四年级奥数-盈亏问题经典题讲解
- 格式:doc
- 大小:26.50 KB
- 文档页数:4
四年级奥数:盈亏问题盈亏问题“幼儿园老师给小朋友分糖果,每个小朋友分5颗糖果,就多出22颗糖果;每个小朋友分7颗糖果,就少18颗糖果.有多少个小朋友和多少颗糖果?”像这样以份数平均分一定数量的物品,每份少一些,则物品有余(盈);每份多一些,则物品不足(亏).凡是研究这一类算法的应用题叫做盈亏问题.盈亏问题的基本解法是:份数﹦(盈+亏)÷两次分配数的差;物品总数﹦每份个数×份数+盈数,或物品总数﹦每份个数×份数-亏数例1幼儿园老师给小朋友分糖果,每个小朋友分5颗糖果,就多出22颗糖果;每个小朋友分7颗糖果,就少18颗糖果.有多少个小朋友和多少颗糖果?例2某校安排学生宿舍,如果每间5人,则有14人没有床位;如果每间7人,则多4个空床位.问:宿舍有几间?住宿学生有几人?随堂练习1(1)参加体操的同学排队,如果每行站9人,则多37人;而每行站12人,则少20人.求参加团体操的同学有多少人?(2)用一根绳子绕树三圈,余3米;如果绕树四圈,则差4米.树周长有几米?绳长有几米?例3 人民路小学三、四、五年级的同学乘汽车去春游,如果每车坐45人,有10人不能坐车;如果每车多坐5人,又多出一辆汽车.一共有多少辆车?有多少名同学去春游?例4动物园为猴山的猴买来桃,这些桃如果每只猴分5个,还剩32个;如果其中10只小猴分4个,其余的猴分8个,就恰好分完.问:猴山有猴多少只?共买来多少个桃?随堂练习2(1)全班同学去划船,如果减少一条船,每条船正好坐9人;如果增加一条船,每条船正好坐6人.全班共有多少人?(2)华中路第一小学组织学生去春游,如果每车坐65人,则有15人不能乘车;如果每车多坐5人,恰好多余了一辆.一共有几辆汽车?有多少学生?例5学校组织同学乘车去科技馆参观,原计划每车坐30人,还剩下1个人;后来又临时增加了100人,汽车却比原来少1辆,这样每辆车要坐36人,还剩5个人.原计划乘坐几辆车?原计划去多少人?例6果树专业队上山植果树,所需栽的苹果树苗是梨树苗的2倍.如果梨树苗每人栽3棵,还余2棵;苹果树苗每人栽7棵,则少6棵.问:果树专业队上山植树的有多少人?要栽多少棵苹果树和梨树?随堂练习3(1)农民种树,其中有3人分得树苗各4棵,其余的每人分得3棵,这样最后余下树苗11棵;如果1人先分得3棵,其余的每人分得5棵,则树苗恰好分尽.求人数和树苗的总数.(2)学校买来一些篮球和排球分给各班,买来的排球个数是篮球的2倍,如果篮球每班分2个,多余4个;如果排球每班分5个,则少2个.学校买来篮球和排球各多少个?练习题一、填空题1、学校分配宿舍,每个房间住3人,则多出20人;每个房间住5人,恰巧安排好.则房间有_____间.2、学校买来一批故事书,每班发16本,多10本;每班发18本,少6本.则买来故事书的本数为_____本.3、一小包糖分给几个小朋友,如果每人分3块,则余3块;如果每人分5块,则少7块.那么小朋友有_____个.4、某数的5倍减去41,则比其3倍多19,这个数是_____.5、儿童分玩具,每人6个则多12个;每人8个,有一人没有分到.儿童有_____人,玩具有_____个.6、老师给幼儿园的小朋友分苹果,如果每位小朋友分2个,还多30个;如果其中的12位小朋友每人分3个,剩下的每人分4个,正好分完.一共有_____位小朋友,有____-个苹果.二、选择题7、学校给参加夏令营的同学租了几辆大轿车,如果每辆轿车乘28人则有13名同学上不了车;如果每辆车乘32人,则还有3个空座.一共有同学(). (A)100名(B)143名(C)125名(D)137名8、学校给新生安排宿舍,如果按7人一间安排(刚好住满)要比按8人一间安排(也刚好住满)多用两间宿舍.一共有新生().(A)110名(B)111名(C)123名(D)112名9、全班同学站队排成若干行,如果每行14人则多5人;如果每行17人则少4人,那么排成的行数是().(A)4 (B)5 (C)3 (D)210、苹果个数是梨子的2倍,梨子每人分3个,余2个;苹果每人分7个,少6个.那么人数、苹果数和梨数分别是().(A)10,64,32 (B)12,62,31 (C)9,54,27 (D)13,68,34三、简答题11、四年级同学参加植树活动,如果每班种10棵,还剩6棵树苗;如果剩下的每班再种2棵,就少4棵树苗.四年级一共植树多少棵?12、同学们到阶梯教室听科技报告,如每张长椅坐8人,则剩下50人没有座位;如果每张长椅上坐12人,则空出10个座位.如果每张长椅上坐7人,还剩下多少学生无座位?13、某商店从深圳运来一批水果,运费花了1000元,水果报损了100千克.若按1千克2元卖出,则要亏损300元;若按1千克3元卖出,则可盈利500元.问:原来进货多少千克?水果进货的金额是多少元?14、小刚从家去学校,如果每分钟走80米,结果比上课时间提前6分钟到校;如果每分钟走50米,则要迟到3分钟.小刚的家到学校的路程有多远?。
一、盈亏问题的概念及应用盈亏问题是指在经济活动中,收入和支出之间的差额问题。
在日常生活中,我们经常会遇到各种盈亏问题,例如买卖商品的盈亏计算、投资理财的盈亏分析等。
四年级学生虽然芳龄较小,但通过简单的应用题,可以培养他们对盈亏问题的理解和运用能力,为日后的数学学习打下基础。
二、盈亏问题应用题举例及分析1、小明花了200元买了一双鞋,后来却以300元的价格卖掉了。
请问小明的盈亏情况如何?答:小明的收入是300元,支出是200元,那么小明的盈利是300元-200元=100元。
2、小红花了150元买了一本书,后来以100元的价格卖给了同学,请问小红的盈亏情况如何?答:小红的收入是100元,支出是150元,那么小红的亏损是100元-150元=-50元。
3、某商店购进了100个玩具,总共花了600元。
它给每个玩具加价30元后,卖给顾客。
请问商店的盈亏情况如何?答:商店的收入是100个玩具*30元=3000元,支出是600元,商店的盈利是3000元-600元=2400元。
4、某投资公司在一年内的投资利润是8000元,而当年的投资总额为xxx元,请问该公司的盈利率是多少?答:该公司的盈利率是8000元/xxx元*100=13.33。
5、小明向银行存款xxx元,年利率为3,请问一年后小明的存款利息是多少?答:小明的存款利息是xxx元*3=300元。
通过以上应用题的分析,学生可以逐步熟悉盈亏问题的计算方法,提高他们对数学问题的理解和解决能力。
三、盈亏问题应用题讲解及解题技巧1、在解决盈亏问题时,首先要明确收入和支出的概念,正确理解收入高于支出即盈利,支出高于收入即亏损的基本概念。
2、对于买卖商品的盈亏问题,要清楚商品的购进价和销售价,并准确计算利润或亏损的金额。
3、对于投资理财的盈亏问题,要熟悉利息计算的公式,并正确应用利率计算出利息。
4、在实际解题过程中,要注意对单位和货币的换算,确保计算结果的准确性。
5、对于复杂的盈亏问题,可以通过列方程或制作表格的方法,将问题转化为数学形式,从而更好地解决问题。
盈亏问题是一类经典的奥数题目,主要涉及分配物品时,如果分配方式不同,就会产生不同的结果。
这种问题在实际生活中也很常见,如分糖果、分苹果等。
以下是一个四年级上册奥数题盈亏问题的例子:
题目:小明去参加一个夏令营,营地里的老师给小朋友们分糖果。
如果每个小朋友分6颗糖果,就会剩下10颗糖果;如果每个小朋友分7颗糖果,就会缺少8颗糖果。
请问,一共有多少小朋友参加了夏令营?
