函数值域求法大全定稿版
- 格式:docx
- 大小:111.45 KB
- 文档页数:13
函数值域十三种求法1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1y =的值域解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法(只有定义域为整个实数集R 时才可直接用)例4. 求函数22x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
可以采取如下方法进一步确定原函数的值域。
∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1)解得:]2,0[22222x 41∈-+=即当22222x 41-+=时,原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
求函数值域的方法大全
1、极限法:极限法是求函数值域的一种重要技术,可以用来求函数
的极值。
原理是找到函数的变量的极限,在此极限处求函数的极值。
求极
限的方法有四种:求不等式的极限,求一元函数的极限,求二元函数的极限,求多元函数的极限。
2、求导法:求导法是求函数的最值的经典方法。
原理是求函数的导数,当导数当0的时候,其点处就会是极值点,可以分别求函数的一次导
数和二次导数,分析二次导数的符号可以判断函数的极值点属性,从而有
效解决函数求极值问题。
3、几何法:几何法是求函数最值问题的一种有效方法。
原理是利用
函数的图象特征,以图形分析的方法在实值空间中求解函数的极值、拐点,从而求函数的最值。
因为函数图象的研究具有直观性,使用几何法能够比
较快速地解决函数最值问题。
4、范数法:范数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。
这种方法利用范数的基本性质,即大于等于零、对称
性以及三角不等式,一般使用二范数求解,其核心思想是将函数转化为范
数的格式,得出最值的解。
5、参数法:参数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。
函数值域求法大全函数的值域是由定义域和对应法则共同确定。
确定函数的值域是研究函数不可缺少的重要一环。
本文介绍了十一种函数值域求法。
首先是直接观察法,对于一些简单的函数,可以通过观察得到其值域。
例如,对于函数y=1/x,由于x不等于0,因此函数的值域为(-∞,0)U(0,+∞)。
再比如,对于函数y=3-x,由于x的取值范围为(-∞,+∞),因此函数的值域为(-∞,3]。
其次是配方法,这是求二次函数值域最基本的方法之一。
例如,对于函数y=x^2-2x+5,将其配方得到y=(x-1)^2+4,由此可得出函数的值域为[4.+∞)。
还有判别式法,例如对于函数y=(1+x+x^2)/(1+x^2),可以将其化为关于x的一元二次方程,然后根据判别式的值来确定函数的值域。
除此之外,还有其他的函数值域求法,如利用导数、利用反函数、利用奇偶性等方法。
这些方法各有特点,应根据具体情况选择合适的方法来求解。
总之,确定函数的值域是研究函数的重要一环,掌握好函数值域的求法可以帮助我们简化运算过程,事半功倍。
换元法是一种数学方法,可以通过简单的换元将一个函数变为简单函数。
其中,函数解析式含有根式或三角函数公式模型是其题型特征之一。
换元法不仅在求函数的值域中发挥作用,也是数学方法中几种最主要方法之一。
例如,对于函数 $y=x+x^{-1}$,我们可以令 $x-1=t$,则$x=t+1$。
代入原函数,得到$y=t^2+t+1=(t+1)^2+\frac{1}{4}$。
由于 $t\geq 0$,根据二次函数的性质,当 $t=0$ 时,$y$ 取得最小值 $1$,当 $t$ 趋近于正无穷时,$y$ 也趋近于正无穷。
因此,函数的值域为 $[1,+\infty)$。
又如,对于函数 $y=x^2+2x+1-(x+1)^2$,我们可以将 $1-(x+1)^2$ 化简为 $\frac{1}{2}-\left(x+\frac{1}{2}\right)^2$,然后令 $x+1=\cos\beta$,则 $y=\sin\beta+\cos\beta+1$。
函数值域求法十一种函数值域求法十一种1.直接观察法对于一些简单的函数,可以通过观察得到其值域。
例如,求函数 $y=\frac{1}{x}$ 的值域。
解:由于 $x\neq 0$,显然函数的值域是:$(-\infty,0)\cup(0,+\infty)$。
2.配方法配方法是求二次函数值域最基本的方法之一。
例如,求函数 $y=x^2+2x+3$ 在 $x\in[-1,2]$ 时的值域。
