求函数值域十二法
- 格式:doc
- 大小:50.50 KB
- 文档页数:4
函数值域十三种求法1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1y =的值域解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法(只有定义域为整个实数集R 时才可直接用)例4. 求函数22x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
可以采取如下方法进一步确定原函数的值域。
∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1)解得:]2,0[22222x 41∈-+=即当22222x 41-+=时,原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
函数值域十三种求法1. 直接观察法利用已有的基本函数的值域观察直接得出所求函数的值域,对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等,其值域可通过观察直接得到。
例1. 求函数x 1y =的值域解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域 解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法二次函数或可转化为形如c x bf x f a x F ++=)()]([)(2类的函数的值域问题,均可用配方法,而后一情况要注意)(x f 的范围;配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max =故函数的值域是:[4,8]评注:配方法往往需结合函数图象求值域.3. 判别式法(只有定义域为整个实数集R 时才可直接用) 对于形如21112222a xb xc y a x b x c ++=++(1a ,2a 不同时为0)的函数常采用此法,就是把函数转化成关于x 的一元二次方程(二次项系数不为0时),通过方程有实数根,从而根的判别式大于等于零,求得原函数的值域.对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简如:.112..22222222b a y 型:直接用不等式性质k+xbx b. y 型,先化简,再用均值不等式x mx nx 1 例:y 1+x x+xx m x n c y 型 通常用判别式x mx nx mx n d. y 型 x n法一:用判别式 法二:用换元法,把分母替换掉x x 1(x+1)(x+1)+1 1 例:y (x+1)1211x 1x 1x 1==++==≤''++=++++=+++-===+-≥-=+++例4. 求函数22x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆ 解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
函数值域的12种求法在函数的三要素中,定义域和对应法则起决定作用,而值域是由定义域和对应法则共同确定。
研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。
确定函数的值域是研究函数不可缺少的重要一环。
对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
本文就函数值域求法归纳如下,供参考。
一、函数值域的12种求法1. 观察法对于一些比较简单的函数,其值域可通过直接观察即可得到。
例1. 求函数 x 1y =的值域。
解:∵0x ≠ ∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数 x 3y -=的值域。
解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 函数单调性法:根据函数单调性及定义域求函数值域例9. 求函数 )10x 2(1x log 2y 35x ≤≤-+=-的值域。
解:令1x l o g y ,2y 325x 1-==-则21y ,y 在[2,10]上都是增函数所以21y y y +=在[2,10]上是增函数当x=2时,8112l o g 2y 33m i n =-+=-当x=10时,339log 2y 35max =+=故所求函数的值域为:⎥⎦⎤⎢⎣⎡33,81例10. 求函数 1x 1x y --+=的值域。
解:原函数可化为:1x 1x 2y -++= 令1x y ,1x y 21-=+=,显然 21y ,y 在 ],1[+∞上为无上界的增函数所以1y y =,2y 在 ],1[+∞上也为无上界的增函数所以当x=1时,21y y y +=有最小值 2,原函数有最大值 222=显然 0y >,故原函数的值域为 ]2,0(3. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数 ]2,1[x ,5x 2x y 2-∈+-=的值域。
1. 直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1. 求函数的值域。
解:∵∴显然函数的值域是:2. 配方法配方法是求二次函数值域最基本的方法之一。
例2. 求函数的值域。
解:将函数配方得:∵由二次函数的性质可知:当x=1时,,当x=-1时,故函数的值域是:[4,8]3. 判别式法例3. 求函数的值域。
解:两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵∴∴代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例4. 求函数值域。