解析:
设小朋友的数量为x,糖果的总数为y。
根据第一个条件“每个小朋友分6颗糖果,就会剩下10颗糖果”,我们可以得到方程:y = 6x + 10。
根据第二个条件“每个小朋友分7颗糖果,就会缺少8颗糖果”,我们可以得到方程:y = 7x - 8。
由于糖果的总数y在两个方程中都是相同的,所以我们可以将两个方程相等,得到:
6x + 10 = 7x - 8
移项得到:
x = 18
所以,一共有18个小朋友参加了夏令营。
通过这道题,我们可以看到盈亏问题的核心在于理解和应用“分配不同,结果不同”的原理,通过设立和求解方程来找到答案。
四年级奥数:盈亏问盈亏问题“幼儿园老师给小朋友分糖果,每个小朋友分5颗糖果,就多出22颗糖果;每个小朋友分7颗糖果,就少18颗糖果.有多少个小朋友和多少颗糖果?像这样以份数平均分一定数量的物品,每份少一些,则物品有余(盈);每份多一些,则物品不足(亏).凡是研究这一类算法的应用题叫做盈亏问题盈亏问题的基本解法是:份数=(盈+亏)*两次分配数的差;物品总数二每份个数X份数+盈数,或物品总数二每份个数X份数-亏数例1幼儿园老师给小朋友分糖果,每个小朋友分5颗糖果,就多出22颗糖果;每个小朋友分7颗糖果,就少18颗糖果.有多少个小朋友和多少颗糖果?例2某校安排学生宿舍,如果每间5人,则有14人没有床位;如果每间7人,则多4个空床位.问:宿舍有几间?住宿学生有几人?随堂练习1(1)参加体操的同学排队,如果每行站9人,则多37人;而每行站12人,则少20人.求参加团体操的同学有多少人?(2)用一根绳子绕树三圈,余3米;如果绕树四圈,则差4米.树周长有几米?绳长有几米?例3人民路小学三、四、五年级的同学乘汽车去春游,如果每车坐45人,有10人不能坐车;如果每车多坐5人,又多出一辆汽车•一共有多少辆车?有多少名同学去春游?例4动物园为猴山的猴买来桃,这些桃如果每只猴分5个,还剩32个;如果其中10只小猴分4个,其余的猴分8个,就恰好分完•问:猴山有猴多少只?共买来多少个桃?随堂练习2(1)全班同学去划船,如果减少一条船,每条船正好坐9人;如果增加一条船,每条船正好坐6人.全班共有多少人?(2)华中路第一小学组织学生去春游,如果每车坐65人,则有15人不能乘车;如果每车多坐5人,恰好多余了一辆•一共有几辆汽车?有多少学生?例5学校组织同学乘车去科技馆参观,原计划每车坐30人,还剩下1个人;后来又临时增加了100人,汽车却比原来少1辆,这样每辆车要坐36人,还剩5个人.原计划乘坐几辆车?原计划去多少人?例6果树专业队上山植果树,所需栽的苹果树苗是梨树苗的2倍.如果梨树苗每人栽3棵,还余2棵;苹果树苗每人栽7棵,则少6棵•问:果树专业队上山植树的有多少人?要栽多少棵苹果树和梨树?随堂练习3(1)农民种树,其中有3人分得树苗各4棵,其余的每人分得3棵,这样最后余下树苗11棵;如果1人先分得3棵,其余的每人分得5棵,则树苗恰好分尽求人数和树苗的总数.(2)学校买来一些篮球和排球分给各班,买来的排球个数是篮球的2倍,如果篮球每班分2个,多余4个;如果排球每班分5个,则少2个.学校买来篮球和排球各多少个?练习题一、填空题1、学校分配宿舍,每个房间住3人,则多出20人;每个房间住5人,恰巧安排好.则房间有__________ 间.2、学校买来一批故事书,每班发16本,多10本;每班发18本,少6本.则买来故事书的本数为______ 本.3、一小包糖分给几个小朋友,如果每人分3块,则余3块;如果每人分5块,则少7块.那么小朋友有______ 个.4、某数的5倍减去41,则比其3倍多19,这个数是 ________5、儿童分玩具,每人6个则多12个;每人8个,有一人没有分到•儿童有_____ 人,玩具有______ 个.6老师给幼儿园的小朋友分苹果,如果每位小朋友分2个,还多30个;如果其中的12位小朋友每人分3个,剩下的每人分4个,正好分完.一共有 ________ 位小朋友,有____ -个苹果.二、选择题7、学校给参加夏令营的同学租了几辆大轿车,如果每辆轿车乘28人则有13名同学上不了车;如果每辆车乘32人,贝U还有3个空座.一共有同学( ).(A) 100 名(B) 143 名(C) 125 名(D) 137 名8、学校给新生安排宿舍,如果按7人一间安排(刚好住满)要比按8人一间安排(也刚好住满)多用两间宿舍.一共有新生( ).(A) 110 名(B) 111 名(C) 123 名(D) 112 名9、全班同学站队排成若干行,如果每行14人则多5人;如果每行17人则少4 人,那么排成的行数是( ).(A) 4 (B) 5 (C) 3 (D) 210、苹果个数是梨子的2倍,梨子每人分3个,余2个;苹果每人分7个,少6个.那么人数、苹果数和梨数分别是( ).(A) 10,64,32 (B) 12,62,31 (C) 9,54,27 (D) 13,68,34三、简答题11、四年级同学参加植树活动,如果每班种10棵,还剩6棵树苗;如果剩下的每班再种2棵,就少4棵树苗.四年级一共植树多少棵?12、同学们到阶梯教室听科技报告,如每张长椅坐8人,则剩下50人没有座位;如果每张长椅上坐12人,则空出10个座位.如果每张长椅上坐7人,还剩下多少学生无座位?13、某商店从深圳运来一批水果,运费花了1000元,水果报损了100千克.若按1千克2元卖出,则要亏损300元;若按1千克3元卖出,则可盈利500元. 问:原来进货多少千克?水果进货的金额是多少元?14、小刚从家去学校,如果每分钟走80米,结果比上课时间提前6分钟到校;如果每分钟走50米,则要迟到3分钟.小刚的家到学校的路程有多远?。
小学四年级奥数(盈亏问题)1.小虎在敌人窗外听里边在分子弹:一人说每人背45发还多260发;另一人说每人背50发还多200发。
求有敌人?有发子弹?【分析与解】人数:(260-200)/(50-45)=12(人)子弹:45×12+260=800(发)【验算】800-50×12=200符合题意2.将月季花插入一些花瓶中。
如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵。
求有朵月季花和个花瓶?【分析与解】瓶数:(15-1)/(8-6)=7(个)花数:6×7-1=41(朵)【验算】7×8-15=41 符合题意3.学校分配学生宿舍,如果每个房间住6人,则恰好少2间宿舍;如果每个房间住9人,则恰好空出2个房间。
问学生宿舍有间?住宿学生有人?【分析与解】转化每个房间住6人,则多12人,每个房间住9人,则少18人。
房间数:(12+18)/(9-6)=10(间)学生数:6×10+12=72(人)【验算】(10-2)×9=72符合题意4.小明从家去学校,如果每分钟走80米,结果比上课时间提前6分钟到校.如果每分钟走50米,则要迟到3分钟,小明的家到学校有米?【分析与解】转化:每分钟走80米,则多走480米,每分钟走50米则少走150米。
分钟数:(480+150)/(80-50)=21(分钟)距离:21×50+150=1200米5.小王计划若干天读完一本书。
如果比原定计划增加一天,每天要读35页;如果每天读40页,则原定计划的最后一天可以少读5页,这本书共有页?【分析与解】转化:每天读35页,则还剩35;每天读40,则还少5.天数:(35+5)/(40-35)=8(天)页数:8×40-5=315(页)6.用绳测井深,把绳三折,井外余2米;把绳四折,还差1米不到井口。
问井深米?绳长米?【分析与解】典型盈亏问题。
盈亏总数=3*2+4*1=10米。
盈亏问题〔三〕姓名1. 为了奖励勤奋学习得奖的学生,教师拿来一些练习本。
如果每人分5本,那么还多23本;如果每人分7本,那么还多7本。
