能够根据不同的覆冰情况进行预警和警报。
通过与电网监控系统的连接,可以实现对输电线路覆冰情况的实时监测和远程预警。
除了在线监测装置,还需要采取相应的防护措施来保护输电线路免受覆冰的影响。
在设计和建设输电线路时,应考虑覆冰情况,并制定相应的设计标准和规范。
应定期对输电线路进行巡检和维护,及时清除覆冰物,保持输电线路的畅通。
还可以采用一些技术手段来防止覆冰,比如使用防冰装置和加热装置,以增加输电线路的抗冰能力。
微探架空输电线路覆冰在线监测装置及防护措施近年来,架空输电线路覆冰已成为电力系统运行中一个重要的问题。
当输电线路受到覆冰后,可能出现线路杆塔断裂或传输线路受损等情况,给电力系统的安全运行带来很大影响。
因此,研究和开发一种能够有效监测输电线路覆冰的在线监测装置以及防护措施势在必行。
一、在线监测装置的设计原理在线监测装置主要包括传感器、控制器、通信模块和电源等组成部分。
装置通过传感器对输电线路的温度和湿度等参数进行监测,并将监测数据传输给控制器。
控制器根据所接收的数据,分析线路的冰层厚度,并将分析结果通过通信模块传输给远程监测中心,以便对线路的冰层情况进行实时监测和预警。
1. 精度高:在线监测装置可采用多种传感器,如温湿度传感器、电容式厚度传感器等,具有较高的精度和准确性。
2. 实时性好:通过与互联网实现连接,实现远程监测,可准确快速地对输电线路进行监测和分析。
3. 扩展性强:在线监测装置可根据实际需要进行扩展设计,进一步完善线路监测和预警系统。
三、防护措施的应用目前,防护措施主要包括人工除冰、机械除冰和加热除冰等。
其中,加热除冰技术是一种不断发展和应用的先进技术,已被广泛应用于输电线路覆冰的防护中。
加热除冰技术是利用电加热或其他能量加热方式,提高线路表面温度,使冰层融化或者脱落的技术。
该技术具有自动化程度高、作业可靠、效果好等特点,可有效提高输电线路的覆冰安全性。
四、结论通过在线监测装置和防护措施的应用,可有效监测和管理输电线路覆冰情况,并对其进行有效的防护和处理。
这不仅能够保证电力系统的安全运行,还能提高电力系统的服务水平和效率。
因此,在线监测装置和防护措施的引入是电力系统运行中的重要措施,也是未来电力系统发展的必然趋势。
输电线路覆冰在线监测动态预警模型董绍春摘要:随着全球异常恶劣气候频发,因极端天气引起的电网覆冰灾害不断加剧,输电线路覆冰影响范围也日趋扩大,轻则可造成闪络跳闸,严重时会引起金具损坏、倒塔断线等危害。
为了提高电力行业应对灾情和紧急事故时的反应能力和抗风险能力,一方面电力行业加强研究线路覆冰形成机理和有效的防冰除冰融冰方法,另一方面要积极开展覆冰的在线监测、预警和诊断方法的研究,它可有效地将线路覆冰故障遏制在萌芽状态。
文章重点就输电线路覆冰在线监测动态预警模型进行研究分析,以供参考和借鉴。
关键字:输电线路;覆冰;监测;动态预警模型引言我国大部分地区位于寒带,覆冰积雪是美丽的自然景观,这是一种分布相当广泛的自然现象。
但对于输电线路来说,则是自然灾害。
输电线路覆冰可引起导线舞动、杆塔倾斜倒塌、断线及绝缘子闪络等问题,要减轻导线覆冰带来的危害,在新建线路时,首先要充分掌握该地区的冰雪情况,并仔细研究输电走廊的微气候、微地形,尽量避开重冰区,无法避免时,应在重冰区采取抗冰设计。
对重冰区超高压线路的设计、运行以及提高整个电力系统的安全可靠性具有重要的实际意义和指导作用。
1影响输电线路覆冰的因素分析第一,气象因素。
输电线路覆冰主要发生在11月至次年3月间,尤其在入冬和倒春寒时覆冰发生的频率最高;第二,海拔高程因素。
就同一个地区来说,一般海拔高程愈高,愈易覆冰,覆冰也愈厚,且多为雾凇;海拔高程较低处,其冰厚虽较薄,但多为雨凇或混合冻结;第三,线路走向及悬挂高度因素。
东西走向的导线覆冰普遍较南北走向的导线覆冰严重。
因为冬季覆冰天气大多为北风或西北风,所以在严重覆冰地段选择线路走廊时,应尽量避免导线呈东西走向;第四,导线直径因素。
在常见的小于或等于8m/s的风速下,直径小于或等于4cm的导线,相对较粗的导线的单位长度覆冰量比相对较细的导线重;对于直径大于4cm的导线,单位长度覆冰重量反比较细的导线轻;在大于8m/s的较大风速下,对于任何直径的导线,导线越粗覆冰越重,但覆冰厚度随导线直径的增加而减小。
微探架空输电线路覆冰在线监测装置及防护措施随着经济的发展和人们生活水平的提高,电力需求量不断增加。
为了满足将电能从发电站输送到消费地的需求,输电线路得以建设。
在极端天气条件下,如冬季极寒天气导致输电线路覆冰,将会对电网的安全稳定造成影响。
对覆冰情况进行实时监测,并采取相应的防护措施是十分必要的。
微探架空输电线路覆冰在线监测装置及防护措施应运而生。
架空输电线路覆冰在线监测装置是通过传感器采集架空输电线路的温度、湿度和覆冰厚度等数据,并将数据传输到监测系统中进行分析和处理,从而了解覆冰情况,并及时采取相应的防护措施。
1. 传感器采集数据传感器通过对架空输电线路表面温度的监测,可以判断覆冰的情况。
在覆冰过程中,覆冰层对热量的传导系数远小于空气对热量的传导系数,当架空输电线路覆冰时,表面温度会明显下降。
通过传感器采集的数据,可以判断出覆冰的位置和厚度。
2. 数据传输和分析传感器采集到的数据通过通信模块传输到监测系统中,进行数据分析和处理。
监测系统可以实时监测覆冰情况,并做出预警和预测。
3. 预警和预测监测系统通过对数据的分析,可以预测覆冰情况的发展趋势,并及时对线路覆冰进行预警,为采取相应的防护措施提供依据。
1. 加热系统通过监测装置对覆冰情况的实时监测,可以根据具体情况采取相应的防护措施。
对于已经覆冰的输电线路,可以通过加热系统对覆冰进行融化,保证线路的正常运行。
2. 防冰喷洒系统在监测到覆冰情况严重的情况下,可以启动防冰喷洒系统,喷洒防冰液体,阻止覆冰的进一步发展,保证线路的安全运行。
防冰喷洒系统一般由监控中心控制,根据实时数据进行智能化喷洒。
3. 防护装置针对不同情况,可以对输电线路进行相应的防护,例如安装护罩、加固支架等设施,保证线路不受极端天气条件的影响,保证电网的稳定运行。
1. 实时监测2. 智能化预警监测系统可以实现对防护设施的智能化控制,根据具体情况自动启动加热系统、防冰喷洒系统等设施,保证输电线路的安全运行。
浅析1000kV特高压输电线路的覆冰在线监测技术通常来说,输电线路覆冰经常会引起一些事故,例如引起线路的跳闸、断线、倒塔、导线舞动、绝缘子闪络和通讯中断等。
为减少输电线路覆冰事故的发生,除加强探索输电线路覆冰机理、有效防冰除冰方法外,还应加强对大电网覆冰在线监测、预警和诊断方法的研究。
目前,监测线路覆冰的方法主要有人工巡视检测、观冰站、模拟覆冰导线等,这些方法均存在着劳动强度大、投资高,检测结果与实际出入大等问题。
本文介绍的覆冰力学、气象数据监测单元和覆冰图像/视频监控单元两种覆冰监测技术,实时监测了1000kV输电线路沿线导线的覆冰综合拉力变化、倾斜角、风偏角、温度、湿度、风速、风向以及图/视频等信息,便于在覆冰初期及时发现冰害危险,提供预告/报警信息,有利于将覆冰事故消除在萌芽状态,防止冰害事故,提高1000kV特高压输电线路覆冰区的安全性。
1 1000kV特高压输电线路简介1000kV晋东南--南阳--荆门交流试验示范工程是世界上第一个以额定电压长期运行的特高压工程,该工程线路全长645km,经过山西、河南和湖北3省,其中河南境内342.811km。
线路为南北走向,北端气温低,南端气温高。
沿线经过地形复杂、气候多变的山区,尤其是高海拔山区具有明显的立体气候特征,在一个小范围内,由于地形的变化,气候会有很大的差异。
河南段最易造成危害的导线覆冰是雨凇,其次是雾凇。
线路沿线地形地貌主要为中低山、低山、丘陵、山前平原、山间凹地、垅岗、河流漫滩等。