解:由原函数式可得:则其反函数为:,其定义域为:故所求函数的值域为:5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
例5. 求函数的值域。
解:由原函数式可得:,可化为:即∵∴即解得:故函数的值域为6. 函数单调性法例6. 求函数的值域。
解:令则在[2,10]上都是增函数所以在[2,10]上是增函数当x=2时,当x=10时,故所求函数的值域为:例7. 求函数的值域。
解:原函数可化为:令,显然在上为无上界的增函数所以,在上也为无上界的增函数所以当x=1时,有最小值,原函数有最大值显然y>0,故原函数的值域为7. 换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作例8. 求函数的值域。
求函数值域的12种方法函数的值域即为函数的输出值的集合。
在数学中,可以用多种方法来确定函数的值域。
1.输入法:根据函数的解析式,将不同的输入带入函数中,找出函数的输出值。
例如,对于函数$f(x)=x^2$,将不同的$x$值带入函数中,得到$f(1)=1$,$f(2)=4$,$f(3)=9$,...,通过这种方法可以找出函数的值域为正整数集合。
2. 虚拟增量法:给定函数的定义域,通过逐渐增加函数的输入值,观察函数的输出值是否有变化。
例如,对于函数$g(x) = \sqrt{x}$,可以从定义域中的最小值开始逐渐增加$x$的值,观察$\sqrt{x}$的变化,直到无法再增加$x$的值为止。
通过这种方法可以找出函数值域为非负实数集合。
3. 图像法:画出函数的图像,通过观察图像的高度范围找出函数的值域。
例如,对于函数$h(x) = \sin x$,可以画出其图像,观察图像的高度范围为$[-1, 1]$,则函数的值域为闭区间$[-1, 1]$。
4. 函数属性法:通过函数的性质推断出函数的值域。
例如,对于函数$f(x) = \frac{1}{x}$,可以通过观察函数的分母$x$的取值范围,推断出函数的值域为除去零的实数集合。
5. 求导法:对于可导函数,可以通过求导数来确定函数的值域。
例如,对于函数$f(x) = x^3 + 1$,求导得到$f'(x) = 3x^2$,由于$f'(x)$是一个二次函数,且开口向上,因此可以推断出函数$f(x)$的值域为$(-\infty, +\infty)$。
6. 函数复合法:对于复合函数,可以通过将函数复合起来,找出函数的值域。
例如,对于函数$f(x) = \sqrt{\sin x}$,可以将其分解为$f(x) = \sqrt{g(x)}$,其中$g(x) = \sin x$,由于$\sin x$的值域为$[-1, 1]$,因此$\sqrt{\sin x}$的值域为闭区间$[0, 1]$。
高考数学函数值域求法⑴.观察法:由函数的定义域结合图象,或直观观察,准确判断函数值域的方法。
例1:求函数()1y x =≥的值域。
)+∞例2:求函数y =[)1,+∞⑵.最值法:对于闭区间上的连续函数,利用函数的最大值、最小值求函数的值域的方法。
例3:求函数2xy =,[]2,2x ∈-的值域。
1,44⎡⎤⎢⎥⎣⎦例4:求函数2256y x x =-++的值域。
73,8⎛⎤-∞ ⎥⎝⎦⑶.判别式法:通过二次方程的判别式求值域的方法。
形如)0(2''2'≠++++=a cbx ax c x b x a y 且定义域必须为R的函数可由此法求解值域。
例5:求函数22122x y x x +=-+的值域。
()1,1,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭例求函数1342++=x x y 的值域。
⑷.反函数法:利用求已知函数的反函数的定义域,从而得到原函数的值域的方法。
例6:求函数2332x y x +=-的值域。
22,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭例7:求函数ax b y cx d +=+,0,d c x c ⎛⎫≠≠- ⎪⎝⎭的值域。
,,a a c c ⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭⑸.换元法:通过对函数恒等变形,将函数化为易求值域的函数形式来求值域的方法。
例8:求函数y x = 1,2⎛⎤-∞ ⎥⎝⎦⑹.复合函数法:对函数(),()y f u u g x ==,先求()u g x =的值域充当()y f u =的定义域,从而求出()y f u =的值域的方法。
例9:求函数212log (253)y x x =-++的值域。
49,8⎡⎫+∞⎪⎢⎣⎭⑺.利用基本不等式求值域: 例10:求函数1y x x=+的值域。
(][),22,-∞-⋃+∞例11:求函数212y x x=+(0)x >的值域。
[)3,+∞⑻.利用函数的单调性:例12:求函数y =例13:求函数y x =⑼.利用三角函数的有解性: 例14:求函数2cos 13cos 2x y x +=-的值域。
求函数值域的方法函数值域是什么,怎么求?不清楚的小伙伴看过来,下面由小编为你精心准备了“求函数值域的方法”仅供参考,持续关注本站将可以持续获取更多的资讯!求函数值域的方法值域域为数学名词,函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。
函数值域的求法1、配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;2、逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如: ;3、换元法:通过变量代换转化为能求值域的函数,化归思想;4、三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;5、基本不等式法:转化成型如:,利用平均值不等式公式来求值域;6、单调性法:函数为单调函数,可根据函数的单调性求值域。
7、数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