得奖的学生有多少人?一共有多少练习本?2. 大队辅导员请即将入队的同学每3人一排,发现多了20人,他又将这些学生改成5人一排,人数正好不多不少,入队的同学有多少人?3.四〔2〕班同学参加义务劳动,到学校工地上搬砖,如果每人搬24块,那么缺120块;如果每人搬30块,那么缺300块。
那么,四〔2〕班共有多少学生,工地上有多少块砖?4.紧急救援中心要运一批生活用品到地震灾区,如果每辆车装3吨,这批货物就有2吨运不完;如果每辆车再装1吨,装完这批货物还可以装其他物品1吨。
这批货物有多少吨?5.四〔1〕班同学到科技馆参观,收门票费,每人收5元,那么少165元;每人收7元,那么少55元。
四〔1〕班一共有多少人?6. 城南小学组织学生春游,如果每辆车坐45人,那么多10人;如果每辆车多坐5人,又多出一辆车,一共多少辆汽车,有多少名学生去春游?7. 学校给一批入学的学生分配宿舍。
如果每个房间住12人,那么34人没有位置;如果每个房间住14人,那么空出4个房间。
求宿舍有多少间?住宿学生有多少人?8. 四〔1〕班开元旦晚会,买来一些桔子分给学生。
如果每人分5个桔子,还剩余32个;如果每人分8个桔子,还有5个学生分不到桔子。
这批桔子有多少个,四〔1〕班有多少名学生?9. 学校安排学生到会议室听报告,如果每3人坐一条长椅,那么剩下48人没座位;如果每5人坐一条长椅,那么刚好空出2条长椅。
参加会议的学生有多少人?10. 有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐7人;如果减少一条船,正好每条船坐9人。
问:这个班共有多少同学?11. 甲、乙都买了一套一样的信笺盒,甲把每个信封里装1张信纸,结果用完所有信封后还剩50张信纸;乙把每个信封里装3张信纸,结果用完所有信纸后还剩50个信封,问信笺盒里有多少张信纸?多少个信封?12. 春风小学的学生乘汽车到东湖风景区去春游,如果每车坐65人,那么有15人不能乘车。
1、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。
问参加栽树的有多少名同学?原有树苗多少棵?分析:当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。
通过这一句话,我们可以知道参加种树的同学一共有12+8=20人,加上再拿来的8棵,一共有20*10=200棵。
所以,原有树苗=200-8=192棵。
解答:有同学12+8=20名,原有树苗20*10-8=192棵。
2、少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑。
请问,共有多少名少先队员?共挖了多少树坑?分析:这是一个典型的盈亏问题,关键在于要将第二句话“如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑”统一一下。
即:应该统一成每人挖6个树坑,形成统一的标准。
那么它就相当于每人挖6个树坑,就要差(6-4)*2=4个树坑。
这样,盈亏总数就是3+4=7,所以,有少先队员7/(6-5)=7名,共挖了5*7+3=38个坑。
解答:盈亏总数等于3+(6-4)*2=7,少先队员有7/(6-5)=7名,共挖了5*7+3=38个树坑。
3、学校安排学生到会议室听报告。
如果每3人坐一条长椅,那么剩下48人没有坐;若每5人坐一条长椅,则刚好空出两条长椅。
问听报告的学生有多少人?分析:典型盈亏问题。
盈亏总数48+5*2=58,所以,长椅的数量就等于58/(5-3)=29条。
那么,听报告的人数等于29*3+48=135人。
解答:长椅有(48+5*2)/(5-3)=29条,听报告的学生有29*3+48=135人。
4、钢笔与圆珠笔每支相差1元2角,小明带的钱买5支钢笔差1元5角,买8支圆珠笔多6角。
问小明带了多少钱?分析:在盈亏问题中,我们得到的计算公式是指同一对象的。
四年级奥数教程(五)盈亏问题课题盈亏问题教学目标1、了解盈亏问题的概念,明白其原理2、尽量用公式去解决盈亏问题教学重难点重点:盈亏问题的概念及简算原理难点:盈亏问题公式的理解教学过程一、本讲知识点“老猴子给小猴子分梨。
每只小猴子分6个梨,就多出12个梨;每只小猴子分7个梨,就少11个梨。
有几只小猴子和多少个梨?”这道应用题是已知两种分配的方法,一次分配有余,一次分配不足,求参加分配的数量及被分配的总量。
这样的应用题,通常叫做盈亏问题(有余时称盈,不足时称亏)。
解盈亏问题,常常采用比较的方法。
一般地,在盈亏问题中:(盈数+亏数)÷两次差=参加分配的数二、新课指导例1 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?分析比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差5-4=1(块)。
第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:7+2=9(块)每人相差1块,结果总数就相差9块,所以有少先队员9÷1=9(人)。
共有砖:4×9+7=43(块)。
解:(7+2)÷(5-4)=9(人)4×9+7=43(块)或5×9-2=43(块)答:共有少先队员9人,砖的总数是43块。
例2 妈妈买回一筐苹果,按计划吃的天数算了一下,如果每天吃4个,要多出48个苹果;如果每天吃6个,则又少8个苹果.那么妈妈买回的苹果有多少个?计划吃多少天?分析题中告诉我们每天吃4个,多出48个苹果;每天吃6个,少8个苹果.观察每天吃的个数与苹果剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,苹果从多出48个到少8个,也就是所需的苹果总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个苹果了。
1. 熟练掌握盈亏问题的本质.2. 运用盈亏问题的解题方法解决一些生活实际问题.盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.注意:1.条件转换; 2.关系互换.模块一、利用盈亏公式直接计算(一)盈+亏型【例 1】 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【考点】盈亏问题 【难度】1星 【题型】解答【解析】 比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差541-=(块).第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:729+=(块),每人相差1块,结果总数就相差9块,所以有少先队员919÷=(人).共有砖:49743⨯+=(块). 【答案】9人,搬43块【巩固】 把一堆糖果分给小朋友们,如果每人2块,将剩余12块;每人3块,将缺少2块,那么小朋友共有 人。