线路沿线既有交通困难的太行山区、地形破碎的黄土冲刷丘陵地带,也有特殊跨越--黄河、汉江大跨越,还有交通发达但污秽严重的平原地区;既有干旱少雨、风大雾重的平顶山、洛阳地区,又有雨水充沛,洪水冲刷较重的南阳、襄樊、荆门地区。
综合分析1000kV输电线路地理分布、气候特征以及覆冰特点等情况建立了1000kV特高压覆冰监测网。
目前该监测网布置多个监测点,运行情况良好。
架空输电线路覆冰在线监测系统及运行分析孟毅,陈继东摘要:持续低温雨雪天气使架空输电线路覆冰,对电网运行造成严重危害,输电线路覆冰在线监测系统具有重要意义。
文章分析了输电线路覆冰在线监测系统的原理及功能,对输电线路典型覆冰进行了分析,将覆冰过程分为形成、稳定增长、缓慢增长、消失四个阶段。
对系统的研发及运行进行了分析和总结,指出拉力传感器等关键部件存在的问题及解决措施。
通过若干年的运行,可建立覆冰统计资料序列,为输电线路工程设计提供依据。
引言架空输电线路超设计条件覆冰是影响送电线路安全运行的突出问题之一。
近年来,国内电网受大气候和微地形、微气象条件的影响,冰害事故时有发生。
冻雨覆冰使输电线路的荷重增加,对导线、铁塔、绝缘子和金具带来不同程度的机械损坏,严重时会导致断线和倒杆塔,造成大面积停电事故。
2008年一月以来,我过南方地区出现长时间持续的大范围的低温雨雪冰冻天气,导致输电线路发生倒塔、断线、覆冰闪络、脱冰跳跃等多种事故,对电网造成了严重的破坏。
湖南、江西、贵州等地电网一度解列,部分地区电网几乎全部损毁。
此次冰灾的直接原因是罕见的持续大范围低温雨雪冰冻气候,但同时也反映出缺乏在第一时间掌握线路覆冰状况的手段[1]。
目前,检测线路覆冰的方法主要有人工巡视、观冰站等,这些方法存在着劳动强度大、投资高,检测结果准确性差等问题。
输电线路覆冰在线监测技术通过在易覆冰区域的铁塔上安装覆冰自动监测站,将数据通过无线通讯网络传往监控中心,可随时掌握线路的覆冰情况,并可实现预、报警,达到降低电网覆冰事故损失的目的。
研究覆冰在线监测技术,对防止和控制电网冰灾,提高电网的运行可靠性具有重大意义。
1 输电线路覆冰在线监测系统的原理及功能输电线路覆冰在线监测系统是集计算机技术、微量信号传感技术、电磁兼容技术、数据信息处理技术、低功耗技术、视频技术、网络通讯技术等为一体的技术集合体[2]。
系统在输电线路杆塔安装拉力传感器、倾角传感器、温湿度传感器、风速传感器、风向传感器、摄像机,采用无线通信技术(通常是GSM或GPRS)进行现场数据/图像的实时传输。
第28卷㊀第2期2023年4月㊀哈尔滨理工大学学报JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY㊀Vol.28No.2Apr.2023㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀架空输电线路弧垂及覆冰的在线监测杨小龙,㊀袁翰青,㊀孙辰军,㊀马㊀超,㊀李㊀静(国网河北省电力有限公司信息通信分公司,石家庄050000)摘㊀要:为实现架空输电线路在线覆冰及舞动监测,提出了一种基于分布式相敏光时域反射计(Φ-OTDR )架空输电线路在线监测方法㊂文章通过建立了输电线路的数学模型,理论分析得到导线的弧垂㊁舞动频率等参数计算公式;其次提出了基于Φ-OTDR 分析方法,并对其监测原理进行了分析㊂通过搭建架空线在线监测模型,分别开展架空线舞动试验及覆冰试验,分析得到了架空输电线路的动态应变特性,验证了基于Φ-OTDR 的输电线路状态在线监测方案㊂试验结果表明,在厘米尺度上,弧垂估计误差小于5.8%,在亚毫米尺度上,冰厚估计误差不大于10.84%,可准确描述了输电线路状态,为输电线路故障预警提供了有力支持㊂关键词:分布式光纤传感器;在线监测;架空输电线路;Φ-OTDR DOI :10.15938/j.jhust.2023.02.012中图分类号:TM726.3文献标志码:A文章编号:1007-2683(2023)02-0099-09On-line Monitoring of Sag and Icing of Overhead Transmission LinesYANG Xiaolong,㊀YUAN Hanqing,㊀SUN Chenjun,㊀MA Chao,㊀LI Jing(Information and Communication Branch of State Grid Hebei Electric Power Co.,Ltd.,Shijiazhuang,050000)Abstract :In order to realize on-line icing and galloping monitoring of overhead transmission lines,an on-line monitoring method for overhead transmission lines based on phase-sensitive optical time domain reflectometry (Φ-OTDR)is proposed.In this paper,by establishing mathematical models of transmission line,the calculation formulas of conductor sag,galloping frequency and other parameters are obtained through theoretical analysis.Secondly,by building the overhead line online monitoring model,the overheadline galloping test and the icing test are proposed respectively,and the leakage principle is analyzed.The dynamic acquisition characteristics of overhead transmission lines are analyzed,and the online status monitoring scheme of transmission lines based on Φ-OTDR is verified.The test results show that the estimation error of sag is less than 5.8%on centimeter scale,and the estimation error of ice thickness is no more than 10.84%on sub-millimeter scale,which gives an accurate description of transmission line status andprovides strong support for early warning of transmission line failures.Keywords :distributed optical fiber sensor;online monitoring;overhead transmission line;phase-sensitive OTDR㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2021-10-14基金项目:科技部科技创新重大项目(2020AAA0107500).作者简介:袁翰青(1973 ),男,硕士,高级工程师;孙辰军(1981 ),男,硕士,高级工程师.