初中数学公开课教案
- 格式:docx
- 大小:40.88 KB
- 文档页数:25
初中数学平行线公开课教案一、教学目标1. 让学生理解平行线的定义和性质,能够识别和判断平行线。
2. 培养学生运用平行线的知识解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队协作能力。
二、教学内容1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的性质:平行线之间的距离相等;平行线与横穿它们的直线所成的角相等。
3. 平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
4. 平行线的应用:解决实际问题,如计算平行线之间的距离,求平行线的方程等。
三、教学重点与难点1. 教学重点:平行线的定义、性质和判定。
2. 教学难点:平行线的判定和应用。
四、教学方法1. 采用问题驱动法,引导学生探索平行线的性质和判定。
2. 利用多媒体动画展示平行线的特点,增强学生的直观感受。
3. 组织小组讨论,培养学生的团队协作能力。
4. 结合实际例子,让学生运用平行线的知识解决问题。
五、教学过程1. 导入:通过展示实际场景,如公交站牌上的线路图,引出平行线的概念。
2. 讲解:讲解平行线的定义、性质和判定,结合多媒体动画展示,让学生直观理解。
3. 练习:布置一些判断平行线的问题,让学生独立解答。
4. 小组讨论:让学生分组讨论,总结平行线的性质和判定方法。
5. 应用:结合实际问题,让学生运用平行线的知识解决问题。
6. 总结:对本节课的内容进行总结,强调平行线的重要性和应用价值。
7. 作业:布置一些有关平行线的练习题,巩固所学知识。
六、教学评估1. 课堂问答:通过提问学生,了解他们对平行线定义、性质和判定的理解程度。
2. 练习题:布置一些有关平行线的练习题,评估学生对知识的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解他们的团队协作能力和解决问题的能力。
七、教学拓展1. 邀请数学家或相关专业人士进行讲座,分享平行线在现实生活中的应用。
2. 组织学生进行数学竞赛,提高他们对平行线知识的学习兴趣。
初中数学九年级教案一、教学目标1. 知识与技能目标:- 学习正数和负数的概念及表示方法;- 掌握正数和负数的加法和减法运算;- 学习解一元一次方程;- 掌握常用的比例关系,并运用比例解决实际问题。
2. 过程与方法目标:- 培养学生观察、实验和探究的能力;- 培养学生逻辑思维和分析问题的能力;- 培养学生合作学习和交流的能力;- 培养学生运用数学知识解决实际问题的能力。
3. 情感态度和价值观目标:- 培养学生对数学的兴趣和积极的学习态度;- 培养学生的创新精神和实践能力;- 培养学生的合作意识和团队精神。
二、教学重点与难点1. 教学重点:- 正数和负数的概念及表示方法;- 正数和负数的加法和减法运算;- 解一元一次方程;- 比例关系的应用。
2. 教学难点:- 正数和负数的概念理解和表示方法的掌握;- 解一元一次方程的思维方式和方法;- 将比例关系应用到实际问题的解决中。
三、教学过程1. 概念与基础知识讲解正数和负数是数学中的基本概念,学生首先需要理解正数和负数的概念及其表示方法。
在此基础上,教师可以通过实际生活中的例子来引导学生理解正数和负数的意义,如温度的正负,盈亏的正负等。
接下来,教师可介绍正数和负数的加法和减法运算,让学生通过具体的例子来进行运算练习。
2. 一元一次方程的解法讲解一元一次方程是初中数学的重要内容,需要学生掌握解一元一次方程的思维方式和方法。
在讲解中,教师可以通过具体的实例来说明方程的意义,如“一个数加上5等于12,这个数是多少?”等。
通过操纵和移项,教师可以引导学生掌握解方程的方法,并进行相关练习。
3. 比例关系的学习与应用比例关系是数学中常见的数学关系之一,学生需要学会识别和建立比例关系,并能够运用比例进行实际问题的解决。
在讲解中,教师可以通过具体的实例来引导学生理解比例的含义和运算。
接着,教师可以给学生一些实际问题,让他们应用比例关系进行解答,并进行实际操作和讨论。
四、教学方法与手段1. 合作学习:通过小组合作学习的形式,让学生相互合作,共同探讨问题和解决方法,培养他们的合作意识和团队精神。
初中数学教学设计优秀5篇初中数学教学设计篇一一、案例实施背景本节课是20xx-20xx学年度第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为北师大版义务教育教科书七年级数学(上册)。
二、案例主题分析与设计本节课是北师大版义务教育教科书七年级数学(上册)——科学记数法,它是在学习乘方的基础上,研究更简便的记数方法,是第二章有理数及其运算的重要组成部分。
《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。
本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
三、案例教学目标1、知识与技能:掌握科学记数法的方法,能将一些大数写成科学记数法。
2、过程与方法:在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
3、情感态度与价值观:通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。
四、案例教学重、难点1、重点:正确运用科学记数法表示较大的数2、难点:正确掌握10的幂指数特征,将科学记数法表示的数写成原数五、案例教学用具1、教具:多媒体平台及多媒体课件、图片六、案例教学过程一、创设情境,兴趣导学:1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗?2、展示课本第63页图片,现实中,我们会遇到一些比较大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。
初中数学优秀公开课教案有哪些教案一般包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等内容。
你知道一份优秀的教案是怎么设计出来的吗,一起来看看,下面是店铺分享给大家的初中数学优秀公开课教案的资料,希望大家喜欢!初中数学优秀公开课教案一(一)创设情境导入新课不利用工具,请你将一张用纸片做的角分成两个相等的角。
你有什么办法?如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。
(二)合作交流探究新知(活动一)探究角平分仪的原理。
具体过程如下:播放奥巴马访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。
设计目的:用生活中的实例感知。
以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。