【考点】盈亏问题 【难度】1星 【题型】填空【关键词】希望杯,4年级,1试【解析】 盈亏问题:(12+2)÷(3-2)=14人【答案】14人【巩固】 智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【考点】盈亏问题 【难度】1星 【题型】解答知识精讲教学目标6-1-7.盈亏问题(一)【解析】由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种每人分4粒就多9粒,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原因在于两种方案分配数不同,两次分配数之差为:5-4=1(粒),每人相差一粒,15人相差15粒,所以参与分糖果的同学的人数是15÷1=15(位),糖果的粒数为:4×15+9=69(粒).【答案】15位同学分69粒糖【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?【考点】盈亏问题【难度】1星【题型】解答【解析】题中告诉我们每天吃4个,多出48个萝卜;每天吃6个,少8个萝卜.观察每天吃的个数与萝卜剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,萝卜从多出48个到少8个,也就是所需的萝卜总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个萝卜了.吃的天数:(48+8)÷(6-4)=56÷2=28(天),萝卜数:6×28-8=160(个)或4×28+48=160(个).【答案】160个萝卜吃28天【巩固】幼儿园的老师给小朋友们发梨。
四年级奥数盈亏问题应用题专项讲义知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.一、精讲精练【例1】妈妈带了一些钱去逛超市,若要买3条10元钱一条的毛巾,则还剩5元钱。
妈妈带了多少钱?【例2】妈妈买来了一些苹果分给全家人,如果每人分6个,则多了12个,如果每人分7个,则多了6个,全家有几人?妈妈共买回来多少个苹果?【例3】孙悟空采到一堆桃子,平均分给花果山的小猴子吃。
每只小猴子分9个,有4只小猴子没有分到;第二次重分,每只小猴分7个,刚好分完。
问:孙悟空采到多少个桃子?小猴子有多少只?【例4】老师买来了一些练习本分给同学,如果每人分5本,则多了14本;如果每人分7本,则多了2本,老师买来了多少本练习本?【例5】某校有若干个学生寄宿学校,若每一间宿舍住6人,则多出34人;若每间宿舍住7人,则多出4间宿舍。
问宿舍有多少间?寄宿学生有多少人?【例6】班主任给同学们分发写日记的稿纸。
如果每人分5张,则缺32张;如果每人分3张,则缺2张。
有多少名同学?班主任一共准备了多少张稿纸?【例7】同学们来到游乐园游玩,他们乘坐观光车。
如果每车坐6人,则多出6人;如果每车坐8人,则少2人。
一共多少辆观光车?共有多少名同学?【例8】到了午饭时间,老师给同学们分饼干,如果每人分6块,还有1人分9块就正好分完;如果其中两人各分5块,其余每人分7块饼干,也恰好分完所有饼干。
大家好,我是陈说数学的陈老师,牛吃草问题暂告一段落,我们转为学习下盈亏问题。
盈亏问题也是重要考试的常考题,其核心的公式是:两次分配的总差额+两次分配的差=份数,一般有一盈一亏,一盈(亏)一正好,或同盈同亏三种情况。
例1:一个植树小组,如果每人植5棵,还剩14棵;如果每人植7棵,就缺4棵。
这个植树小组有多少人?一共有多少棵树?分析:这是属于一道一盈一亏的问题。
(1)总差额=盈+亏=14+4=18棵,(2)两次分配的差是:7-5=2棵(千米),(3)“份数”也就是分配对象,这里是学生为:18-2=9A,一共有:9x5+14=59棵树。
例2:将月季花插入一些花瓶中。
如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵,求花瓶的只数和月季花的朵数?分析:这是同亏的情况,和同盈的情况一样,总差额是“大减小两 次分配的总差额是15-1=14朵,两次分配的差是8-6=2朵,所以花瓶的只数是:14小2=7只,月季花有:7x8-15=41朵。
例3:有若干同学去植树,如果每人挖5个树坑,还有3个树坑没人挖:如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑,请问,共有多少名同学?共挖了多少树坑?分析:因为第二次分配的对象不统一,两人挖4个,其他6个,我们把第二次分配转化为统一的个数,于是变为“每人挖6个,多挖(6-4)x2=4个”这样,总差额是3+4=7个,分配差是6-5=1个,于是同学有:7-1=7人,共挖了:7x6-4=38个树坑。
解这道题用了一个转化的思想,转化思想也是奥数一个重要的解题思想,把不规则的、不统一的、甚至不熟悉的问题,转化为规则的、统一的、熟悉的,从而解决问题。
例4:四年级同学6.1儿童节去划船,如果增加一条船,每条船坐6个,如果减少一条船,则正好坐9个,共有几个坐船?分析:这道题关键在于理解“如果增加一条船,每条船坐6个,如果减少一条船,则正好坐9个”。
其实,这段话应该这样理解:每条船坐6个,要多一条船,也就是多6人,因为每条船上坐的人少了,自然船就要多:如果每船坐9人,则可少一条船,也就是少9人。
四年级小学生奥数盈亏问题1.四年级小学生奥数盈亏问题一个学生从家到学校上课,先用每分80米的速度走了3分,照这样的速度则要迟到3分钟;如果改为每分走110米,结果提前3分钟到达。
这个学生家到学校有多少米?分析:“先用每分80米的速度走了3分,照这样的速度则要迟到3分钟”,即如按标准时间走则距学校还有80ד如果改为每分钟走110米,结果提前3分钟到达”,3=240米;即如按标准时间走,则要多走110×3=330米,两次的速度差为110-80=30米,则到校的标准时间为(80×3+110×3)÷(110-80)分钟,求出标准时间后,即能求得学生走了3分后剩下学校的路程是多少米,进而求得这个学生家到学校的路程是多少米。
据此解答。
解答:解:(80×3+110×3)÷(110-80)=(240+330)÷30=570÷30=19(分钟);80×3+80×19+80×3=240+1520+240=2000(米);答:这个学生家到学校有2000米。
点评:本题属于较复杂的盈亏问题,关系是求出标准时间,进而去求家到学校的路程。
2.四年级小学生奥数盈亏问题1、老师把一袋糖分给小朋友们,如果每人分8块糖,那么多6块糖,如果每人分9块糖,那么少12块糖,问:一共有多少个小朋友?多少块糖?解析:这道题属于“一盈一亏”,要把第1次分配多出来的6块和第2次分配少的12块合起来,才能得到两次分配,总共相差的块数。
小朋友的个数,(12+6)÷(9-8)=18个糖的块数,18×8+6=150块,或18×9-12=150块。
2、把一根绳子绕树4圈,则余5米长,如果绕树6圈,则余3米长,问:树的周长多少米?绳子长多少米?解析:这道题属于“两次皆赢”,两次分配均有剩余,这两次剩余的长度之差就是两次分配总共相差的米数,用两次分配总共相差的米数,除以两次绕的圈数之差就求出数的周长。
【导语】盈亏问题亦称盈不⾜问题,典型应⽤题之⼀。
盈亏问题是把⼀定数量的物品平均分给⼀定数量的⼈,由于物品和⼈数都未知,只已知在两次分配中⼀次是盈(有余),⼀次是亏(不⾜);或者两次都盈余,或者两次都亏的数量时,求参加分配的物品总量及⼈员总数。