8、定义法:已知某个三角函数的定义值域,通过转化成三角函数来求解该函数的值域9、画图法:这种方法简单快捷,只要将函数图形画出来,一眼就能看到函数的值域。
拓展阅读:函数最小正周期怎么求所谓的函数的最小正周期,一般在高中时期的话遇到的都是那种特殊形式的函数,比如;f(a-x)=f(x+a),这个函数的最小周期就是T=(a-x+x+a)/2=a。
还有是三角函数y=A sin(wx+b)+t,最小正周期就是T=2帕/w。
最小正周期求法1、公式法这类题目是通过三角函数的恒等变形,转化为一个角的一种函数的形式,用公式去求,其中正余弦函数求最小正周期的公式为T=2π/|ω| ,正余切函数T=π/|ω|。
函数f(x)=Asin(ωx+φ)和f(x)=Acos(ωx+φ)(A≠0,ω>0)的最小正周期都是;函数f(x)=Atan(ωx+φ)和f(x)=Acot(ωx+φ)(A≠0,ω>0)的最小正周期都是,运用这一结论,可以直接求得形如y=Af(ωx+φ)(A≠0,ω>0)一类三角函数的最小正周期(这里“f”表示正弦、余弦、正切或余切函数)。
求函数值域的12种方法函数是中学数学的重要的基本概念之一,它与代数式、方程、不等式、三角函数、微积分等内容有着密切的联系,应用十分广泛。
函数的基础性强、概念多,其中函数的定义域、值域、奇偶性等是难点之一,是高考的常见的题型。
下面就函数的值域的求法,举例说如下。
一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
函数求值域的15种方法
1. 通过图像观察函数的值域
2. 分析函数的定义域和性质来求值域
3. 使用函数的极限来求值域
4. 使用反函数来求值域
5. 使用微积分方法求值域
6. 利用代数方法求值域
7. 使用函数的导数来求值域
8. 使用平移、伸缩和反转等变换来求值域
9. 使用图像变换方法来求值域
10. 利用函数的周期性来求值域
11. 利用函数的分段定义来求值域
12. 使用函数的周期性来求值域
13. 利用对称性来求值域
14. 使用级数和级数收敛性来求值域
15. 利用函数的特殊性质和特殊值来求值域。
求函数值域十二法
求函数的值域或最值是高中数学基本问题之一,也是考试的热点和难点之一。
遗憾的是教材中仅有少量求定义域的例题、习题,而求值域或最值的例题、习题则是少得屈指可数。
原因可能是求函数的值域往往需要综合用到众多的知识内容,技巧性强,有很高的难度,因此求函数的值域或最值的方法需要我们在后续的学习中逐步强化。
本文谈一些求函数值域的方法,仅作抛砖引玉吧。
一、基本知识
1.定义:因变量y的取值范围叫做函数的值域(或函数值的集合)。
2.函数值域常见的求解思路:
⑴.划归为几类常见函数,利用这些函数的图象和性质求解。
⑵.反解函数,将自变量x用函数y的代数式形式表示出来,利用定义域建立函数y的不等式,解不等式即可获解。
⑶.可以从方程的角度理解函数的值域,如果我们将函数看作是关于自变量的方程,在值域中任取一个值,对应的自变量一定为方程在定义域中的一个解,即方程在定义域内有解;另一方面,若取某值,方程在定义域内有解,则一定为对应的函数值。
从方程的角度讲,函数的值域即为使关于的方程在定义域内有解的得取值范围。
特别地,若函数可看成关于的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。
⑷.可以用函数的单调性求值域。
⑸.其他。
3.函数值域的求法
在以上求解思路的引导下,又要注意以下的常见求法和技巧:
⑴.观察法;⑵.最值法;⑶.判别式法;⑷.反函数法;⑸.换元法;⑹.复
合函数法;⑺.利用基本不等式法;⑻.利用函数的单调性;⑼.利用三角函数的有界性;⑽.图象法;⑾.配方法;⑿.构造法。
二、举例说明
⑴.观察法:由函数的定义域结合图象,或直观观察,准确判断函数值域的方法。
例1:求函数的值域。
例2:求函数的值域。
⑵.最值法:对于闭区间上的连续函数,利用函数的最大值、最小值求函数的值域的方法。
例3:求函数,的值域。
例4:求函数的值域。
⑶.判别式法:通过二次方程的判别式求值域的方法。
例5:求函数的值域。
⑷.反函数法:利用求已知函数的反函数的定义域,从而得到原函数的值域的方法。
例6:求函数的值域。
例7:求函数,的值域。
⑸.换元法:通过对函数恒等变形,将函数化为易求值域的函数形式来求值域的方法。
例8:求函数的值域。
⑹.复合函数法:对函数,先求的值域充当
的定义域,从而求出的值域的方法。
例9:求函数的值域。
⑺.利用基本不等式求值域:
例10:求函数的值域。
例11:求函数的值域。
⑻.利用函数的单调性:
例12:求函数的值域。
提示:,,∴都是增函数,故
是减函数,因此当时,,又∵,∴。
例13:求函数的值域。
略解:易知定义域为,而在上均为增函数,∴,故
⑼.利用三角函数的有解性:
例14:求函数的值域。
例15:求函数的值域。
⑽.图象法:如果可能做出函数的图象,可根据图象直观地得出函数的值域(求某些分段函数的值域常用此方法)。
例16:求函数的值域。
求函数值域方法很多,常用的有以上这些,这些方法分别具有极强的针对性,每一种方法又不是万能的。
要顺利解答求函数值域的问题,必须熟练掌握各种技能技巧。
⑾.配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域。
例17:求函数的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由,可知函数的定义域为x∈[-1,2]。
此时
∴,函数的值域是。
⑿.构造法:根据函数的结构特征,赋予几何图形,数形结合。
例18:求函数的值域。
点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。
解:原函数变形为
作一个长为4、宽为3的矩形ABCD,再切割成12个单位
正方形。
设HK=,则EK=2,KF=2,AK=,
KC=。
由三角形三边关系知,AK+KC≥AC=5。
当A、K、C三点共
线时取等号。
∴原函数的知域为{y|y≥5}。