其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。
使学生很轻松的完成活动二。
(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。
讨论结果展示:教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:已知:∠AO B.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。
议一议:1.在上面作法的第二步中,去掉“大于 MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。
第1章直角三角形1.1直角三角形的性质和判定(Ⅰ)第1课时直角三角形的性质和判定1.掌握“直角三角形两个锐角互余”,并能利用“两锐角互余”判断三角形是直角三角形;(重点)2.探索、理解并掌握“直角三角形斜边上的中线等于斜边的一半”的性质.(重点、难点)一、情境导入在小学时我们已经学习过有关直角三角形的知识,同学们可以用手上的三角板和量角器作直角三角形,并和小组成员一同探究直角三角形的性质.二、合作探究探究点一:直角三角形两锐角互余如图,AB∥DF,AC⊥BC于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°解析:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=90°-∠A=90°-20°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°-∠1=180°-70°=110°.故选A.方法总结:熟知直角三角形两锐角互余的性质,并准确识图是解决此类题的关键.探究点二:有两个角互余的三角形是直角三角形如图所示,已知AB∥CD,∠BAF=∠F,∠EDC=∠E,求证:△EOF是直角三角形.解析:三角形内角和定理是解答有关角的问题时最常用的定理,是解决问题的突破口,本题欲证△EOF是直角三角形,只需证∠E+∠F=90°即可,而∠E=12(180°-∠BCD),∠F=12(180°-∠ABC),由AB∥CD可知∠ABC+∠BCD=180°,即问题得证.证明:∵∠BAF=∠F,∠BAF+∠F+∠ABF=180°,∴∠F=12(180°-∠ABF).同理,∠E=12(180°-∠ECD).∴∠E+∠F=180°-12(∠ABF+∠ECD).∵AB∥CD,∴∠ABF+∠ECD=180°.∴∠E+∠F=180°-12×180°=90°,∴△EOF是直角三角形.方法总结:由三角形的内角和定理可知一个三角形的三个内角之和为180°,如果一个三角形中有两个角的和为90°,可知该三角形为直角三角形.探究点三:直角三角形斜边上的中线等于斜边的一半如图,△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.解析:(1)根据直角三角形斜边上的中线等于斜边的一半可得DE=AE=12AB,DF=AF=12AC,再根据四边形的周长的公式计算即可得解;(2)根据“到线段两端点距离相等的点在线段的垂直平分线上”证明即可.(1)解:∵AD是高,E、F分别是AB、AC的中点,∴DE=AE=12AB=12×10=5,DF =AF =12AC =12×8=4,∴四边形AEDF的周长=AE +DE +DF +AF =5+5+4+4=18;(2)证明:∵DE =AE ,DF =AF ,∴E 是AD 的垂直平分线上的点,F 是AD 的垂直平分线上的点,∴EF 垂直平分AD .方法总结:当已知条件含有线段的中点、直角三角形等条件时,可联想直角三角形斜边上的中线的性质,连接中点和直角三角形的直角顶点进行求解或证明.探究点四:直角三角形性质的综合运用 【类型一】 利用直角三角形的性质证明线段关系如图,在△ABC 中,AB =AC ,∠BAC =120°,EF 为AB 的垂直平分线,交BC 于F ,交AB 于点E .求证:FC =2BF .解析:根据EF 是AB 的垂直平分线,联想到垂直平分线的性质,因此连接AF ,得到△AFB 为等腰三角形.又可求得∠B =∠C =∠BAF =30°,进而求得∠F AC =90°.取CF 的中点M ,连接AM ,就可以利用直角三角形的性质进行证明.证明:如图,取CF 的中点M ,连接AF 、AM .∵EF 是AB 的垂直平分线,∴AF =BF .∴∠BAF =∠B .∵AB =AC ,∠BAC =120°,∴∠B =∠BAF =∠C =12(180°-120°)=30°.∴∠F AC =∠BAC -∠BAF =90°.在Rt △AFC 中,∠C =30°,M 为CF 的中点,∴∠AFM =60°,AM =12FC =FM .∴△AFM 为等边三角形.∴AF =AM =12FC .又∵BF =AF ,∴BF =12FC ,即FC =2BF .方法总结:当已知条件中出现直角三角形斜边上的中线时,通常会运用到“直角三角形斜边上的中线等于斜边的一半”这个性质,使用该性质时,要注意找准斜边和斜边上的中线.【类型二】 利用直角三角形的性质解决实际问题如图所示,四个小朋友在操场上做抢球游戏,他们分别站在四个直角三角形的直角顶点A 、B 、C 、D 处,球放在EF 的中点O 处,则游戏________(填“公平”或“不公平”).解析:游戏是否公平就是判断点A 、B 、C 、D 到点O 的距离是否相等.四个直角三角形有公共的斜边EF ,且O 为斜边EF 的中点.连接OA 、OB 、OC 、OD .根据“直角三角形斜边上的中线等于斜边的一半”的性质可知,OA =OB =OC =OD =12EF ,即点A 、B 、C 、D 到O 的距离相等.由此可得出结论:游戏公平.方法总结:题目中如果出现“直角三角形”和“中点”这两个条件时,应连接直角顶点与斜边中点,再利用“斜边上的中线等于斜边的一半的性质”解题.【类型三】 利用直角三角形性质解动态探究题如图所示,在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点.(1)写出点O 到△ABC 的三个顶点A 、B 、C 的距离的数量关系;(2)如果点M 、N 分别在线段AB 、AC 上移动,移动中保持AN =BM .请判断△OMN 的形状,并证明你的结论.解析:(1)由于△ABC 是直角三角形,O 是BC 的中点,得OA =OB =OC =12BC ;(2)由于OA 是等腰直角三角形斜边上的中线,因此根据等腰直角三角形的性质,得∠CAO =∠B =∠45°,OA =OB ,又AN =MB ,所以△AON ≌△BOM ,所以ON =OM ,∠NOA =∠MOB ,于是有∠NOM =∠AOB =90°,所以△OMN 是等腰直角三角形.解:(1)连接AO .在Rt △ABC 中,∠BAC =90°,O 为BC 的中点,∴OA =12BC =OB=OC ,即OA =OB =OC ;(2)△OMN 是等腰直角三角形.