以下是整理的相关资料,希望对您有所帮助!【篇⼀】 填空题(共10⼩题,每⼩题3分,满分30分) 1.(3分)⼀辆汽车从甲地到⼄地,若以每⼩时10千⽶的速度,则提前2⼩时到达;若以每⼩时8千⽶的速度,则迟到3⼩时,甲地和⼄地相距_________千⽶. 2.(3分)把⼀包糖果分给⼩朋友们,如果每⼈分10粒,正好分完;如果每⼈分16粒,则3⼈分不到,这包糖有_________粒. 3.(3分)暑期前借图书,如果每⼈借4本,则最后少2本;如果前2⼈借8本,余下每⼈借3本,这些图书恰好借完.问共有书_________本. 4.(3分)农民锄草,其中5⼈各锄4亩,余下的各锄3亩,这样分配最后余下26亩;如果其中3⼈每⼈各锄3亩,余下的⼈各锄5亩,最后余下3亩.锄草⾯积是_________. 5.(3分)四年级学⽣搬砖,有12⼈每⼈各搬7块,有20⼈每⼈各搬6块,其余的每⼈搬5块,这样最后余下148块;如果有30⼈各搬8块,有8⼈各搬9块,其余的每⼈搬10块,这样分配最后余下20块.共有_________块砖. 6.(3分)有⼀班同学去划船,他们算了⼀下,如果增加⼀条船,每条船正好坐6⼈;如果减少⼀条船,每条船正好坐9⼈.这班有_________⼈. 7.(3分)⼀些桔⼦分给若⼲⼈,每⼈5个余10个桔⼦.如果⼈数增加到3倍还少5⼈,那么每⼈分2个还缺8个,有桔⼦_________个. 8.(3分)有⼀些苹果和梨,苹果的数量是梨的4倍少2个,如果每次吃掉5个苹果和2个梨,当梨吃完还剩下40个苹果.有_________个苹果. 9.(3分)⼩明花19元买了10本练习本和10⽀铅笔,他还有余钱.如果要买1⽀铅笔,就多0.3元;如果再买⼀本练习本就少0.2元.⼩明原有_________元. 10.(3分)⼩明从家到校,如果每分钟120⽶,则早到3分钟;如果每分钟90⽶,则迟到2分钟,⼩明家到学校_________⽶. 【篇⼆】 参考答案与试题解析 ⼀、填空题(共10⼩题,每⼩题3分,满分30分) 1.(3分)⼀辆汽车从甲地到⼄地,若以每⼩时10千⽶的速度,则提前2⼩时到达;若以每⼩时8千⽶的速度,则迟到3⼩时,甲地和⼄地相距200千⽶. 考点:盈亏问题.1923992 分析:根据“若以每⼩时10千⽶的速度,则提前2⼩时到达;若以每⼩时8千⽶的速度,则迟到3⼩时”,速度差为(10﹣8)=2千⽶,路程差为(10×2+8×3)=44千⽶;则按时到的时间是44÷2=22时,然后根据“每⼩时10千⽶的速度,则提前2⼩时到达”,⽤10×(22﹣2)进⾏解答即可. 解答:解:正点时间:(10×2+8×3)÷(10﹣8), =44÷2, =22(⼩时), (22﹣2)×10=200(千⽶); 答:甲地和⼄地相距200千⽶. 故答案为:200. 点评:解答此题应认真分析,根据盈亏问题解法,先求出按时到达的时间,进⽽根据题意解答即可. 2.(3分)把⼀包糖果分给⼩朋友们,如果每⼈分10粒,正好分完;如果每⼈分16粒,则3⼈分不到,这包糖有80粒. 考点:盈亏问题.1923992 分析:由题意可知:每⼀⼈少分16﹣10=6粒,则少16×3=48粒糖果;⽤48÷6得出⼩朋友的⼈数;然后根据“如果每⼈分10粒,正好分完,⽤⼈数乘10即可求出糖果的数量. 解答:解:(16×3)÷(16﹣10)=8(⼈) 8××10=80(粒); 答:这包糖有80粒; 故答案为:80. 点评:解答此题的关键是先求出⼩朋友的⼈数,进⽽根据题意,得出结论. 3.(3分)暑期前借图书,如果每⼈借4本,则最后少2本;如果前2⼈借8本,余下每⼈借3本,这些图书恰好借完.问共有书14本. 考点:盈亏问题.1923992 分析:“如果前2⼈借8本,余下每⼈借3本,这些图书恰好借完”,这个已知条件可以这样理解:“如果每个⼈借3本,则多8﹣3×2=2本”,这样原题可变成“每⼈借4本,则最后少2本;每⼈借3本,则最后余2本;”⽐较两个条件,书的总数的变化差2+2=4(本),每⼈借书的变化差是4﹣3=1(本);这两个差是相对应的,相除可以求出借书的⼈数. 解答:解:借书的有多少⼈? (8﹣2×3+2)÷(4﹣3) =(8﹣6+2))÷1 =4(⼈) 4×4﹣2=14(本). 答:共有书14本. 点评:通过观察、⽐较题中已知条件,研究对应数量的变化,寻找答案,这种解题的思维⽅法叫对应法. 4.(3分)农民锄草,其中5⼈各锄4亩,余下的各锄3亩,这样分配最后余下26亩;如果其中3⼈每⼈各锄3亩,余下的⼈各锄5亩,最后余下3亩.锄草⾯积是82亩. 考点:盈亏问题.1923992 分析:由“其中5⼈各锄4亩,余下各锄3亩,这样分配最后余下26亩“可得,若其中5⼈各锄5亩,余下各锄3亩,则余下21亩;由“如果其中3⼈每⼈各锄3亩,余下的各锄5亩最后余下3亩.”可得,如果第⼈都锄5亩,则⽥还不够3亩.上⾯两种情况差24亩,据此可列式计算. 解答:解:上述第⼀种情况锄3亩的⼈数为:24÷(5﹣3)=12(⼈), 则共有⼈数:12+5=17(⼈); ⾯积:5×4+12×3+26=82(亩). 答:除锄草⾯积是82亩. 故答案为:82亩. 点评:此题关键是找准对应量,弄清盈亏,列式即可求解. 5.(3分)四年级学⽣搬砖,有12⼈每⼈各搬7块,有20⼈每⼈各搬6块,其余的每⼈搬5块,这样最后余下148块;如果有30⼈各搬8块,有8⼈各搬9块,其余的每⼈搬10块,这样分配最后余下20块.共有432块砖. 考点:盈亏问题.1923992 分析:根据题意,第⼀次分配的形式与第⼆次分配的形式虽然不⼀样,但是砖的总数⼀样,所以第⼀次搬砖的总数等于第⼆次搬砖的总数,那么可设四年级的⼈数为x⼈,根据题意可列出等式,计算出学⽣⼈数后再代⼊算式进⾏计算即可得到答案. 解答:解:设四年级共有学⽣x⼈, 12×7+20×6+5(x﹣12﹣20)+148=30×8+8×9+10(x﹣30﹣8)+20, 192+5x=10x﹣48 5x=240, x=48; 30×8+8×9+10×(48﹣30﹣8)+20, =10x﹣48, =480﹣48, =432; 答:共有432块砖. 故答案为:432. 点评:解答此题的关键是⽆论如何分组、如何搬砖,最后砖的总块数不变,因此找到等量关系列式进⾏解答就⽐较简单了. 6.(3分)有⼀班同学去划船,他们算了⼀下,如果增加⼀条船,每条船正好坐6⼈;如果减少⼀条船,每条船正好坐9⼈.这班有36⼈. 考点:盈亏问题.1923992 分析:增加⼀条船,正好每条船坐6⼈,不增加,则有6×1=6⼈坐不下;减少⼀条船,正好每船坐9⼈.不减少,则空余座位9×1=9个;则船有:(9+6)÷(9﹣6)=5(条),⼈共有:6×5+6=36(⼈). 解答:解:(6+9)÷(9﹣6)×6+6, =5×6+6, =36(⼈). 答:这班有36⼈. 故答案为:36⼈. 点评:解决盈亏问题,⼀般要⽤到假设法,因此要学会这种题的解答⽅法. 7.(3分)⼀些桔⼦分给若⼲⼈,每⼈5个余10个桔⼦.如果⼈数增加到3倍还少5⼈,那么每⼈分2个还缺8个,有桔⼦150个. 考点:盈亏问题.1923992 分析:⼈数增加到三倍⽽每⼈2个桔⼦,那么多需要的桔⼦数=⼈数(因为2×3﹣5=1);少5个⼈,就少需要10个;这时还缺8个;那么,少需要的10个+缺的8个+原来的10个=增加的需求量,为28个;所以原来是28⼈,150个桔⼦. 解答:解:(10+10+8)÷(6﹣5)×5+10, =28÷1×5+10, =150(个); 答:有桔⼦150个; 故答案为:150. 点评:解答次题应结合题意,根据盈亏问题的解法进⾏分析,继⽽得出结论. 8.(3分)有⼀些苹果和梨,苹果的数量是梨的4倍少2个,如果每次吃掉5个苹果和2个梨,当梨吃完还剩下40个苹果.有110个苹果. 考点:盈亏问题.1923992 分析:若设梨为x个,则苹果有4x﹣2个;每次吃梨2个,次吃完,那么次可以吃掉5×个苹果,依据“苹果总数﹣吃掉的苹果数=40”就可以列式计算. 解答:解:设梨为x个,则苹果有4x﹣2个,每次吃梨2个,次吃完,那么次可以吃掉5×个苹果, 故有4x﹣2﹣=40, =42, x=28; 4x﹣2=4×28﹣2=110(个); 答:有苹果110个. 故此题答案为:110. 点评:此题主要属典型的盈亏问题,关键是找出数量关系“总量﹣吃掉的=剩余的”,从⽽可⽤⽅程解决. 9.(3分)⼩明花19元买了10本练习本和10⽀铅笔,他还有余钱.如果要买1⽀铅笔,就多0.3元;如果再买⼀本练习本就少0.2元.⼩明原有20元. 