通信作者:杨小龙(1989 ),男,硕士,高级工程师,E-mail:277135930@.0㊀引㊀言由于我国东西部资源与消费的严重不均,通过高压远距离传输电能,实现资源在国家内部的优化配置成为了必然选择㊂当前,国内多个区域架空输电线路经常受到覆冰和舞动的威胁[1-3]㊂输电线路的载荷和迎风面积通常由于结冰而增加,可能导致架空线路舞动,进而导致断线㊁倒塔㊁闪络等事故,造成巨大的经济损失[2,4,5]㊂因此有必要采用可靠有效的检测方法,及时㊁准确地获取输电线路的覆冰状态㊂目前,输电线路的在线监测主要通过点传感器或图像监测实现[6-9]㊂大多数点传感器是电传感器,通常都存在非线性㊁零点漂移和强电磁环境耐受差等缺点[10-11]㊂此外,这些传感器的安装,包括电源和数据传输网络布设实施步骤复杂且费用较高㊂光纤传感器(optical fiber sensors,OFSs)是一种以光波为载体㊁光纤为传感介质的传感器,随着光纤通信技术的发展,应用已愈来愈广泛㊂OFSs具有一系列独特的优点,如测量精度高㊁鲁棒性好和绝缘性能高㊂基于OFS的传输线监测始于1997年,其中光纤布拉格光栅(fiber bragg gratings,FBG)可用于测量相邻两个城镇之间输电线路的应变[12]㊂但由于FBG制造和部件成本较高,通常比同类电子产品贵一到两个数量级㊂此外,与电子传感器一样,FBG 属于单点传感器,只能提供较低的传感器分布密度㊂此传感器必须采用额外传输线路连接到输电线路,这会降低传输线的稳定性㊂与光纤光栅不同,分布式光纤传感器(distribu-ted optical fiber sensors,DOFSs)依靠一整套光学系统与光纤一起实现对物理电气参数进行采集和空间解调,可以取代成千上万的点传感器㊂因此,DOFSs 可以用来监测目标的整体行为,而不是从几个测量点进行外推㊂电力传输系统中的通信主要基于光缆,同时光纤复合架空地线(optical fiber composite overhead ground wire,OPGW)得到了广泛的应用㊂通过DOFSs,OPGW网络可以构成在线监测的传感网络㊂目前基于DOFSs的输电线路覆冰在线监测主要通过布里渊光时域反射计(BOTDR)监测输电线路的应变变化来实现[13-16]㊂虽然研究人员已经证明了该方案的可行性,但仍有一些不足之处㊂首先,光纤一般有0.6%~0.7%长度的尾纤,其中填充的润滑脂降低了光纤附着力[7,12],使得架空线的应力很难作用在光纤上㊂因此,只有当外部张力大于阈值时,才能测量架空线的应变㊂此外,BOTDR 的单个采集周期通常为几十分钟,由于舞动,架空线的应变将会不断变化,这可能导致测量结果不准确㊂这些缺点共同带来应力测量的不确定性,进而导致测量结果的置信度较低㊂近年来,具有高灵敏度实时测量能力的相敏光时域反射计(Φ-OTDR)引起了众多研究人员的兴趣[6-10,17-21]㊂Φ-OTDR具有响应速度快㊁机械振动灵敏度高等优点,适于输电线路的在线监测㊂2019年,有研究人员使用Φ-OTDR监测传输线的舞动频率,并将结果与FBG的结果进行比较,但他们并未对这些参数代表的意义以及如何利用它们进行进一步解释或分析[22]㊂本文基于输电线路数学模型,提出了基于Φ-OTDR的在线监测的分析方法;搭建架空线路弧垂㊁覆冰监测平台,通过试验证明Φ-OTDR的测量结果(包括弧垂㊁舞动㊁覆冰)的准确性㊂1㊀在线监测原理分析1.1㊀输电线路的力学特性分析在分析输电线路力学特性时,建立一个包含导线㊁减震器㊁绝缘子串和杆塔的全套计算模型是非常复杂和困难的㊂相对于架空线路而言,塔架可视为刚性固定,因此输电线路模型在分析时可简化为无刚度和无阻尼的导线,导线两端的边界可认为是固定㊂图1㊀无刚度和阻尼的导线Fig.1㊀A wire with no stiffness and no damping如图1所示,L为导线的长度;l为跨度长度;h 为从导线弧垂的最低点到两固定点连接线的垂直距离;T0为导线的初始水平张力㊂那么导线长度㊁跨距和弧垂之间的关系可以表示为[20]L=l+8h23l(1)当覆冰或落冰时,L将相应地改变ΔL,此时弧垂可以表示为hᶄ=3l8ΔL+h20(2)其中:h0为初始弧垂;hᶄ为L变化后的弧垂㊂故只要获得ΔL,就可以计算得到hᶄ㊂导线振动的固有频率是其固有特性之一,可表示为[21]f k=k2l T0m(3)其中:k为振动阶数;f k为k阶震动的频率;m为单位长度导线的质量㊂用裸导线的振动频率除以覆冰001哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀导线的振动频率:f icef 0=m 0m 0+m ice(4)m ice =ρice d (d -2r 0)(5)式中:m 0为导线单位长度的初始质量;m ice 为每单位长度导线的覆冰质量;r 0为导线的初始半径;d 为冰厚度;ρice 为冰的密度(0.92g /cm 3),由于覆冰厚度仅与导线振动频率比的变化有关㊂将式(5)代入式(4),振动频率与冰厚度之间的关系可以表示为d =m 0(f 20-f 2ice )πρice f 2ice+r 20-r 0(6)因此,通过对输电线路振动频率的检测,可以得到覆冰厚度㊂1.2㊀Φ-OTDR 监测原理分析Φ-OTDR 利用窄线宽激光产生高相干光脉冲,在传感光纤上获得相对稳定的瑞利背向散射(Ray-leigh backscatter,RBS)相位分布㊂在没有外界干扰和不考虑激光频率漂移的情况下,传感光纤任意截面上的RBS相位都是稳定的㊂当振动信号作用于传感光纤时,传感光纤的形状将会因振动信号而产生受力形变,光纤的折射率㊁长度和纤芯直径都会发生变化,从而导致RBS 的相位变化㊂因此,可通过测量RBS 相位差的变化来解调该部位光纤的振动信号㊂图2㊀振动引起RBS 相变Fig.2㊀Vibration causes the phase change of RBS如图2所示,r 1和r 2分别为传感光纤扰动区前后的散射中心;S 0是r 1和r 2之间初始光纤的长度㊂当相干光脉冲在传感光纤中传播时,入射光将在每个散射中心激发相干RBS㊂在仅考虑传感光纤轴向应变引起的相变时,r 1和r 2处RBS 的简化表达式可写成[23]:E r 1=E 1cos(ωt +φ1)(7)E r 2=E 2cos ωt +φ1+4πnλ(S 0+ΔS )()(8)其中:E 1和E 2为RBS 的振幅;ω为入射光角频率;φ1为初始相位;n 为光纤芯的折射率;λ为入射光的波长;ΔS 为振动引起的长度变化㊂由此,r 1和r 2之间的相位差为[24]Δφ=4πn λS 0+4πnλΔS =φS 0+Δφυ(9)式中:φS 0为初始光纤长度引入的相位差,它决定了相位差曲线的初始位置,在稳定环境下通常为常数;Δφυ为振动引入的相位差,决定相位差曲线的形状㊂因此,可通过RBS 信号检测和数据处理,解调相位变化以及光纤长度变化㊂由于光纤长度的变化与振动幅度呈线性关系,从而实现振动的精确测量㊂1.3㊀基于Φ-OTDR 的输电线路在线监测假设图2中的导线为OPGW,两个端点分别为r 1和r 2,可通过Φ-OTDR 获得导线的长度变化㊂首先,假设OPGW 的负载在无振动的情况下发生变化,L 也会相应变化,其该变量ΔL 可以表述为[25]ΔL =S ᶄ0-S 0=λ4πn(φᶄS 0-φS 0)(10)式中:S ᶄ0为荷载变化后的光纤长度;φᶄS 0为光纤长度变化后相位差曲线的水平位置㊂需要指出的是,尽管由于环境不稳定,φS 0可能随时间而缓慢变化,冻雨或冰降引起的输电线路负荷变化通常是快速或突然的,所以φS 0对计算影响不大㊂因此,通过观察相位差曲线的水平位置变化,弧垂的计算表达式为h ᶄ=3λl32πn(φᶄS 0-φS 0)+h 20(11)然后假设风导致架空线舞动,导线负载保持不变,L 也会相应变化,ΔL 可以表述为ΔL =ΔS =λ4πn Δφυ(12)平衡状态下最低位置弧垂变化可表示为[25]G =3λl32πnΔφυ+h 20-h 0(13)这里,弧垂的变化反映为振幅变化,也可以相应地获得振动频率㊂由此,可以通过将荷载变化前后的固有频率代入式(6)来计算冰厚度㊂应该注意的是根据式(3),f 与l ㊁T 0和m 相关,因此不同跨度中f 0也不一致㊂于是需要根据不同跨度的实际测量结果校准f ㊂此外,根据式(3)和式(4),当冰厚度相同时,振动阶数越高,f 0和f ice 之间的差异越大㊂由此可知,高阶振动对输电线路的负荷变化更为敏感㊂101第2期杨小龙等:架空输电线路弧垂及覆冰的在线监测2㊀试验研究2.1㊀试验平台搭建本文搭建了演示试验系统,其硬件设置示意图如图3所示㊂所使用的Φ-OTDR 设备为日本光纳株式社生产,型号为NBX -S300,设备采样率为4kHz,空间分辨率为0.1m,测量距离可达100m㊂设计的铝合金框架用于悬挂钢绞线,考虑后续覆冰及舞动试验施加的激励方式,本文在实验室内开展模拟试验时以钢丝绳替代导线,分析覆冰和舞动的情况㊂导线在固定滑轮上缠绕数米以此作为固定方式,试验布置时设定两个固定滑轮之间的距离即跨度为30m,将0.9mm 的光纤紧密固定在导线上㊂将一根100g 的绳子悬挂在导线的中心(即跨度的中间位置),通过切割绳子释放悬挂在导线上的重量来激发导线振动㊂利用H 1减去H 2获得导线的初始弧垂,其中H 1是固定点的高度,H 2是导线最低点的高度,可随冰厚度的变化而变化㊂本文所使用的导线(即上文提到的钢丝绳)直径和单位长度质量分别为1.5mm 和46.4g /m㊂由于很难实现导线覆冰均匀且各处位置厚度一致,所以本文用橡皮泥来替代实际的冰,也可达到导线荷载增加的效果㊂在开展覆冰试验时,冰的厚度逐渐从0.25mm 增加至为1.25mm,梯度为0.25mm,冰的质量可以根据式(5)进行计算㊂图3㊀覆冰舞动模拟装置原理图Fig.3㊀Schematic diagram of the device forsimulating icing and galloping2.2㊀试验结果分析2.2.1㊀舞动试验图4(a)为振动的功率谱密度(power spectraldensity,PSD),可以看出主振动频率约为1.3Hz,中间振动强度最大,两侧减小㊂有9个区域受到悬挂重物重量下降的影响,选择中间7个区域分析振动变化,其振动情况一致,如图4(b)所示㊂然后,沿导线方向进行积分,可以获得整个振动过程的相位变化,如图4(c)所示㊂分析图4(c),由于悬挂物重量的下降,将使得悬挂中心位置产生46000rad 的振动,且振动强度呈指数衰减并逐渐趋于稳定㊂图4㊀导线舞动试验结果Fig.4㊀Wire galloping test result首先对弧垂进行评估,依次卸下5个悬挂在线路中间的重量为10g 的橡皮块㊂图5(a)为导线悬挂部分随橡皮块卸下的相位变化,初始值为0rad,随着悬挂重物重量的减轻,相位逐渐向y 轴负方向移动,这意味着悬挂导线的长度变短,弧垂也应相应减小㊂图5(b)为用软尺测量的实际弧垂,以及校正201哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀前后的估计弧垂㊂弧垂测量值和估计值的趋势一致,由于两者绝对误差几乎为常数,故实际值和未经校正的估计值之间的相对误差随着弧垂的减小而增大㊂可以看出,实际值和估计值之间的误差单调,且估计值均大于实际值,如图5(c)所示㊂根据式(11)和式(9),如果h ᶄ高于实际值,则S 0-S ᶄ0小于其理论值,误差最有可能是光纤与导线的固定松动而引起的㊂由图5(b)得出,实际值和未经校正的估计值之间的平均差为0.0158m,将该差值和初始弧垂(0.458m )代入式(1),计算出的额外长度为0.0016m㊂经校正后,实际值与估计值之间的相对误差减小了一个数量级以上,均小于5.8%㊂图5㊀弧垂测量结果分析Fig.5㊀Analysis of sag measurement results进一步分析光纤固定松动引起的额外长度变化,在式(2)中引入了误差项ΔL ,有无额外长度的弧垂估计表示如下:h 1=3l8ΔL +h 20(14)h ᶄ1=3l8(ΔL +ΔL ᶄ)+h 20(15)相对误差可以表示为h ᶄ1-h 1h 1=1+ΔLΔL +83lh 2-1(15)220kV 输电网络的跨度通常为100m,假设l =400m,h 0=10m,h 1从10.5m 增加到12.5m,间隔为0.5m,ΔL 的取值范围为0.1ɢ~0.3ɢ,接着计算相对误差,如图5(d)所示㊂可以看出,在引入实际刻度参数后,虽然额外长度的比例增加,但相对误差小于10%,并且随着弧垂的增加而减小㊂显然,由于模拟设备与实际情况之间存在一定差异,引起误差放大㊂对相变曲线上进行高通滤波,截止频率设定为0.5Hz,以获得Δφυ,可根据式(13)计算最低点的位移㊂为了评估计算结果的准确性,在导线的最低点布置了MEMS 加速度计作为对比,其分辨率为6.1ˑ10-5g,传感范围为ʃ16g㊂将加速度器的结果进行两次积分,可以得到最低点的位移信息㊂如图6(a)所示,加速度器和Φ-OTDR 获得的位移信息基本一致,这证明等式(13)给出的转换关系是有效的㊂图6(b)给出了振动的PSD 图,可得导线固有振动频率的值,证明了加速度器和Φ-OTDR 结果的一致性㊂301第2期杨小龙等:架空输电线路弧垂及覆冰的在线监测因此,在已知初始垂度的情况下,Φ-OTDR 可以检测导线的位移㊂图6㊀振动频谱分析Fig.6㊀Vibration spectrum analysis2.2.2㊀覆冰试验图7为覆冰厚度变化后悬挂部分导线的相位变化,它不仅体现了振动激励的一致性,还描述了导线振动固有频率的变化㊂随着振动的不断变化,由于共振,振动能量逐渐集中在导线的固有频率上㊂图7㊀不同冰厚下的相变Fig.7㊀Phase change under different ice thickness通过比较振动PSD,可以进一步分析振动频率与冰厚之间的关系㊂图8(a)为不同冰厚下的振动PSD,可以看出振动具有多个频率分量㊂根据式(3),一次谐波和二次谐波之间的频率间隔应与二次谐波和三次谐波之间的间隔相同,但观察图8(a)明显与理论不符,将图8(a)局部放大为图8(b)㊁(c)和(d)㊂很明显,随着冰厚度的增加,振动频率向低频漂移,其关系如图8(e)所示㊂高次谐波的频移对冰厚的变化更为敏感,冰厚度与f /f 0之间的关系如图8(f)所示㊂401哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀图8㊀覆冰试验结果分析Fig.8㊀Analysis of icing test results㊀㊀根据式(4),f/f0的值仅受导线质量的影响,因此对于不同的f0,比率的变化趋势应该是相同的㊂在图8(f)中,当f0为3.0275Hz和5.0225Hz时,比率变化一致,而当f0为1.34Hz时,斜率显著不同,这表明这组频率不符合等式(3)㊂分析原因,认为这组频率的出现是由铝合金框架的振动引起的㊂一方面,在由导线和铝合金框架组成的振动系统中,铝合金框架在外力作用下可能发生低频弹性变形,振动频率低于由绳索和固定点组成的振动系统㊂另一方面,由于铝合金架质量较大,导线质量变化引起的整体振动频率变化相对较小㊂结果表明,1.34Hz 左右的频率簇出现在低频段,对冰厚的变化不太敏感㊂分析二阶和三阶谐波的变化,根据式(6)可计算预估的覆冰厚度,结果如图9所示㊂估计值与实际值吻合良好,在亚毫米尺度上绝对偏差小于10.84%,这意味着可以线路结冰初始阶段即产生预警信息㊂图9㊀实际与预测的冰厚度Fig.9㊀Actual and estimated ice thickness3㊀结㊀论综上所述,本文建立了输电线路状态的数学模型,通过分析黏附在导线上光纤的相变特性,提出了基于Φ-OTDR的在线监测方案的分析方法,并搭建了演示装置对分析结果进行验证㊂试验结果表明,在厘米尺度上,弧垂的预测误差小于5.8%,在亚毫米尺度上,覆冰厚度的预测误差不大于10.84%㊂因此,本文的研究结果可为输电线路的日常检查和维护提供了有效途径,且具有更低的成本㊁更高的可信度和更早的警告㊂虽然本文已做了较多的工作,然而在工程应用中仍存在一些问题需要解决㊂首先,OPGW中光纤的额外长度将影响弧垂和振动测量,尾纤的存在可能导致弧垂预测偏大和振动位移预测偏小㊂其次,固有频率的选择决定了覆冰厚度预测的准确性㊂对于实际输电线路,振动的激励源通常是强风,除固有频率外,强风还可能引起更多频率分量㊂因此,还需对此方法开展深度研究,从而实现工程应用㊂另外,本文试验研究时考虑的是均匀覆冰,与实际存在一定差别,后续将在覆冰实验室开展试验,验证本文方法工程应用的可行性㊂501第2期杨小龙等:架空输电线路弧垂及覆冰的在线监测参考文献:[1]㊀李海荣.500kV架空输电线路次档距振荡原因与防范策略的分析[J].