解:将函数配方得:$y=(x+1)^2+2$。
由二次函数的性质可知:当 $x=-1$ 时,$y_{\max}=2$,当 $x=1$ 时,$y_{\min}=4$。
故函数的值域是:$[2,4]$。
3.判别式法例如,求函数 $y=\frac{1+x+x^2}{1+x^2}$ 在 $x\in[-1,2]$ 时的值域。
解:将函数化为关于 $x$ 的一元二次方程 $(y-1)x^2+(y-1)x+(1-y)=0$。
1)当 $y\neq 1$ 时,$\Delta=(-1)^2-4(y-1)(1-y)\geq 0$,解得:$y\in[\frac{1}{2},2]$。
2)当 $y=1$ 时,$x=\pm 1$,故函数的值域是:$[\frac{1}{2},2]$。
4.反函数法例如,求函数 $y=3x+4$ 的值域。
解:由原函数式可得其反函数为:$x=\frac{y-4}{3}$,其定义域为 $\mathbb{R}$,故函数的值域也为 $\mathbb{R}$。
注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
函数的值域为:XXX11(x1)2 2令x1t,(t0)则XXX11t2 2化简得XXX11t2函数的值域为(0,1]。
例13.求函数y sinx cosx的值域。
解:由三角函数的性质可知。
1sinx1,1cosx 1故2sinx cosx 2由于sinx cosx的周期为2,所以只需考虑[0,2)的值域即可。
例析求函数值域的方法函数的值域是函数三要素之一,求函数的值域是深入学习函数的基础,它常涉及多种知识的综合应用,下面通过例题讲解,多方探寻值域的途径。
一、直接法:(从自变量x 的范围出发,推出()y f x =的取值范围)例1.求函数2+=x y 的值域。
解:因为0≥x ,所以22≥+x , 所以函数2+=x y 的值域为[)+∞,2。
二、配方法(是求二次函数值域的基本方法,如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法)例2.求函数242y x x =-++([1,1]x ∈-)的值域。
解:2242(2)6y x x x =-++=--+,因为[1,1]x ∈-,所以2[3,1]x -∈--,所以21(2)9x ≤-≤所以23(2)65x -≤--+≤,即35y -≤≤所以函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。
例:求函数的值域:y解:设()2650x x μμ=---≥,则原函数可化为:y 又因为()2265344x x x μ=---=-++≤,所以04μ≤≤,故[]0,2,所以,y =的值域为[]0,2.三、分离常数法(分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法)例4.求函数125x y x -=+的值域。
解:因为177(25)112222525225x x y x x x -++-===-++++, 所以72025x ≠+,所以12y ≠-, 所以函数125x y x -=+的值域为1{|}2y y ≠-。
四、换元法(运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,如y ax b =+±a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解.例4.求函数2y x =+.解:令t =0t ≥),则212t x -=, 所以22151()24y t t t =-++=--+ 因为当12t =,即38x =时,max 54y =,无最小值。
求函数值域的12种方法函数的值域即为函数的输出值的集合。
在数学中,可以用多种方法来确定函数的值域。
1.输入法:根据函数的解析式,将不同的输入带入函数中,找出函数的输出值。
例如,对于函数$f(x)=x^2$,将不同的$x$值带入函数中,得到$f(1)=1$,$f(2)=4$,$f(3)=9$,...,通过这种方法可以找出函数的值域为正整数集合。
2. 虚拟增量法:给定函数的定义域,通过逐渐增加函数的输入值,观察函数的输出值是否有变化。
例如,对于函数$g(x) = \sqrt{x}$,可以从定义域中的最小值开始逐渐增加$x$的值,观察$\sqrt{x}$的变化,直到无法再增加$x$的值为止。
通过这种方法可以找出函数值域为非负实数集合。
3. 图像法:画出函数的图像,通过观察图像的高度范围找出函数的值域。
例如,对于函数$h(x) = \sin x$,可以画出其图像,观察图像的高度范围为$[-1, 1]$,则函数的值域为闭区间$[-1, 1]$。
4. 函数属性法:通过函数的性质推断出函数的值域。