考点:盈亏问题.1923992 分析:⼀本练习本⽐⼀⽀铅笔贵0.3+0.2=0.5元,则10本练习本⽐10⽀铅笔贵10×0.5=5元,从⽽可求出买练习本和买铅笔分别花的钱数,从⽽可求得⼩明的总钱数. 解答:解:⼀本练习本⽐⼀⽀铅笔贵0.3+0.2=0.5元, 则10本练习本⽐10⽀铅笔贵10×0.5=5元, 买铅笔的钱数:(19﹣5)÷2=7元, 每⽀铅笔的价格:7÷10=0.7(元); 余下的钱数为:0.7+0.3=1(元); 总钱数:19+1=20(元). 故答案为:20. 点评:解决此题的关键是先求出⼀本练习本⽐⼀⽀铅笔贵多少元,再求买铅笔花的钱,进⽽问题得解. 10.(3分)⼩明从家到校,如果每分钟120⽶,则早到3分钟;如果每分钟90⽶,则迟到2分钟,⼩明家到学校1800⽶. 考点:盈亏问题.1923992 分析:要求⼩明家到学校的距离;先要求出⼩明从家出发到学校⽤的时间;可以设⼩明按时到校要X分钟,由题意可得:120(x﹣3)﹣90x=90×2,解⽅程求出⼩明按时到校的时间;然后根据“速度×时间=路程”,代⼊数值进⾏解答即可. 解答:解:设⼩明按时到校要x分钟,由题意得: 120(x﹣3)﹣90x=90×2, x=18, 120×(18﹣3)=1800(⽶), 或90×(18+2)=1800(⽶); 答:⼩明家到学校1800⽶; 故答案为:1800. 点评:解答此题的关键是根据路程不变,设出⼩明按时到校需要的时间,然后其它的量也⽤未知数表⽰,根据数量间的关系,列出⽅程,进⾏解答即可.【篇三】 解答题 11.学校园林科有⼀批树苗,交给若⼲名学⽣去栽,⼀次⼀次往下分,每次分⼀棵,最后剩下12棵,不够分了.如果再拿来8棵,那么每个学⽣正好栽10棵.求参加栽树的学⽣有多少⼈,这批树苗共多少棵? 12.⼩春读⼀本⼩说,若每天读35页,则读完全书⽐规定时间迟⼀天;若每天读40页,则最后⼀天要少读5页,如果他每天读39页,最后⼀天应读多少页才按规定时间读完? 13.⼀只青蛙从井底往井⼝跳,若每天跳3⽶,则⽐原定时间迟2天,若每天跳5⽶,则⽐原定时间早2天.井⼝到井底有多少⽶? 14.王师傅加⼯⼀批零件,若每天加⼯250个,则⽐原定计划迟2天;若平均每天加⼯300个零件,正好按原定时间完成.求这批零件的总个数? 参考答案与试题解析 解答题(共4⼩题,满分0分) 11.学校园林科有⼀批树苗,交给若⼲名学⽣去栽,⼀次⼀次往下分,每次分⼀棵,最后剩下12棵,不够分了.如果再拿来8棵,那么每个学⽣正好栽10棵.求参加栽树的学⽣有多少⼈,这批树苗共多少棵? 考点:盈亏问题.1923992 分析:最后剩下12棵,不够分了,可知,学⽣数应⼤于12,再拿来8棵正好平均分完(每⼈10棵)由于8<12,所以可知学⽣数应为:12+8=20(⼈);⼜再拿来8棵,那么每个学⽣正好栽10棵,由此可得树苗应为10×20﹣8=192(棵). 解答:解:⼈数为:12+8=20(⼈); 树苗的棵数为:10×20﹣8=192(棵). 答:参加栽树的学⽣有20⼈,这批树苗共192棵. 点评:这是⼀个盈余问题,主要是先根据余下的树苗及需要补进的树苗求出⼈数是多少就好解答了. 12.⼩春读⼀本⼩说,若每天读35页,则读完全书⽐规定时间迟⼀天;若每天读40页,则最后⼀天要少读5页,如果他每天读39页,最后⼀天应读多少页才按规定时间读完? 考点:盈亏问题.1923992 分析:因为书的总页数不变,若设规定x天读完,书的页数为35×(x+1)和40x﹣5;据此可列式计算. 解答:解:设规定x天读完, 35×(x+1)=40x﹣5, 35x+35=40x﹣5, 5x=40, x=8; 书的总页数为:40x﹣5=40×8﹣5=315(页); 最后⼀天应读:315﹣(8﹣1)×39 =315﹣273 =42(页); 答:最后⼀天应读42页才按规定时间读完. 点评:此题依据书的页数不变,列⽅程即可解决. 13.⼀只青蛙从井底往井⼝跳,若每天跳3⽶,则⽐原定时间迟2天,若每天跳5⽶,则⽐原定时间早2天.井⼝到井底有多少⽶? 考点:盈亏问题.1923992 分析:两种情况每天跳的⽶数相差5﹣3=2⽶,跳的距离相差(3×2+5×2)=16⽶,进⽽得出原定时间为:16÷2=8天,进⽽根据“若每天跳3⽶,则⽐原定时间迟2天”,⽤3×(8+2)计算即可井⼝到井底的深度. 解答:解:(3×2+5×2)÷(5﹣3), =16÷2, =8(天), (8+2)×3=30(⽶); 答:井⼝到井底有30⽶. 点评:解答此题应根据盈亏问题解法求出原定时间,进⽽根据题意,进⾏解答得出结论. 14.王师傅加⼯⼀批零件,若每天加⼯250个,则⽐原定计划迟2天;若平均每天加⼯300个零件,正好按原定时间完成.求这批零件的总个数? 考点:盈亏问题.1923992 分析:由题意得:若每天加⼯250个,则⽐原定计划迟2天,即还有250×2=500个零件没有做;每天多做(300﹣250)=50个,正好按原定时间完成,则原定计划⽤500÷50=10天;进⽽根据“⼯效×⼯作时间=⼯作总量”进⾏解答即可. 解答:解:(250×2)÷(300﹣250)=10(天), 10×300=3000(个); 或250×(10+2)=3000(个); 答:求这批零件共有3000个. 点评:解答此题应认真分析题中的数量间的关系,进⽽根据⼯作总量、⼯作效率和⼯作时间的关系进⾏解答即可.。
第39讲盈亏问题一、专题简析:在日常生活中常有这样的问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够;每人少一些,物品就有余。
盈亏问题就是在已知盈亏的情况下来确定物品总数和参加分配的人数。
解答盈亏问题的关键是弄清盈、亏与两次分得差的关系。
盈亏问题的数量关系是:(1)(盈+亏)÷两次分配差=份数(大盈-小盈)÷两次分配差=份数(大亏-小亏)÷两次分配差=份数(2)每次分得的数量×份数+盈=总数量每次分得的数量×份数-亏=总数量例1:一个植树小组植树。
如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。
这个植树小组有多少人?一共有多少棵树?练习一1、幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个。
幼儿园有多少个小朋友?一共有多少个积木?2、某校安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位。
问宿舍多少间?学生多少人?例2:学校将一批铅笔奖给三好学生。
如果每人奖9支,则缺45支;如果每人奖7支,则缺7支。
三好学生有多少人?铅笔有多少支?练习二1、将月季花插入一些花瓶中。
如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵。
求花瓶的只数和月季花的朵数。
2、王老师给美术兴趣小组的同学分发图画纸。
如果每人发5张,则少32张;如果每人发3张,则少2张。
美术兴趣小组有多少名同学?王老师一共有多少张图画纸?例3:有一些少先队员到山上去种一批树。
如果每人种16棵,还有24棵没种;如果每人种19棵,还有6棵没有种。
问有多少名少先队员?有多少棵树?练习三1、小虎在敌人窗外听里边在分子弹:一人说每人背45发还多260发;另一人说每人背50发还多200发。
有多少敌人?多少发子弹?2、杨老师将一叠练习本分给第一小组的同学。
如果每人分7本,还多7本;如果每人分8本则正好分完。
请算一算,第一小组有几个学生?这叠练习本一共有多少本?3、崔老师给美术兴趣小组的同学分若干支彩色笔。
小学四年级数学盈亏问题及答案(10篇)1.四年级数学盈亏问题及答案篇一1,幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个。