电工技术,2018(17):120.LI Hairong.Causes Analysis and Prevention Strategies ofSubspan Oscillation of500kV Overhead TransmissionLines[J].Electric Engineering,2018(17):120. [2]㊀刘亮,郝震,崔赟,等.架空线路无覆冰导线舞动的参数共振机理[J].振动工程学报,2018,31(2):308.LIU Liang,HAO Zhen,CUI Yun,et al.Parametric Res-onance Mechanism of Conductor Galloping Without Icingon Overhead Lines[J].Journal of Vibration Engineering,2018,31(2):308.[3]㊀刘文峰,袁翔,傅建宇.架空线路覆冰在线监测模型的研究现状[J].电子测试,2019(14):44.LIU Wenfeng,YUAN Xiang,FU Jianyu.Research Statusof Iced Calculation Models for Overhead Lines[J].Elec-tronic Test,2019(14):44.[4]㊀李党学,李锐.架空输电线路弧垂检测方法综述[J].电力与能源,2019,40(6):664.LI Dangxue,LI Rui.Overview of Sag Detection Methodsfor Overhead Transmission Lines[J].Power&Energy,2019,40(6):664.[5]㊀李清,杨晓辉,刘振声,等.基于灰色聚类分析的输电线路舞动分级预警方案[J].电测与仪表,2020,57(17):45.LI Qing,YANG Xiaohui,LIU Zhensheng,et al.GradedWarning Scheme of Transmission Line Galloping Based onGrey Clustering Analysis[J].Electrical Measurement&Instrumentation,2020,57(17):45.[6]㊀彭波,赵彬,刘彬,等.一种基于超长弹性细杆模型的大截面导线弧垂计算方法[J].电测与仪表,2018,55(4):70.PENG Bo,ZHAO Bin,LIU Bin,et al.A Method for SagCalculation of Conductor with Large Section Based on Su-per Long Thin Elastic Rod Model[J].Electrical Meas-urement&Instrumentation,2018,55(4):70. [7]㊀林金树,吴润发.基于声表面波技术的配电网架空线温度无源无线监测系统[J].电子测量技术,2020,43(13):167.LIN Jinshu,WU Runfa.Passive-wireless TemperatureMonitoring System Based on SAW Technology for Over-head Transmission in Distribution Network[J].Electron-ic Measurement Technology,2020,43(13):167. [8]㊀刘云鹏,田源,步雅楠,等.光纤检测变压器绕组变形的特征提取与聚类分析[J].电测与仪表,2018,55(21):93.LIU Yunpeng,TIAN Yuan,BU Yanan,et al.Feature Ex-traction and Cluster Analysis of Transformer Winding De-formation by Optical Fiber Detection[J].ElectricalMeasurement&Instrumentation,2018,55(21):93.[9]㊀LUO J,HAO Y,YE Q,et al.Development of OpticalFiber Sensors Based on Brillouin Scattering and FBG forOn-line Monitoring in Overhead Transmission Lines[J].Journal of Lightwave Technology,2013,31(10):1559.[10]CHAOXIANG L,HUAJIAN W,WENBO L,et al.ImageProcessing and Recognition Technology for TransmissionLine Icing[J].Electric Power,2014,47(9):132.[11]ZENG X,LUO X,LU J,et al.A Novel Thickness De-tection Method of Ice Covering on Overhead TransmissionLine[J].Energy Procedia,2012,14:1349. [12]OGAWA Y,IWASAKI J,NAKAMURA K.A Multiple-xing LoadMonitoring System of Power Transmission Linesusing Fiber Bragg Grating[C]//Optical Fiber Sensors.Optical Society of America,1997:OThC16. [13]司召鹏,卜泽华,毛邦宁,等.基于相位解调的相位敏感光时域反射计研究[J].激光与光电子学进展,2022,59(11):109.SI Zhaopeng,BU Zehua,MAO Bangning,et al.Review ofResearch on Phase Sensitive Optical Time Domain Reflec-tometer Based on Phase Demodulation[J].Laser&Opto-electronics Progress,2022,59(11):109. [14]钟翔,赵世松,邓华夏,等.基于脉冲调制的Φ-OTDR研究综述[J].红外与激光工程,2020,49(10):193.ZHONG Xiang,ZHAO Shisong,DENG Huaxia,et al.Re-view of Research onΦ-OTDR System Based on PulseModulation[J].Infrared and Laser Engineering,,2020,49(10):193.