理由如下:∵AC =BA ,OC =OB ,∠BAC =90°,∴OA =OB ,∠NAO =12∠CAB =∠B =45°,AO ⊥BC ,又AN =BM ,∴△AON ≌△BOM ,∴ON=OM,∠NOA=∠MOB,∴∠NOA +∠AOM=∠MOB+∠AOM,∴∠NOM=∠AOB=90°,∴△MON是等腰直角三角形.方法总结:解决动态探究性问题,要把握住动态变化过程中的不变量,比如角的度数、线段的长和不变的数量关系,比如斜边上的中线等于斜边的一半,直角三角形两锐角互余.三、板书设计1.直角三角形的性质性质一:直角三角形的两锐角互余;性质二:直角三角形斜边上的中线等于斜边的一半.2.直角三角形的判定方法一:一个角是直角的三角形是直角三角形;方法二:两锐角互余的三角形是直角三角形.通过练习反馈的情况来看,学生对于利用已知条件判定一个三角形是否为直角三角形这一考点比较容易上手一些,而往往忽略在直角三角形中告诉斜边上的中点利用中线这一性质解决问题.在今后的教学中应让学生不断强化提高这一点.第4课时“斜边、直角边”1.理解并掌握三角形全等的判定方法——“斜边、直角边”.(重点)2.经历探究“斜边、直角边”判定方法的过程,能运用“斜边、直角边”判定方法解决有关问题.(难点)一、情境导入舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗?二、合作探究探究点一:应用“斜边、直角边”判定三角形全等如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.解析:由题意可得△ABF与△DCE都为直角三角形,由BE=CF可得BF=CE,然后运用“HL”即可判定Rt△ABF与Rt△DCE全等.证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE.∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形.在Rt△ABF和Rt△DCE中,∵⎩⎪⎨⎪⎧BF=CE,AB=CD,∴Rt△ABF≌Rt△DCE(HL).方法总结:利用“HL”判定三角形全等,首先要判定这两个三角形是直角三角形,然后找出对应的斜边和直角边相等即可.探究点二:“斜边、直角边”判定三角形全等的运用【类型一】利用“HL”判定线段相等如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE.求证:BC=BE.解析:根据“HL”证Rt△ADC≌Rt△AFE,得CD=EF,再根据“HL”证Rt△ABD≌Rt △ABF,得BD=BF,最后证明BC=BE.证明:∵AD,AF分别是两个钝角△ABC 和△ABE的高,且AD=AF,AC=AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD-CD=BF-EF.即BC=BE.方法总结:证明线段相等可通过证明三角形全等解决,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.【类型二】利用“HL”判定角相等或线段平行如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.解析:要证角相等,可先证明全等.即证Rt △ABC ≌Rt △ADC ,进而得出角相等.证明:∵AB ⊥BC ,AD ⊥DC ,∴∠B =∠D =90°,∴△ABC 与△ACD 为直角三角形.在Rt △ABC 和Rt △ADC 中,∵⎩⎪⎨⎪⎧AB =AD ,AC =AC ,∴Rt△ABC ≌Rt △ADC (HL),∴∠1=∠2.方法总结:证明角相等可通过证明三角形全等解决.【类型三】 利用“HL ”解决动点问题如图,有一直角三角形ABC ,∠C=90°,AC =10cm ,BC =5cm ,一条线段PQ =AB ,P 、Q 两点分别在AC 上和过A 点且垂直于AC 的射线AQ 上运动,问P 点运动到AC 上什么位置时△ABC 才能和△APQ 全等?解析:本题要分情况讨论:(1)Rt △APQ ≌Rt △CBA ,此时AP =BC =5cm ,可据此求出P 点的位置.(2)Rt △QAP ≌Rt △BCA ,此时AP =AC ,P 、C 重合.解:根据三角形全等的判定方法HL 可知:(1)当P 运动到AP =BC 时,∵∠C =∠QAP =90°.在Rt △ABC 与Rt △QPA 中,∵⎩⎪⎨⎪⎧AP =BC ,PQ =AB ,∴Rt △ABC ≌Rt △QPA (HL),∴AP =BC =5cm ;(2)当P 运动到与C 点重合时,AP =AC .在Rt △ABC 与Rt △QPA 中,∵⎩⎪⎨⎪⎧AP =AC ,PQ =AB ,∴Rt △QAP ≌Rt △BCA (HL),∴AP =AC =10cm ,∴当AP =5cm 或10cm 时,△ABC 才能和△APQ 全等.方法总结:判定三角形全等的关键是找对应边和对应角,由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.【类型四】 综合运用全等三角形的判定方法判定直角三角形全等如图,CD ⊥AB 于D 点,BE ⊥AC 于E 点,BE ,CD 交于O 点,且AO 平分∠BAC .求证:OB =OC .解析:已知BE ⊥AC ,CD ⊥AB 可推出∠ADC =∠BDC =∠AEB =∠CEB =90°,由AO 平分∠BAC 可知∠1=∠2,然后根据AAS 证得△AOD ≌△AOE ,根据ASA 证得△BOD ≌△COE ,即可证得OB =OC .证明:∵BE ⊥AC ,CD ⊥AB ,∴∠ADC =∠BDC =∠AEB =∠CEB =90°.∵AO 平分∠BAC ,∴∠1=∠2.在△AOD 和△AOE 中,∵⎩⎪⎨⎪⎧∠ADC =∠AEB ,∠1=∠2,OA =OA ,∴△AOD ≌△AOE (AAS).∴OD =OE .在△BOD 和△COE 中,∵⎩⎪⎨⎪⎧∠BDC =∠CEB ,OD =OE ,∠BOD =∠COE ,∴△BOD ≌△COE (ASA).∴OB =OC .方法总结:判定直角三角形全等的方法除“HL ”外,还有:SSS 、SAS 、ASA 、AAS.三、板书设计“斜边、直角边”1.斜边、直角边:斜边和一条直角边分别相等的两个直角三角形全等.简记为“斜边、直角边”或“HL ”.2.方法归纳:(1)证明两个直角三角形全等的常用方法是“HL ”,除此之外,还可以选用“SAS ”“ASA ”“AAS ”以及“SSS”.(2)寻找未知的等边或等角时,常考虑转移到其他三角形中,利用三角形全等来进行证明.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行.在探究直角三角形全等的判定方法——“斜边、直角边”时,要让学生进行合作交流.在寻找未知的等边或等角时,常考虑将其转移到其他三角形中,利用三角形全等来进行证明.此外,还要注重通过适量的练习巩固所学的新知识.。