幼儿园有多少个小朋友?一共有多少个积木?2,某校安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位。
问宿舍多少间?学生多少人?3,有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。
问:这个班共有多少学生?【答案】:1.小朋友人数:(20+40)÷(3-2)=60(人)积木数量:2×60+20=140(个)2.宿舍:(10+16)÷(8-6)=13(间)学生:13×6+16=94(人)3.(6+9)÷(9-6)=5(条)6×(5+1)=36(人)2.四年级数学盈亏问题及答案篇二1、阳光小学学生乘汽车去春游,如果每辆车坐56人,有12人不能乘车;如果每辆车多坐4人,恰好多一辆车。
一共有多少辆汽车?有多少个学生?(12+56+4)÷4=18(辆)56×18+12=1020(个)2、少先队员去植树。
如果张明和李平两人每人挖4个树坑,其余每人挖2个树坑,还有4个树坑没人挖;如果张明一人挖6个树坑,其余每人各挖4个树坑,又多出12个坑。
这批少先队员一共有多少人?一共要挖多少个树坑?少先队员共有:[4+(4-2)×2+12-(6-4)]÷(4-2)=9(人)树坑数:4×2+(9-2)×2+4=26(个)3.四年级数学盈亏问题及答案篇三1、王师傅加工一批零件,如果每天做50个,要比原计划晚10天完成;如果每天做60个,就可以提前6天完成。
原计划多少天完成任务?这批零件共有多少个?(1)原计划的天数:(50×10+60×6)÷(60-50)=86(天)(2)零件总数:50×86+50×10=4800(个)或60×86-60×6=4800(个)3、某学校有学生住宿,如果每间宿舍住5人,则多出27人;如果每间住8人,则刚好多3间宿舍。
专题07盈亏问题1.果树队上山种果树,所需栽的苹果树苗是梨树苗的2倍,如果梨树苗每人栽3棵,还余下2棵;苹果树苗每人栽7棵,则少6棵。
问:果树专业队上山植树的有多少人?要栽多少棵苹果树和梨树?2.一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?3.智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?4.三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?5.同学们去划船,如果每只船坐4人,则少3只船;如果每只船坐6人,还有2人留在岸边。
共有几只船?划船的同学是多少人?6.学校给一批新入学的学生分配宿舍。
若每个房间住12人,则34人没有位置;若每个房间住14人,则空出4个房间。
求学生宿舍有多少间?住宿学生有多少人?7.“烛光”读书活动小组在学校图书馆借来的科技书是故事书的2倍,平均每人看6本科技书,则余12本;每人看故事书4本,则差3本,读书活动小组有几人?借来的科技书和故事书各多少本?8.儿童分玩具,每人6个则多12个;每人8个,有一人没有分到。
儿童有几个,玩具有几个?9.用一根长绳测量井的深度,如果绳子两折时,多5米;如果绳子3折时,差4米.求绳子长度和井深.10.学习里有铅笔若干支,奖给三好学生,若每人9支,缺15支;若每人7支缺7支。
三好学生有多少人?铅笔有多少支?11.实验小学进行团体操表演。
如果每行排8人,则多出7人;如果每行排14人,则有一排少5人。
问排成多少排?有多少学生?12.同学们去买蛋糕,如果每人出9 元,就多出了10元,每人出7 元,就多出了2元,那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?13.甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 张信纸,乙每封信用3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸?14.有一些糖,每人分5块则多10块,如果现有人数增加到原有人数的1.5倍,那么每人4块就少两块,这些糖共有多少块?15.学校买来一批体育用品,羽毛球拍是乒乓球拍的2倍,分给同学们,每组分乒乓球拍5副,余乒乓球拍15副,每组分羽毛球拍14副,则差30副,问:学而思学校买来羽毛球拍、乒乓球拍各多少副?16.用一根绳子测量井的深度,用绳子对折来量,井外余6米;用绳子一折四来量,井外余1米。
【导语】解奥数题时,如果能合理的、科学的、巧妙的借助点、线、⾯、图、表将奥数问题直观形象的展⽰出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。
以下是整理的《⼩学四年级奥数盈亏问题及假设法解题》,希望帮助到您。
【盈亏问题⼀】 1、幼⼉园买来⼀些玩具,如果每班分8个玩具,则多出2个玩具,如果每班分10个玩具,则少12个玩具,幼⼉园有⼏个班?这批玩具有多少个? 2、⼩明带了⼀些钱去买苹果,如果买3千克,则多出2元,如果买6千克,则少了4元,问苹果每千克多少元?⼩明带了多少钱? 3、⼀个⼩组去⼭坡植树,如果每⼈栽4棵,还剩12棵,如果每⼈栽8棵,则还缺4棵,这个⼩组有多少⼈?⼀共有多少棵树? 4、⼀组学⽣去搬书,如果每⼈搬2本,还剩12本,如果每⼈搬4本,还缺6本,这组学⽣有⼏⼈?这批书有多少本? 5、⽼师买来⼀些练习本分给优秀少先队员,如果每⼈分5本,则多了14本;如果每⼈分7本,则多了2本;优秀少先队员有⼏⼈?买来多少本练习本? 6、把⼀袋糖分给⼩朋友们,如果每⼈分4粒,则多出12粒,如果每⼈分6粒,则多出2粒,问有⼏个⼩朋友?有多少粒糖? 7、妈妈买来⼀些苹果分给全家⼈,如果每⼈分6个,则多出了12个,如果每⼈分7个,则多出了6个,全家有⼏⼈?妈妈买回多少个苹果? 8、某学校有⼀些学⽣住校,每间宿舍住8⼈,空出床位24张,如果每间宿舍住10⼈,则空出床位2张,学校共有⼏间宿舍?住宿学⽣有⼏⼈? 9、学校派⼀些学⽣搬树苗,如果每⼈搬6棵,则差4棵,如果每⼈搬8棵,则差18棵,学校派了多少名学⽣?这批树苗有多少棵? 10、⾃然课上,⽼师给学⽣发树叶,如果每⼈分5⽚树叶,则差3⽚树叶,如果每⼈分7⽚树叶,则差25⽚树叶,这节课有多少学⽣?⽼师⼀共带了多少树叶?【盈亏问题⼆】 1、数学兴趣⼩组同学做数学题,如果每⼈做6道题,则少4道,如果每⼈做8道题,则少16道,问有⼏个同学?⼀共有多少道数学题? 2、学校排练节⽬,如果每⾏排8⼈,则有⼀⾏少2⼈,如果每⾏排9⼈,则有⼀⾏少7⼈,⼀共排了多少⾏?⼀共有多少⼈? 3、三(1)班学⽣去公园划船,如果每条船坐4⼈,则多出4⼈;如果每条船坐6⼈,则多出了4条船;公园⾥有多少条船?三(1)班有多少名学⽣? 4、学校给新⽣分配宿舍,如果每间住8⼈,则少了2间房,如果每间住10⼈,则多出了2间房,⼀共有⼏间房分给新⽣?新⽣有多少⼈住宿? 5、同学们去划船,如果每条船坐5⼈,则有10⼈没船坐,如果每条船多坐2⼈,则多出两条船,共有⼏条船?有多少个同学? 6、⼩明从家到学校,如果每分钟⾛40⽶,则要迟到2分钟,如果每分钟⾛50⽶,则要早到4分钟,⼩明家到学校有多远? 7、三年级学⽣练习册,如果每⼈发5册还剩下32册,如果其中10个学⽣每⼈发4册,其余每⼈发8册,就恰好发完。
大家好,我是陈说数学的陈老师,牛吃草问题暂告一段落,我们转为学习下盈亏问题。
盈亏问题也是重要考试的常考题,其核心的公式是:两次分配的总差额÷两次分配的差=份数,一般有一盈一亏,一盈(亏)一正好,或同盈同亏三种情况。
例1:一个植树小组,如果每人植5棵,还剩14棵;如果每人植7棵,就缺4棵。
这个植树小组有多少人?一共有多少棵树?