例如,对于函数$f(x) = \frac{1}{x}$,可以通过观察函数的分母$x$的取值范围,推断出函数的值域为除去零的实数集合。
5. 求导法:对于可导函数,可以通过求导数来确定函数的值域。
例如,对于函数$f(x) = x^3 + 1$,求导得到$f'(x) = 3x^2$,由于$f'(x)$是一个二次函数,且开口向上,因此可以推断出函数$f(x)$的值域为$(-\infty, +\infty)$。
6. 函数复合法:对于复合函数,可以通过将函数复合起来,找出函数的值域。
例如,对于函数$f(x) = \sqrt{\sin x}$,可以将其分解为$f(x) = \sqrt{g(x)}$,其中$g(x) = \sin x$,由于$\sin x$的值域为$[-1, 1]$,因此$\sqrt{\sin x}$的值域为闭区间$[0, 1]$。
求函数值域的方法大全函数的值域是指函数在定义域内所有可能的输出值的集合。
找到函数的值域可以帮助我们了解函数的整体走势和性质。
下面是一些常见的方法帮助我们求函数值域。
1.用图形法求值域:使用图形来观察函数的形状和趋势,根据图形的有界性和单调性来确定函数值域的范围。
例如,如果函数是上凸的,那么它的值域可能是从函数的最小值开始一直到正无穷大。
如果函数是下凸的,那么它的值域可能是从负无穷大到函数的最大值。
2.用定义法求值域:通过函数的定义式,将自变量的范围带入函数,计算函数的输出值,从而找到函数的可能取值。
例如,对于函数f(x)=x^2,我们可以把不同的x值代入函数中,并记录下函数的输出值,得到一个可能的值域的集合。
3.用反函数法求值域:如果函数具有反函数,可以通过求反函数的定义域来求原函数的值域。
例如,对于函数f(x)=x^2,它的反函数是f^(-1)(x)=√x,定义域为非负实数,因此原函数的值域也是非负实数。
4.用导数法求值域:对于给定范围内的函数,利用导数求得函数的驻点和拐点,结合函数的单调性和图像的形状来求值域。
例如,当函数的导数为零时,这些点可能是函数的最大值或最小值,通过比较这些点的对应函数值,可以确定函数的值域的上下界。
5.用极限法求值域:当函数的定义域是无界的时候,可以利用函数的极限来求值域。
通过求函数在正无穷大和负无穷大时的极限,可以确定函数的值域的上下界。
6.用解析法求值域:对于一些特定形式的函数,可以通过解析方法求值域。
例如,对于一次函数f(x)=ax+b,其中a和b为常数,如果a>0,则函数的值域是从负无穷大到正无穷大的实数集合。
7.用二次函数求值域:对于二次函数f(x)=ax^2+bx+c,其中a>0,可以通过将二次函数转化为顶点形式来求值域。
首先通过求导数找到二次函数的极值点(即顶点),然后结合函数的开口方向和顶点的y坐标,可以确定二次函数的值域。
8.用指数和对数函数求值域:对于指数函数f(x)=a^x和对数函数f(x)=log_a(x),其中a>0且a≠1,可以利用指数和对数函数的性质来求值域。
函数值域的求法大全值域为R(注意判别式);对数函数y=logax(a>0,a≠1)的定义域为R+,值域为R;指数函数y=ax(a>0,a≠1)的定义域为R,值域为(0,+∞);三角函数y=sin x,y=cos x的值域均为[-1,1];反三角函数y=arcsin x的定义域为[-1,1],值域为[-π/2,π/2];y=arccos x的定义域为[-1,1],值域为[0,π];y=arctan x的定义域为R,值域为(-π/2,π/2)。
利用函数的单调性来求值域对于单调递增函数f(x),其值域为[f(a),f(b)];对于单调递减函数f(x),其值域为[f(b),f(a)]。
利用反函数来求值域设函数f(x)的反函数为g(x),则f(x)的值域等于g(x)的定义域,即f(x)的值域为{x|g(x)∈R}。
利用配方法来求值域对于形如y=f(x)=ax2+bx+c(a>0)的二次函数,可通过配方法将其化为y=a(x+p)2+q的形式,其中a>0,(p,q)为顶点坐标,此时,y的值域为[q,+∞)或(−∞,q]。
利用不等式来求值域对于形如y=f(x)=ax2+bx+c(a>0)的二次函数,可通过求解不等式ax2+bx+c≥0来确定其值域。
以上是常见的求值域的方法,不同的函数类型可能需要不同的方法来求值域。
在解题过程中,要根据具体情况选择合适的方法,结合图像、单调性、反函数等性质进行分析,才能得出正确的结果。
剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。
求函数值域是数学中常见的问题。
下面介绍两种常用的方法:单调性法和换元法。
单调性法是指利用函数的单调性来确定函数的值域。
具体来说,可以先找到函数在给定区间内的单调区间,然后比较区间两端点的函数值,从而确定函数的最大值或最小值。