七年级上册初中数学优质公开课获奖教案设计5篇七年级上册初中数学教案1一:教材分析:1:教材所处的地位和作用:本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。
本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。
在提高学生的能力,培养他们对数学的兴趣以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。
2:教育教学目标:(1)知识目标:(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。
(B)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。
(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。
(3)思想目标:通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。
3:重点,难点以及确定的依据:根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。
二:学情分析:(说学法)1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。
初中十公开课教案一、教学目标1. 让学生通过具体例子了解并掌握梯形和圆的面积公式。
2. 培养学生观察、分析及概括能力,能从实际问题中发现数量之间的关系并抽象为具体的公式。
3. 使学生初步了解公式来源于实践又反作用于实践,培养学生的归纳思想方法。
二、教学重难点1. 重点:通过具体例子了解公式、应用公式。
2. 难点:从实际问题中发现数量之间的关系并抽象为具体的公式,注意反应出来的归纳的思想方法。
三、教学过程1. 导入:教师通过展示一些实际问题,引导学生发现这些问题中存在数量关系,进而引出本节课要学习的梯形和圆的面积公式。
2. 新课讲解:教师通过讲解梯形和圆的面积公式的推导过程,让学生理解并掌握这些公式。
同时,引导学生发现公式中的字母所表示的意义以及字母之间的数量关系。
3. 实例演示:教师展示一些实际问题,让学生运用刚刚学到的梯形和圆的面积公式进行解决。
教师在这个过程中对学生进行引导和指导,确保学生能够正确运用公式。
4. 练习巩固:教师布置一些练习题,让学生独立完成。
通过这个过程,学生能够进一步巩固所学知识,提高解题能力。
5. 课堂小结:教师对本节课所学的梯形和圆的面积公式进行总结,强调公式的重要性和应用价值。
6. 课后作业:教师布置一些课后作业,让学生进一步巩固所学知识,提高实际应用能力。
四、教学评价1. 课堂参与度:观察学生在课堂上的参与情况,是否积极思考、提问等。
2. 练习完成情况:检查学生完成的练习题,评估其对梯形和圆的面积公式的掌握程度。
3. 课后作业:查看学生完成的课后作业,评估其对所学知识的巩固程度。
五、教学反思教师在课后要对本次公开课的教学效果进行反思,总结教学中的优点和不足,不断改进教学方法,提高教学质量。
同时,要关注学生的学习反馈,及时调整教学策略,确保学生能够更好地掌握所学知识。
通过以上教学过程,教师能够有效地引导学生学习梯形和圆的面积公式,培养学生观察、分析及概括能力,使学生初步了解公式来源于实践又反作用于实践。
初中公开课优质课数学教案一、教学目标1. 知识与技能:让学生掌握平面几何图形的基本概念,包括线段、射线、直线、角、三角形、四边形等,并能正确识别和描述这些图形的特点。
2. 过程与方法:通过观察、操作、交流等活动,培养学生的空间观念,提高学生运用几何语言描述图形的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识,使学生感受到数学与生活的紧密联系。
二、教学内容1. 平面几何图形的概念及特点2. 平面几何图形的识别与描述3. 平面几何图形在实际生活中的应用三、教学过程1. 导入新课利用多媒体展示各种平面几何图形,引导学生观察并思考:这些图形有什么共同特征?它们在实际生活中有哪些应用?2. 自主学习让学生通过阅读教材,了解平面几何图形的概念及特点,然后进行小组讨论,总结出各种图形的特征。
3. 课堂讲解针对学生自主学习的结果,进行讲解和归纳,重点讲解各种图形的定义、性质和应用。
4. 课堂练习设计一些练习题,让学生动手画图并回答问题,检验学生对平面几何图形的理解和掌握程度。
5. 拓展与应用让学生运用所学知识,解决实际问题,如设计一个三角形帐篷,使帐篷的面积最大。
6. 总结与反思让学生回顾本节课所学内容,总结自己的收获,并提出疑问。
教师进行解答,为学生课后学习提供指导。
四、教学评价1. 课堂讲解:评价学生对平面几何图形的概念、性质和应用的掌握程度。
2. 课堂练习:评价学生动手操作能力和解决实际问题的能力。
3. 拓展与应用:评价学生将所学知识运用到实际生活中的创新能力。
五、教学资源1. 多媒体课件:展示各种平面几何图形,增强学生的空间观念。
2. 练习题:巩固学生对平面几何图形的理解和掌握。
六、教学建议1. 注重学生自主学习,培养学生的探究能力。
2. 鼓励学生参与课堂讨论,提高学生的合作意识。
3. 注重课堂练习,及时反馈,提高学生的动手操作能力。
4. 联系生活实际,激发学生的学习兴趣。
计算技巧初中数学公开课教案教学目标:1. 了解和掌握初中数学中常用的计算技巧;2. 培养学生良好的计算习惯和技巧;3. 增强学生对数学计算的兴趣和自信心。
教学重点:初中数学中常用的计算技巧,包括速算、近似计算和整体思维。
教学难点:培养学生整体思维和快速计算的能力。
教学准备:白板、黑板、彩色粉笔、教学课件。
教学过程:一、热身导入(5分钟)1. 老师先向学生展示两个简单的计算题目,并请学生计算得出答案。
2. 学生回答后,教师借此引出今天的教学内容——计算技巧,并介绍计算技巧在日常生活和数学中的重要性。
二、速算技巧讲解(15分钟)1. 教师讲解速算的基本方法和思维,例如快速竖式计算、乘法口诀、平方差公式等。
2. 教师通过具体的例子,引导学生学习和掌握这些速算技巧,并给予足够的练习机会和指导。
三、近似计算技巧讲解(15分钟)1. 教师介绍近似计算的概念和应用场景,例如大约数、四舍五入等。
2. 教师引导学生学习和理解近似计算的原理和基本规则,并通过实例演示如何进行近似计算。
四、整体思维讲解(15分钟)1. 教师通过数学题目的变形和拆解,引导学生运用整体思维解决问题。
2. 教师提供一些常见的整体思维方法,如巧用等式性质、找规律等,并请学生自己动手尝试解题。
五、综合应用与拓展(15分钟)1. 教师设计一些综合性的数学问题,要求学生综合运用所学的计算技巧解决问题。
2. 鼓励学生多思考、多交流,让他们在合作中提高解决问题的能力。
六、小结与反思(10分钟)1. 教师对本节课的内容进行总结,强调计算技巧的重要性和实际应用场景。