分析:这是属于一道一盈一亏的问题。
(1)总差额=盈+亏=14+4=18棵,(2)两次分配的差是:7-5=2棵(千米),(3)“份数”也就是分配对象,这里是学生为:18÷2=9人,一共有:9×5+14=59棵树。
例2:将月季花插入一些花瓶中。
如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵,求花瓶的只数和月季花的朵数?
分析:这是同亏的情况,和同盈的情况一样,总差额是“大减小两次分配的总差额是15-1=14朵,两次分配的差是8-6=2朵,所以花瓶的只数是:14÷2=7只,月季花有:7×8-15=41朵。
例3:有若干同学去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑,请问,共有多少名同学?共挖了多少树坑?
分析:因为第二次分配的对象不统一,两人挖4个,其他6个,我们把第二次分配转化为统一的个数,于是变为“每人挖6个,多挖(6-4)×2=4个”这样,总差额是3+4=7个,分配差是6-5=1个,于是同学有:7÷1=7人,共挖了:7×6-4=38个树坑。
解这道题用了一个转化的思想,转化思想也是奥数一个重要的解题思想,把不规则的、不统一的、甚至不熟悉的问题,转化为规则的、统一的、熟悉的,从而解决问题。
例4:四年级同学6.1儿童节去划船,如果增加一条船,每条船坐6个,如果减少一条船,则正好坐9个,共有几个坐船?
分析:这道题关键在于理解“如果增加一条船,每条船坐6个,如果减少一条船,则正好坐9个”。
其实,这段话应该这样理解:每条船
坐6个,要多一条船,也就是多6人,因为每条船上坐的人少了,自然船就要多;如果每船坐9人,则可少一条船,也就是少9人。
所以总差额=盈+亏=6+9=15人,(2)两次分配的差是:9-6=3人,(3)所以分配对象,这里是船为:15÷3=5条,一共有:5×6+6=36人。
例5:小红从家步行去学校,如果每分钟走120米,则早到5分钟,如果每分钟走90米,则迟到3分钟,那么小红家到学校有多远?
分析:这是一道看似行程问题,其实更多考的是盈亏问题。
早到5分钟,意味着多走120×5=600米,晚到3分钟,意味着少走90×3=270米,总差额是600+270=870米,”两次分配的差“也就是速度差是120-90=30米,之所以会有870米的差,是因为速度不同造成的,1分钟可以补30米的差,需要870÷30=29分钟才能补回870米的差,这个27分钟就是从家到学校的时间。
从家到学校有:120×(29-5)=2880米。
例6:幼儿园将一筐苹果分给小朋友。
如果分给大班的小朋友每人5个则余10个;如果分给小班的小朋友每人8个则缺2个。
已知大班比小班多3个小朋友,问这筐苹果有几个?
分析:盈亏问题要运用公式,有一个前提,分配物和分配对象必须统一。
分配物不统一在后面遇到时再讲解。
在本题中,分配对象小朋友是不统一的,一次是分给大班的,另一次是分给小班的。
我们要用转化的思想,把分配对象先统一。
把”分给大班的小朋友每人5个则余10个“转化为分给”小班的小朋友每人5个,多3×5+10=25个苹果“,则小班有:(25+2)÷(8-5)=9人,苹果有:(9+3)×5+10=70个或9×8-2=70个。
例7:钢笔与圆珠笔每支相差1元2角,小明带的钱买5支钢笔差1元5角,买8支圆珠笔多6角,请问小明带了多少钱?
分析:这是一道盈亏问题的变形题,难点在于“分配对象不统一”,解题的思路也是用转化法,把不同的两种笔转化为一种即可。
1元2角=12角,1元5角=15角,我们把买8支圆珠笔转化为买8支钢笔,这
时,钱会差:12×8-6=90角,所以钢笔有:(90-15)÷(8-5)=25支,带了:25×5-15=110角=11元,或25×8-90=110角=11元。
例8:有一些苹果和梨,苹果的数量是梨的4倍少2个,如果每次吃掉5个苹果和2个梨,当梨吃完还剩下40个苹果,求苹果的数量?
分析:这是盈亏问题中分配物不相同的问题。
我们假设按苹果是梨的4倍这个比例来吃,每次吃苹果:2×4=8个,最后会还差2个苹果,两种吃法造成的总差额是:40-(-2)=40+2=42个苹果。
一次吃5个或8个,剩下的数量会不同,两者的差是42个,吃了几次才会造成42这个差额呢?答案是吃了:42÷(8-5)=14次。
苹果有:5×14+40=110个或8×14-2=110个。
例9:有红白球若干个,若每次拿出1个红球和1个白球,拿到没有红球时,还剩下50个白球。
若每次拿走1个红球和3个白球,则拿到没有白球时,红球还剩下50个。
那么这堆红球和白球共有多少个?
分析:这是一道奥数竞赛题,解题办法有很多,我们按盈亏问题的思路解决下这个问题。
依条件,1个红球和3个白球分,没有白球时,红球还有50个,假设继续按这个比例来拿,一直拿到红球没有时,这时,拿了50÷1=50次,则白球会亏50×3=150个。
两次分配对比,在红球都拿完的情况下,每次拿1个或3个,产生的差是50-(-150)=50+150=200个。
因此,可求出拿球次数:(50+150)÷(3-1)=100次,这100次,就是按1个红球和1个白球这个比例拿球时的次数。
所以,红球有:1×100=100个,白球有:1×100+50=150个,共有:100+150=250个。
例10:一些桔子分给若干人,每人5个余10个桔子,如果人数增加到3倍还少5人,那么每人分2个还差8个,请问有多少人?几个桔子?
分析:这是道难点还是在于“分配对象不统一”,思路还是先用转化法,把人数转化为一倍人数。
先假设增加的刚好是3倍,这时,人相当于再增加了5个,相应的桔子会再少5×2=10个,加上原来就少的8个,一共少10+8=18个桔子,这18个桔子怎么来的,是理解这道题的关键。
人数增加到3倍,每人2个,相当于人数不变,每人6个。
于是
条件就转化为“每人分6个,还差18个”。
于是就有(10+18)÷(6-5)=28人,桔子有28×5+10=150个。
例11:盒子里有黑、白两种棋子,黑棋是白棋的3倍多2个,每次从箱子里取出7个白棋、15个黑棋,这样经过若干次后,盒子里剩下3个白棋,53个黑棋。
那么盒子里的黑棋、白棋各有多少?
分析:这是继前面分配物不相同的题后,难度又升级的问题。
我们假设按黑棋是白棋的3倍这个比例来取,每次取:7×3=21个,当白棋剩下3个时,黑棋会剩下3×3+2=11个。
为什么会有53-11=42个这个差呢?是因为黑棋“每次取15个”,跟每次取21个比,差了21-15=6个,每次少取了6个,共取了42÷6=7次,于是白棋有7×7+3=52个,黑棋有52×3+2=158个或7×21+11=158个。
盈亏问题作为小升初或课外竞赛的常考点,其题型变化非常多,我选的这些盈亏问题,是比较经典的题型,通过这些题型,能加深孩子对盈亏问题原始公式的理解,让孩子灵活运用奥数思维的假设法,转化法。