[15]王敏学,李黎,周达明,等.分布式光纤传感技术在输电线路在线监测的应用研究综述[J].电网技术,2021,45(9):3591.WANG Minxue,LI Li,ZHOU Daming,et al.Overview ofResearch on Application of Distributed Optical FiberSensing Technology in Online Monitoring of TransmissionLines[J].Power System Technology,2021,45(9):3591.[16]马皓钰,王夏霄,马福,等.Φ-OTDR型分布式光纤声波传感器研究进展[J].激光与光电子学进展,2020,57(13):66.MA Haoyu,WANG Xiaxiao,MA Fu,et al.ResearchProgress ofΦ-OTDR Distributed Optical Fiber AcousticWave Sensor[J].Laser&Optoelectronics Progress,2020,57(13):66.[17]袁敬中,潘国兵,谢景海,等.基于多模空间距离权重融合的高压架空输电线舞动监测模块的设计[J].电力系统保护与控制,2020,48(24):173.YUAN Jingzhong,PAN Guobing,XIE Jinghai,et al.601哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀Design of a Galvanic Monitoring Module for High-voltageOverhead Transmission Lines Based on the Fusion ofMulti-mode Spatial Distance Weights[J].Power SystemProtection and Control,2020,48(24):173. [18]郑高铭,焦新泉,贾兴中.基于基线偏移的加速度积分速度与位移的方法[J].电测与仪表,2021,58(9):142.ZHENG Gaoming,JIAO Xinquan,JIA Xingzhong.Meth-od for Calculating Velocity and Displacement Based onAcceleration of Baseline Offset[J].Electrical Measure-ment&Instrumentation,2021,58(9):142. [19]吴超,王峥,庞振江,等基于φ-OTDR的架空输电线路风振检测系统设计[J].自动化与仪器仪表,2019(9):46.WU Chao,WANG Zheng,PANG Zhenjiang,et al.Designof the Wind-vibration Detection System for Overhead Pow-er Line Based onφ-OTDR[J].Automation&Instrumen-tation,2019(9):46.[20]葛雄,雷雨,侯新文,等.输电线路导线覆冰舞动时力学特性分析[J].江西电力,2019,43(12):33.GE Xiong,LEI Yu,HOU Xinwen,et al.Analysis of Me-chanical Characteristics of Transmission Line Conductorsunder Ice Coating and Galloping[J]Jiangxi Electric Pow-er,2019,43(12):33.[21]谢占山,李忠芳,王少夫.架空线张力与频率关系理论与试验的研究[J].哈尔滨师范大学自然科学学报,2014,30(3):62.XIE Zhanshan,LI Zhongfang,WANG Shaofu.Researchon the Theory and Test of the Relationship Between Over-head Wire Tension and Frequency[J].Natural ScienceJournal of Harbin Normal University,2014,30(3):62.[22]CHAI Q,LUO Y,REN J,et al.Review on Fiber-opticSensing in Health Monitoring of Power Grids[J].OpticalEngineering,2019,58(7):072007.[23]MA G,SHI C,QIN W,et al.A Non-intrusive ElectricalDischarge Localization Method for Gas Insulated LineBased on Phase-sensitive OTDR and Michelson Interfer-ometer[J].IEEE Transactions on Power Delivery,2019,34(4):1324.[24]董向华.基于φ-OTDR技术的海缆扰动监测系统的研究[J].光纤与电缆及其应用技术,2016(3):32.DONG Xianghua.Research on the Submarine Optical Ca-ble Disturbance Monitoring System Based onφ-OTDRTechnology[J].Optical Fiber&Electric Cable and TheirApplications,2016(3):32.[25]杨斌,皋魏,席刚.Φ-OTDR分布式光纤传感系统的关键技术研究[J].光通信研究,2012(4):19.YANG Bin,GAO Wei,XI Gang.Key Technology ofΦ-OTDR-based Distributed Fiber-optical Sensing Systems[J].Study on Optical Communications,2012(4):19.[26]孙毅,赵泰,侯思祖.基于OTDR的光纤在线监测系统实验研究[J].华北电力大学学报,2004(5):78.SUN Yi,ZHAO Tai,HOU Sizu.Experimental of OpticalFiber Monitoring System Based on OTDR[J].Journal ofNorth China Electric Power University,2004(5):78.(编辑:温泽宇)701第2期杨小龙等:架空输电线路弧垂及覆冰的在线监测。
微探架空输电线路覆冰在线监测装置及防护措施【摘要】随着电力输送系统的不断发展,架空输电线路覆冰问题成为了一个不容忽视的安全隐患。
为了及时监测和防范线路覆冰情况,微探架空输电线路覆冰在线监测装置应运而生。
该装置可以通过实时监测线路表面的温度变化来准确判断覆冰情况,并及时报警,帮助运营商及时采取相应的应对措施。
在防护措施方面,除了使用监测装置外,定期清除雨淞、绝缘子和横担等设备的冰层也是非常必要的。
通过采取综合的防护措施,可以有效避免因覆冰导致的线路故障和事故。
微探架空输电线路覆冰在线监测装置及防护措施的应用为电力输送系统的安全稳定运行提供了重要保障。
【关键词】微探、架空输电线路、覆冰、在线监测装置、防护措施、背景介绍、总结1. 引言1.1 背景介绍随着电力行业的快速发展和输电线路的迅猛增长,输电线路覆冰事故频发成为了一个严重的问题。
在寒冷地区,冰雪天气经常造成输电线路覆冰,导致线路短路、设备损坏甚至停电。