2. 教师要求学生对自己本节课的学习进行反思,并提出可能存在的问题或困惑。
教学延伸:1. 布置相关作业,要求学生继续巩固和拓展所学的计算技巧;2. 鼓励学生自主学习,探索更多数学计算的技巧和方法。
教学资源:1. 数学教材和练习册;2. 简单的计算题目和例题;3. 教学课件及相关图表。
备注:本教案旨在引导学生学习和掌握初中数学中常用的计算技巧,提高他们的计算能力和逻辑思维能力。
关于初中数学的优质公开课获奖教案设计5篇关于初中数学的教案篇1一、教学目标:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质。
3、弄清一次函数与正比例函数的区别与联系。
4、掌握直线的平移法则简单应用。
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。
正比例函数:对于y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
基础训练:1、写出一个图象经过点(1,—3)的函数解析式为:2、直线y=—2X—2不经过第象限,y随x的增大而。
3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:4、已知正比例函数y=(3k—1)x,,若y随x的增大而增大,则k是:5、过点(0,2)且与直线y=3x平行的直线是:6、若正比例函数y=(1—2m)x的图像过点A(x1,y1)和点B(x2,y2)当x1y2,则m的取值范围是:7、若y—2与x—2成正比例,当x=—2时,y=4,则x=时,y=—4。
8、直线y=—5x+b与直线y=x—3都交y轴上同一点,则b的值为。
9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
(1)求线段AB的长。
(2)求直线AC的解析式。
初中数学教学设计引言数学作为一门重要的学科,对学生的思维能力和逻辑思维能力的培养具有重要意义。
而在初中阶段,数学教学的设计尤为关键。
本文将介绍一种初中数学教学设计的方式,以帮助教师更好地引导学生学习数学,培养他们的数学兴趣和能力。
一、教学目标在进行数学教学设计时,首先要明确教学目标。
在初中数学教学中,我们的教学目标应包括以下几个方面:培养学生的数学思维能力,提高他们的计算和推理能力,培养学生的数学兴趣,以及帮助学生将数学知识应用于实际生活中。
二、教学内容根据教学目标,我们需要合理选择教学内容。
初中数学的教学内容一般包括数与代数、几何、函数、概率与统计等方面。
在设计教学内容时,教师要根据学生的实际情况和学科发展的要求,选择符合学生认知水平的教材,并将基础知识、方法和实践相结合。
三、教学方法教学方法是教学设计的关键。
在初中数学教学中,我们可以采用多种教学方法,例如讲授法、示范法、探究法、实验法等等。
不同的教学方法适用于不同的教学内容和教学目标,教师应根据实际情况灵活运用,力求激发学生的学习兴趣,培养他们的思维能力和创造力。
四、教学手段在教学过程中,教学手段是非常重要的。
教师可以用黑板、幻灯片、课件等教学工具来呈现教学内容,引导学生进行认知和思考。
此外,教师还可以通过小组讨论、实验演示、问题解决等方式来激发学生的学习积极性,帮助他们更好地理解和掌握数学知识。
五、教学评价教学评价是教学设计的必要环节。
教师可以通过课堂练习、小测验、作业、考试等方式对学生的学习情况进行评价。
评价结果可以及时反馈给学生,帮助他们发现自己的不足之处并加以改进。
同时,教师也可以通过评价结果来调整教学策略,提高教学效果。
六、教学实施在教学实施过程中,教师应注重学生的参与和互动。
教师要积极引导学生思考问题,鼓励他们提出自己的观点和解决方法。
同时,教师还应根据学生的学习情况适时调整教学进度和教学内容,确保每个学生都能够适应教学进程。
结语初中数学教学设计充分考虑了学生的学习需求和发展特点,通过合理选择教学内容、灵活运用教学方法、提供适当的教学手段以及进行有效的教学评价,可以有效提高学生的数学能力和兴趣。
初中数学优秀优质公开课获奖教案设计5篇初中数学优秀教案篇1一、素质教育目标(一)知识教学点使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.(二)能力训练点逐步培养学生会观察、比较、分析、概括等逻辑思维能力.(三)德育渗透点引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.二、教学重点、难点1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.三、教学步骤(一)明确目标1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.通过四个例子引出课题.(二)整体感知1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.(三)重点、难点的学习与目标完成过程1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:若一组直角三角形有一个锐角相等,可以把其顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴形中,∠A的对边、邻边与斜边的比值,是一个固定值.通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.练习题为作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.(四)总结与扩展1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.四、布置作业本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.五、板书设计初中数学优秀教案篇2一、教材分析(一)本节课在教材中的地位及作用:本节课是中考考纲中规定的必考内容,它对整章节教学起承上启下的作用,学好梯形会有举一反三、以一当十的作用。
实际问题与二次函数教学内容22.3 实际问题与二次函数(1). 教学目标1.会求二次函数y =ax 2+bx +c 的最小(大)值.2.能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最小(大)值等实际问题. 教学重点求二次函数y =ax 2+bx +c 的最小(大)值. 教学难点将实际问题转化成二次函数问题. 教学过程 一、导入新课 同学们好,我们上节课学习了二次函数与一元二次方程,可以利用二次函数的图象求一元二次方程的根.对于某些实际问题,如果其中变量之间的关系可以用二次函数模型来刻画,那么我们就可以利用二次函数的图象和性质来进行研究. 二、新课教学问题 从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是h =30t -5t 2(0≤t ≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?教师引导学生找出问题中的两个变量:小球的高度h (单位:m )与小球的运动时间t (单位:s ).然后画出函数h =30t -5t 2(0≤t ≤6)的图象(可见教材第49页图).根据函数图象,可以观察到当t 取顶点的横坐标时,这个函数有最大值.也就是说,当小球运动的时间是3s 时,小球最高,小球运动中的最大高度是45m .一般地,当a >0(a <0),抛物线y =ax 2+bx +c 的顶点是最低(高)点,也就是说,当x=-a b 2时,二次函数y =ax 2+bx +c 有最小(大)值ab ac 442 .探究1 用总长为60 m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 是多少米时,场地的面积S 最大?教师引导学生参照问题1的解法,先找出两个变量,然后写出S 关于l 的函数解析式,最后求出使S 最大的l 值.具体步骤可见教材第50页. 三、巩固练习1.已知一个矩形的周长是100 cm ,设它的一边长为x cm ,则它的另一边长为______cm ,若设面积为s cm 2,则s 与x 的函数关系式是__________,自变量x 的取值范围是________.当x 等于_____cm 时,s 最大,为_______ cm 2.2.已知:正方形ABCD 的边长为4,E 是BC 上任意一点,且AE =AF ,若EC =x ,请写出△AEF 的面积y 与x 之间的函数关系式,并求出x 为何值时y 最大. 参考答案:1.50-x ,s=x (50-x ),0<x <50,25,6252.y =-21x 2+4x ,当x =4时,y 有最大值8. 四、课堂小结今天学习了什么,有什么收获? 五、布置作业习题22.3 第1、4题.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习1.计算: (1))1)(1(yx x y x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.D CA BD CABDC A B[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.D CAB我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( )E DC A B PA.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是()A.80°B.20°C.80°和20°D.80°或50°答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm.求这个等腰三角形的边长.解:设三角形的底边长为x cm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm、6 cm和6 cm.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
第1篇一、课题:《一元一次方程的应用》二、教学目标:1. 知识与技能:理解一元一次方程的应用,掌握解决实际问题的方法。
2. 过程与方法:通过小组合作、探究讨论,培养学生分析问题和解决问题的能力。
3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队协作精神。
三、教学重点与难点:1. 教学重点:掌握一元一次方程的应用,解决实际问题。
2. 教学难点:将实际问题转化为数学模型,建立方程。
四、教学准备:1. 教师:多媒体课件、实物教具、白板。
2. 学生:预习相关内容,准备好小组合作所需的材料。
五、教学过程:(一)导入新课1. 教师通过生活中的实例,如购物、旅行等,引导学生思考如何用数学方法解决实际问题。
2. 学生分享自己的思考,教师总结并提出本节课的学习目标。
(二)新课讲解1. 教师讲解一元一次方程的概念、性质及解法。
2. 学生通过小组合作,探究一元一次方程的应用。
3. 教师展示例题,引导学生分析问题、建立方程,并解答。
(三)课堂练习1. 学生独立完成练习题,巩固所学知识。
2. 教师巡视指导,解答学生疑问。
(四)拓展延伸1. 教师提出一个与生活实际相关的问题,让学生运用所学知识解决。
2. 学生分组讨论,提出解决方案,并进行展示。
(五)课堂小结1. 教师总结本节课所学内容,强调一元一次方程的应用。
2. 学生分享自己的学习心得,教师点评。
(六)布置作业1. 完成课后练习题,巩固所学知识。
2. 收集生活中的实际问题,尝试用一元一次方程解决。
六、教学反思:本节课通过导入、新课讲解、课堂练习、拓展延伸等环节,让学生在轻松愉快的氛围中掌握了“一元一次方程的应用”这一知识点。
在教学中,我注重以下几点:1. 注重学生的主体地位,引导学生主动参与课堂活动。
2. 通过小组合作、探究讨论,培养学生的团队协作精神。
3. 结合生活实际,激发学生的学习兴趣,提高学生解决实际问题的能力。
4. 关注学生的个体差异,因材施教,使每个学生都能在课堂上有所收获。
一元一次方程及其解法公开课教案第一章:引言1.1 课程背景在初中数学中,方程是非常重要的内容。
通过学习一元一次方程,让学生初步了解方程的概念,掌握解方程的方法,为后续学习更复杂的方程打下基础。
1.2 教学目标(1) 了解一元一次方程的定义及特点;(2) 学会解一元一次方程;(3) 能够应用一元一次方程解决实际问题。
第二章:一元一次方程的定义及特点2.1 一元一次方程的定义(1) 概念:一元一次方程是只含有一个未知数(元),且未知数的最高次数为1的方程。
(2) 一般形式:ax + b = 0(a, b 为常数,且a ≠0)2.2 一元一次方程的特点(1) 线性:方程的图像为一条直线;(2) 单调性:随着未知数的增大,方程的解也增大或减小;(3) 有唯一解。
第三章:解一元一次方程的方法3.1 移项将方程中的常数项移到等号的一边,未知数项移到等号的另一边。
3.2 合并同类项将方程中同类项合并,简化方程。
3.3 系数化为1将方程中的系数化为1,便于求解。
第四章:应用一元一次方程解决实际问题4.1 问题的提出通过实际问题引出一元一次方程的解法。
4.2 问题的解决(1) 分析问题,找出未知数;(2) 列出方程;(3) 解方程;(4) 检验解。
第五章:总结与拓展5.1 总结回顾本节课所学的一元一次方程的定义、特点和解法。
5.2 拓展思考:如何判断一个方程是否为一元一次方程?作业:(1) 完成课后练习题;(2) 找一些实际问题,尝试用一元一次方程解决。
第六章:一元一次方程的解法案例分析6.1 案例一:购物问题问题描述:小明购买了一些苹果,每千克3元,一共花费了15元。
问小明购买了多少千克的苹果?解题步骤:(1) 设小明购买的苹果为x千克;(2) 根据价格列出方程:3x = 15;(3) 解方程得到:x = 15 / 3 = 5;(4) 检验解:5千克的苹果,每千克3元,总共15元,符合题意。