急需一种有效的在线监测装置来及时发现输电线路的覆冰情况,以采取相应的防护措施,保障电网的正常运行和供电稳定。
传统的监测方法往往需要人工巡检,耗时费力且不够及时,无法满足快速发展的电力需求。
微探架空输电线路覆冰在线监测装置诞生了。
该装置采用先进的技术手段,能够实时监测输电线路上的冰层厚度和形态,及时发现潜在危险,为防冰除雪工作提供有力支持。
科学的防护措施也变得尤为重要,可以在一定程度上减少输电线路冰灾造成的影响,确保电网的安全稳定运行。
2. 正文2.1 微探架空输电线路覆冰在线监测装置微探架空输电线路覆冰在线监测装置是一种应用于输电线路的现代化监测设备,能够实时监测输电线路上的覆冰情况,及时预警并采取相应措施,确保输电线路的正常运行。
该装置主要由覆冰传感器、数据采集器、通讯模块、监测软件等组成。
覆冰传感器是该装置的核心部件,通过感知覆冰的厚度和形态,将数据传输给数据采集器。
数据采集器会对传感器传来的数据进行处理和分析,再通过通讯模块将结果传输到监测软件上,以供运维人员进行实时监测和决策。
FH-9007高压输电线路覆冰在线监测系统产品简介应用背景在冬季,我国南方地区的高压输电线路会产生覆冰现象,严重时导致杆塔荷载过大,导线弧垂变大,脱冰时导地线发生跳跃等现象。
2008年,我国南方地区发生雪灾,在广西、云南、贵州、湖南等地,发生了大量的杆塔倒塌、导线断裂事故,造成大范围停电,给国民经济造成而来严重影响。
FH-9007高压输电线路覆冰在线监测系统采用线路图像实时监视及检测导线拉力综合方法来监测架空线路覆冰,可以对线路覆冰形成的气象条件、覆冰形成过程和覆冰的严重程度进行全过程的实时监测。
本系统采用我公司专门针对线路覆冰监测开发的倾角/拉力一体化传感器,能同步采集拉力和倾角数据,减少了设备和线缆数量,方便安装维护,提高了测量精度。
此做法为属国内首创。
该系统采用太阳能电池板+蓄电池供电,安装方便。
投入运行后,可全天候工作,达到实时监控的效果。
运营部门能及时掌握导线覆冰状况状态及发展趋势,据此科学安排除冰检修,有效预防导线“鞭击”、崩断,杆塔压垮等事故,减少经济损失,提高线路安全运行及信息化管理水平。
图1. 输电线路覆冰实景系统组成本系统由若干监测子站和服务器组成。
其中,监测子站部署在电力杆塔上,其自身又由监测子站主机和一系列数据采集单元等组成。
监测子站主机内置GPRS/3G网络通信模块、充电控制器等,监测子站负责从各采集单元接收数据,并将其通过GPRS/3G网络发送给远程服务器。
数据采集单元包括拉力/倾角采集单元、微气象采集单元、图像采集单元等。
服务器部署在监控中心机房内,能够集中显示所辖各高压输电线路杆塔周围的现场导线覆冰状况,并能对各监测子站进行远程操作。
在服务器上主要运行服务器软件、数据库,需要配备的设备包括防火墙、宽带连接、UPS电源等。
图2. FH-9007系统组成示意图由于广西等省电力公司已建成输电线路覆冰预警系统,服务器已经部署完毕,在实际应用中,输电线路覆冰监测设备厂商只需提供监测子站。
输电线路覆冰在线监测技术在直流融冰系统中的应用探讨摘要:输电线路极容易产生覆冰的问题,威胁到国家电力系统安全,也是我们需要解决的技术难点和重点。
对输电线路的覆冰状况可以进行在线监测,这项技术的实施和应用可以极大程度上解决此类问题。
在出现冰灾的时候,可以使用该技术进行预警,更好地发展输电线路覆冰在线监测技术。
关键词:输电线路;覆冰;在线监测;直流融冰系统在出现极端寒冷的天气情况下,输电线路覆冰状况时有发生,这会造成输电线路受到严重损害,从而造成部分电网瘫痪或者全网停运。
融冰技术与覆冰预警系统技术的发展对于电网的发展有重大意义。
1 当前输电线路覆冰在线监测技术存在的问题目前,输电线路覆冰在线监测技术发展迅速,但是仍有很多问题,主要有三个方面。
①覆冰计算模型的优劣直接影响结果准确性。
②通信传输方式对于检测数据传输有影响,影响传输数据的时效性。
③装置电源可以对工作效率产生影响。
2 系统的结构本系统由三部分所组成,即前端信息采集系统、中间通讯系统和后台软件的分析系统。
2.1 前端信息采集系统前端系统的主要功能就是可以对导线的覆冰模型进行计算与各种状态量的加工、存储和采集,内容包括前端的硬件系统和能够保障采集、加工和存储、传送数据等功能。
2.2 通信的方式本系统的通信方式由GPRS通信和光纤通信、无线通信所组成。
2.3 后台软件系统直流融冰与动态无功补偿系统在融冰方面使用覆冰在线监测的软件系统,这套系统是一套综合了数据收集、数据应用与数据存储为一体的系统,它不依赖一些在线监测装置的厂家自己的软件与平台,而是根据编制统一的数据通信规约而进行数据通信传输活动,把实时监测到的数据送到电力部门的PI实时与历史数据平台进行管理,用户的系统应用开发要基于此平台。
3 监测装置的功效3.1 前端监测终端前端监测终端的平台使用的是模块化的设计方式,以主控制器为基础,各种传感器采集的单元可以按需选配,主控、通讯的部分设备、电源可以共享。
一、概述在我国北部地区,一到冬季,覆冰便成了损害输电线路的首要灾祸之一。
覆冰对输电线路的常见损害有过负荷、脱冰跳动、覆冰摇动、绝缘子串冰闪,严重的话,覆冰还会形成杆塔变形、导线断股、倒塔、绝缘子损坏、绝缘子闪络等事故。
所以,在加强对输电线路覆冰灾祸的实时监测,及时做出防止覆冰灾祸的应对办法。
十分有必要。
二、系统组成整个监测系统由三大部分组成:数据采集部分、无线传输部分、监控数据中心部分。
数据采集部分采用覆冰信息采集设备。
数据传输部分采用CM510-21F4G DTU设备,借助运营商的无线4G网络平台做为传输媒介,只要有手机信号的地方就可以进行无线传输。
监控数据中心采用Internet专线接入,有固定公网IP地址,前置机、数据库及图形操作软件等组成。
三、主要功能1、具有对导地线覆冰状态的实时监测和组态显示。
2、利用运营商已有的4G网络构建远程数据传输通道,实现输电线路在线监测系统监控中心可以实时监测远端现场的数据。
3、前置机子系统模块可以有效的连接现场系统,获得数据并实现数据存储/转发到输电线路在线监测系统。
4、数据采集前端为扩展工业级产品,适用于各种恶劣的气候环境。
5、实时数据监测结合可视视频画面,清楚的了解现场的覆冰状况。
6、系统采用了多层屏蔽技术建造,机壳及传感器外壳采用防磁金属材料,有效屏蔽电磁干扰。
数据传输线缆采用3层屏蔽室外线缆,各种接头采用金属航空头,屏蔽、防水、防尘、连接可靠。
极强的抗干扰、抗雷击、确保系统运行稳定可靠。
7、防雷及防线路闪络设计,机壳经过杆塔与大地连接,各种传感器全部采用防雷器件。
8、系统采用低功耗设计,动态调整设备功耗达到节电要求。
9、采用系统接地抗干扰设计,数据采集信号双端差分输入,模拟信号及数字信号全部采用严格的工业过程优化控制技术,可确保数据采集的准确和可靠。
四、主要特点1、具有加电自启动、在线自诊断功能;2、数据暂存功能,可以在通讯异常时能存储30天以上的数据;3、设备采用休眠、待机、定时传输相结合的低功耗模式设计,测量精度高;4、数据采集前端采用多层屏蔽、抗干扰、抗雷击技术、确保系统运行稳定可靠;5、后台软件根据用户需求,系统运行参数、报警参数、数据采集密度等可以远程设置;6、对监测的数据进行统计、分析和输出,能以数字列表、曲线和图表的形式显示相关参数;7、具有数据采集、测量和通信功能,通过通信网络将测量结果传输到后端综合分析软件系统;8、设备设计合理免维护,可带电安装,安装后不会对线路自身结构特性和后期运行维护造成安全隐患;五、总结借助运营商公司的4G网络所提供的数据分组交换服务,利用4G通讯产品,能够顺利完成各级监测点的数据实时采集,为输电线路覆冰预警系统的实时监测、预警预报,提供了畅通、快速、可靠稳定的通信信道,为除冰决策和维护指挥调度工作提供了非常科学的分析依据。