6.2 案例二:速度问题问题描述:甲乙两地相距120千米,甲车以60千米/小时的速度行驶,乙车以80千米/小时的速度行驶。
初中数学-九年级数学优质公开课赛教获奖教案《同底数幂的乘法》教学案例《同底数幂的乘法》教学案例《同底数幂的乘法》教学案例[课题] 义务教育课程标准实验教科书数学(北师大)七年级下册第一章第3节一、教学目的: 1、在一定的情境中,经历探索同底数幂的乘法运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。
2、了解同底数幂的乘法运算性质,并能把解决一些简单的实际问题。
二、教学过程实录:(铃响,上课)教师:在an这个表达式中,a是什么?n是什么?当an作为运算时,又读作什么?学生:a是底数,n是指数,an又读作a的n次幂。
教师:(多媒体投影出示习题)用学过的知识做下面的习题,在做题的过程中,认真观察,积极思考,互相研究,看看能发现什么。
计算: (1) 22 × 23(2) 54×53 (3) (-3)2 × (-3)2 (4) (2/3)2×(2/3)4 (5) (- 1/2)3 × (- 1/2)4 (6) 103×104 (7) 2m × 2n (8)(1/7)m×(1/7)n (m,n是正整数) (学生开始做题,互相研究、讨论,气氛热烈,教师巡视、指点,待学生充分讨论有所发现后,提问有何发现)学生A:根据乘方的意义,可以得到:(1) 22 × 23 = 25 (2) 54 × 53 = 57 (3) (-3)2 × (-3)2 = (-3)5…… 教师:刚才A同学说出了根据乘方的意义计算上面各题所得结果,计算是否准确?学生:计算准确。
教师:通过刚才的计算和研究,发现什么规律性的结论了吗?学生 B:不管底数是什么数,只要底数相同,结果就是指数相加。
教师:请你举例说明。
学生B到前边黑板上板书:22×23=(2×2)×(2×2×2)=2×2×2×2×2=25 底数不变,指数2+3=5 教师:其他几个题是否也有这样的规律呢?特别是后两个?学生:都有这样的规律。
新人教版初中数学九年级上册优质课公开课教案一、教学目标- 熟练掌握矩形的定义与性质;- 理解和应用矩形的周长和面积公式;- 能够解决与矩形相关的实际问题;- 培养学生的逻辑思维和问题解决能力。
二、教学重点- 掌握矩形的周长和面积公式;- 能够独立解决与矩形相关的实际问题。
三、教学内容第一节矩形的定义与性质1. 矩形的定义:四个内角都是直角的四边形;2. 矩形的性质:- 对角线相等;- 对边相等;- 内角均为直角。
第二节矩形的周长和面积公式1. 计算矩形的周长:- 公式:周长 = 2(长 + 宽);- 例题演示;- 学生练。
2. 计算矩形的面积:- 公式:面积 = 长 ×宽;- 例题演示;- 学生练。
第三节矩形的应用1. 解决与矩形相关的实际问题:- 题目分析与解决思路讲解;- 例题演示;- 学生练。
四、教学方法与步骤1. 激发学生兴趣:通过引入有趣的例子或图片,激发学生对矩形的兴趣。
2. 导入新知:介绍矩形的定义和性质,并与学生进行讨论。
3. 掌握公式:讲解矩形的周长和面积公式,并通过例题演示加深学生对公式的理解。
4. 锻炼技能:让学生进行练,巩固对矩形的周长和面积计算的掌握。
5. 应用题:引导学生解决与矩形相关的实际问题,培养其问题解决能力。
6. 总结与归纳:帮助学生总结所学内容,理清矩形的定义、性质和计算方法。
五、教学评价与反思1. 通过学生的课堂表现、练情况和问题解决能力的评估,对学生的研究情况进行评价。
2. 及时反思教学过程中存在的问题,寻找改进方法,提高教育教学质量。
以上是本节课的教案,通过讲解矩形的定义、性质和计算方法,以及引导学生解决相关问题,旨在帮助学生掌握矩形的概念和计算技巧,并培养其逻辑思维和问题解决能力。
初中数学公开课教案(5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!初中数学公开课教案(5篇)作为一名教学工作者,可能需要进行教案编写工作,教案是教学活动的总的组织纲领和行动方案。
初中数学公开课教案•相关推荐初中数学公开课教案(精选10篇)作为一名优秀的教育工作者,往往需要进行教案编写工作,教案是备课向课堂教学转化的关节点。
那么教案应该怎么写才合适呢?以下是小编收集整理的初中数学公开课教案,仅供参考,希望能够帮助到大家。
初中数学公开课教案篇1教学目标1.了解公式的意义,使学生能用公式解决简单的实际问题;2.初步培养学生观察、分析及概括的能力;3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议一、教学重点、难点重点:通过具体例子了解公式、应用公式.难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。
如本课中梯形、圆的面积公式。
应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。
具体计算时,就是求代数式的值了。
有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。
用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。
整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。
这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例一、教学目标(一)知识教学点1.使学生能利用公式解决简单的实际问题.2.使学生理解公式与代数式的关系.(二)能力训练点1.利用数学公式解决实际问题的能力.2.利用已知的公式推导新公式的能力.(三)德育渗透点数学来源于生产实践,又反过来服务于生产实践.(四)美育渗透点数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.二、学法引导1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点2.学生学法:观察→分析→推导→计算三、重点、难点、疑点及解决办法1.重点:利用旧公式推导出新的图形的计算公式.2.难点:同重点.3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.四、教具学具准备投影仪,自制胶片。
五、师生互动活动设计教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.六、教学步骤(一)创设情景,复习引入师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.板书:公式师:小学里学过哪些面积公式?板书:S=ah(出示投影1)。
解释三角形,梯形面积公式【教法说明】让学生感知用割补法求图形的面积。
(二)探索求知,讲授新课师:下面利用面积公式进行有关计算(出示投影2)例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积S。
师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)学生口述解题过程,教师予以指正并指出,强调解题的规范性.【教法说明】1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.(出示投影3)例2如图是一个环形,外圆半径,内圆半径求这个环形的面积学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.评讲时注意1.如果有学生作了简便计算,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算.2.本题实际上是由圆的面积公式推导出环形面积公式.3.进一步强调解题的规范性教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.测试反馈,巩固练习(出示投影4)1.计算底,高的三角形面积2.已知长方形的长是宽的1.6倍,如果用a表示宽,那么这个长方形的周长是多少?当时,求t3.已知圆的半径,求圆的周长C和面积S4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。
(1)求A地到B地所用的时间公式。
(2)若千米/时,千米/时,求从A地到B地所用的时间。
学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演.七、随堂练习(一)填空1.圆的半径为R,它的面积________,周长_____________2.平行四边形的底边长是,高是,它的面积_____________;如果,,那么_________3.圆锥的底面半径为,高是,那么它的体积__________如果,,那么_________(二)一种塑料三角板形状,尺寸如图,它的厚度是,求它的体积V,如果,,,V是多少?八、布置作业(一)必做题课本第22页1、2、3第23页B组1(二)选做题课本第22页5B组2初中数学公开课教案篇2一、教学目标1、了解二次根式的意义;2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;3、掌握二次根式的性质和,并能灵活应用;4、通过二次根式的计算培养学生的逻辑思维能力;5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。
二、教学重点和难点重点:(1)二次根的意义;(2)二次根式中字母的取值范围。
难点:确定二次根式中字母的取值范围。
三、教学方法启发式、讲练结合。
四、教学过程(一)复习提问1、什么叫平方根、算术平方根?2、说出下列各式的意义,并计算(二)引入新课新课:二次根式定义:式子叫做二次根式。
对于请同学们讨论论应注意的问题,引导学生总结:(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。
(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次根式指的是某种式子的“外在形态”。
请学生举出几个二次根式的例子,并说明为什么是二次根式。
下面例题根据二次根式定义,由学生分析、回答。
例1当a为实数时,下列各式中哪些是二次根式?例2x是怎样的实数时,式子在实数范围有意义?解:略。
说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。
例3当字母取何值时,下列各式为二次根式:分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。
解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。
(2)—3x≥0,x≤0,即x≤0时,是二次根式。
(3),且x≠0,∴x>0,当x>0时,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>2。
当x>2时,是二次根式。
例4下列各式是二次根式,求式子中的字母所满足的条件:分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。
即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
(3)由于x取任何实数时都有|x|≥0,因此,|x|+0。
1>0,于是,式子是二次根式。
所以所求字母x的取值范围是全体实数。
(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。
初中数学公开课教案篇3一、教材分析本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。
二、教学目标1、知识目标:了解多边形内角和公式。
2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。
4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
三、教学重、难点重点:探索多边形内角和。
难点:探索多边形内角和时,如何把多边形转化成三角形。
四、教学方法:引导发现法、讨论法五、教具、学具教具:多媒体课件学具:三角板、量角器六、教学媒体:大屏幕、实物投影七、教学过程:(一)创设情境,设疑激思师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?活动一:探究四边形内角和。
在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。
方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。
方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。
接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。
师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?活动二:探究五边形、六边形、十边形的内角和。
学生先独立思考每个问题再分组讨论。
关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。
学生分组讨论后进行交流(五边形的内角和)方法1:把五边形分成三个三角形,3个180的和是540。
方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。