浅析架空输电线路导线覆冰在线监测系统摘要:架空输电线路覆冰导致的灾害一直侵蚀着我国电力网络系统。
而随着特高压远距离输电线路的不断建设与发展以及国家发展战略—“西电东送”的落实与完善,架空输电线路分布的区域越来越广泛,其输电走廊穿越的许多区域往往具有地形复杂,环境恶劣的特点,在严冬及初春季节易遭受冰雪灾害的影响—输电导线覆冰,这将增大线路的机械载荷,并引发导线舞动、断线倒塔以及绝缘子冰闪等现象,进而发展成大范围跳闸停电事故,使国家和人民遭受巨大经济损失。
因此,输电线路的覆冰状态在线监测的研究工作是我国电网实现跨越性建设和发展急需解决的课题,具有至关重要的意义和研究价值。
关键词:架空输电线路;导线覆冰;在线监测系统1架空输电线路导线覆冰的形成通常情况下导线表面产生覆冰的基本物理过程可以描述为:在冬季或早春时节,当温度降低到-5-0,风速处于3-15m/s时,若有雾或者毛毛细雨出现,将在导线表面上凝结形成雨淞,如果温度突然上升,雨淞就将会初步融化,若遇到天气持续转晴,初步形成的覆冰就将进一步融化并消失;如果遭遇天气陡然性地变冷,空气温度降低,雨雪纷飞,飘雪和冻雨就会粘在刚刚形成地雨淞表面上快速增长,形成较厚冰层,若气温继续下降到-15--18,原来的冰层上将有雾淞出现并累积。
这个过程将导致在电线表面形成雨淞一雾淞的不断累积。
在这个过程中,如果天气反复发生变化,冰融化将加剧冰的密度。
这种反复变化的天气条件将导致雨淞和雾淞地交替重叠产生并累积,最终形成混合淞。
导线表面积覆的冰一般情况下不是均匀的,形状并不是理想的圆形,其形状主要有椭圆形、D形以及松针状等。
覆冰起初是在输电导线的迎风面上出现生长,如果风向不发生很大改变,导线迎风面上的覆冰将会进一步得到增加,愈来越厚;当此面上的冰层厚度累积到达了一定值,它的质量满足导线发生扭转的条件,这时导线上的主要覆冰面将发生变化,覆冰在此面上形成并增加,这样就会最终在输电线表面上形成近似圆形或椭圆形的覆冰,一般来说直径较小的导线其表面上的覆冰近似呈圆形状,而对于直径值较大的导线,其表面覆冰形状大多呈椭圆形;如果导线不发生扭转现象,则表面上的覆冰近似呈D形状。
输电线路图像监视系统及覆冰监测系统详细介绍背景电力系统是国家经济发展的基础设施之一,输电线路是电力系统的重要组成部分,但是在输电线路运行过程中,受到天气、环境等因素的影响,可能会存在一些安全隐患,如覆冰、盗割等。
为了确保输电线路安全稳定运行,保障电力系统的供电质量,专家们开发了输电线路图像监视系统及覆冰监测系统。
输电线路图像监视系统输电线路图像监视系统主要通过安装视频监控设备,在输电线路关键部位提供实时监测,以便发现并及时处理异常情况,避免事故的发生。
传统的输电线路监视系统主要采用摄像头的静态监控,对线路的安全防护比较有限。
现在的线路监视系统已经加入了大量的新技术,如高清摄像头、红外线热成像监控、视频云存储等,通过这些技术的应用,可以更好地实现对输电线路的监控。
基于高清摄像机的监视系统,可以全天候全方位实时监测输电线路,而红外热像监控,则可以有效地检测输电线路中的局部过载情况。
同时,视频云存储技术更好地实现了监测数据的传输和存储。
本系统不仅可以及时发现并排除潜在安全隐患,还可以对输电线路及时进行维修保养,延长其使用寿命。
通过这些检测手段,输电线路的安全运行可得到有效保障。
覆冰监测系统冬季覆冰是电力系统的常见问题之一,严重的覆冰可能会导致输电线路断裂,造成重大事故。
为了避免覆冰导致的安全事故,专家们研发了覆冰监测系统。
该系统通过在输电线路上安装覆冰监测器,实时检测线路上的结冰积雪情况,并将监测数据传输给用户,进行预警处理。
这些监测器还可以与智能控制系统进行联动,对线路进行远程控制,加快冰雪消融过程。
它可以根据各种恶劣的天气条件,自动对覆冰情况进行监测,保证输电线路在最短的时间内恢复正常。
该系统还可以对不同结冰程度和地形条件下的输电线路进行不同程度的监测,最大程度的减少人工干预。
本文介绍了输电线路图像监视系统及覆冰监测系统的相关技术及应用,这些技术的应用有效地解决了输电线路存在的安全问题。
通过这些系统的监测和检测,保障了电力系统的质量和稳定性,更好地满足了人们对电力需求的不断增长。
微探架空输电线路覆冰在线监测装置及防护措施摘要:智能电网的建设是依靠完善检测技术的有效支撑。
在输变电系统中普遍存在着输电线路覆冰的现象,输电线路一旦覆冰,就有可能导致杆塔倾斜甚至倒塌、导线舞动等一系列问题,会极大地影响人们正常的生产和生活,给国家和人民带来难以估量的经济损失。
本文基于浅析架空输电线路导线覆冰在线监测系统展开论述。
键词:浅析架空输电线路;导线覆冰;在线监测系统1 输电线路覆冰的危害冰雪灾害严重威胁着电力系统的正常运行,输电线路覆冰和积雪会导致其机械和电气性能急剧下降,引起绝缘子覆冰闪络、导地线断线、导线舞动、倒塔和电力通信中断等事故。
对于输电线路的覆冰监测有着至关重要的意义,准确可靠的输电线路导线覆冰状态监测系统能够有效地指导输电线路导线除冰工作。
基于力学模型的称重法计算覆冰厚度是目前国家公认的精确度较高的一种方法,但计算模型较复杂。
覆冰导线的弧垂变化、实际覆冰密度与理论密度不同都有可能导致覆冰厚度等效计算误差。
同时这种方法的测量结果不能反映绝缘子串的覆冰状况,多参数采集偏差也会导致覆冰厚度的计算误差较大。
因此,线路运行部门希望以更为直观的方式观测导线覆冰状况目前南方电网公司管辖的广东、广西、云南、贵州省网和超高压电网,国家电网公司管辖的华东、华中、华北、山西、湖南和福建等地区电网已建立了输电线路覆冰状态监测系统。
目前国内用于导线覆冰的监测方法主要有称重法、导线倾角法、图像监测法、覆冰速率计法、模拟导线法以及准分布式光纤法,输电线路一旦覆冰,将会产生诸多难以弥补的危害,严重影响人们的正常生产、生活。
2 架空线路覆冰危害2.1 造成杆塔损坏甚至折断输电线路上的导线覆冰超过一定厚度,会使杆塔压力承载超重,一旦超过临界值,有可能导致杆塔倾斜甚至折断。
2.2 导线跳跃,短路跳闸,供电中断在输电线路中,有一些导线是垂直排列的,如果下面的输电导线先行脱落覆冰,会引起下层导线跳跃,造成供电系统短路,形成跳闸,供电就会中断,影响人们的正常生产、生活。
方案需求
输电线路覆冰具有持续时间长、发生频率高、覆盖面积大、影响范围广等特点,输电线路覆冰现象可造成导线断裂、杆塔开裂、倾斜变形及绝缘子串冰闪等事故,严重时还会导致线路短路、绝缘子闪络、断线倒塔等重大事故。
覆冰严重威胁电网的安全稳定,线路覆冰原因包括气象、地形、地理条件、导线悬挂的高度,不及时解决就会引起供电的不稳定。
技术部署
电线覆冰预报及冰情监测系统,主要由四部分组成:前端摄像机、微气象传感器、拉力倾斜传感器、通信终端及后端监控平台等部分构成。
通过前端传感器摄像机、轴向张力、二维倾角、温湿度、导线拉力、缘子倾角、风速风向及环境进行监测,记录现场架空输电线路覆冰情况数据。
数传终端将监测到的数据信息及视频图像通过2G/3G/4G网络实时的传送到中心监控分析系统监测平台,系统利用相关覆冰理论模型分析导线覆冰状况,以短信、报警提示、手机app提醒等方式自动发出报警信息,管理人员在接到报警信息时会对报警点予以重视和采取必要的预防措施。
为除冰融冰提供技术指导及辅助决策,有效预防冰害事故发生。
方案优点
●采用无线3G/GPRS/CDMA网络传送视频及数据给监控中心系统。
●数传终端工业级设计,具有良好的抗电磁干扰能力、封闭、防雷、防雨、
防尘等功能。
●具有自动分析报警提示值班人员功能。
●具有高温、低温环境下工作,具有自加热功能。
●具有高清晰数字视频及图片即时获取功能。
●可采用高效的太阳能供电方式
●降低输电线路的运行维护成本,降低人员工作强度,
●保障线路的安全稳定运行,提高输电线路在线监测的智能化水平,在应对
大面积自然灾害方面发挥着重要作用。