当顶点横坐标是字母时,需要根据其对应区间特别是区间两端点的位置关系进行讨论。
高中数学求函数值域解题方法大全一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。
【例1】求函数1y =的值域。
0≥11≥,∴函数1y =的值域为[1,)+∞。
【例2】求函数的值域。
【解析】∵ ∴ 显然函数的值域是:【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。
【解析】因为{}2,1,0,1-∈x ,而()()331==-f f ,()()020==f f ,()11-=f 所以:{}3,0,1-∈y注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x ∈,则函数的值域为{}1|-≥y y 。
二. 配方法:配方法式求“二次函数类”值域的基本方法。
形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。
【例1】 求函数225,[1,2]y x x x =-+∈-的值域。
【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时, 故函数的值域是:[4,8]【变式】已知,求函数的最值。
【解析】由已知,可得,即函数是定义在区间上的二次函数。
将二次函数配方得,其对称轴方程,顶点坐标x 1y =0x ≠0x 1≠),0()0,(+∞-∞Y,且图象开口向上。
显然其顶点横坐标不在区间内,如图2所示。
函数的最小值为,最大值为。
图2【例2】 若函数2()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,(1)求函数()g t (2)当∈t [-3,-2]时,求g(t)的最值。
(说明:二次函数在闭区间上的值域二点二分法,三点三分法) 【解析】(1)函数,其对称轴方程为,顶点坐标为(1,1),图象开口向上。
图1图2图3①如图1所示,若顶点横坐标在区间左侧时,有,此时,当时,函数取得最小值。
②如图2所示,若顶点横坐标在区间上时,有,即。
当时,函数取得最小值。
③如图3所示,若顶点横坐标在区间右侧时,有,即。
函数求值域15种方法方法一:对于已知函数,可以通过求函数的表达式来确定函数的值域。
例如对于f(x)=x^2+1需要求值域,可以将其表示为y=x^2+1,然后观察x和y的关系,可以得到y的值域为[1,+∞)。
方法二:对于一些简单的函数,可以使用数学知识来确定其值域。
例如对于 f(x) = sin(x),由于正弦函数的值域为[-1, 1],因此 f(x) 的值域也是[-1, 1]。
方法三:对于复合函数,可以通过将内部函数的值域代入外部函数中来确定整个函数的值域。
例如对于f(x)=√(x^2+1),内部函数g(x)=x^2+1的值域为[1,+∞),将值域代入外部函数,可以得到f(x)的值域也是[1,+∞)。
方法四:对于分段函数,可以分别求解不同区间上函数的值域,然后将这些值域合并得到整个函数的值域。
例如对于f(x)={x,x<0;x^2,x≥0},可以分别求解x<0和x≥0的情况,得到f(x)的值域为(-∞,0]∪[0,+∞)。
方法五:利用函数的奇偶性来确定函数的值域。
如果函数是奇函数,即f(-x)=-f(x),那么函数的值域关于原点对称;如果函数是偶函数,即f(-x)=f(x),那么函数的值域关于y轴对称。
根据函数的奇偶性可以推断出函数的值域。
方法六:利用函数的周期性来确定函数的值域。
如果函数有周期T,那么函数的值域在一个周期内是相同的。
可以通过观察函数的图像或者函数的性质来确定函数的周期,并进一步确定函数的值域。
方法七:利用函数的极限来确定函数的值域。
可以求函数在正无穷和负无穷的极限,根据极限的性质来确定函数的值域。
如果函数在正无穷的极限是一个确定的值,那么函数的值域是有界的;如果函数在正无穷的极限趋近于正无穷,那么函数的值域是无界的。
方法八:利用函数的导数来确定函数的值域。
可以求函数的导数,然后分析导函数的正负性和极值点,从而确定函数的值域。
如果导函数在一些区间内始终大于零,那么函数在该区间上是单调递增的,可以确定函数的值域;如果导函数在一些区间内始终小于零,那么函数在该区间上是单调递减的,可以确定函数的值域。
求函数值域的8种方法带例题嘿,伙计们!今天我们来聊聊一个很有趣的话题——求函数值域的8种方法。
你们知道吗,学习数学的时候,我们经常会遇到一些让我们头疼的问题,比如求一个函数的值域。
别着急,我今天就来教你们8种简单易懂的方法,让你轻松搞定这个难题。
我们来看第一种方法:观察法。
这种方法很简单,就是直接观察函数在哪些区间内取值。
比如,我们来看一个例子:求函数f(x) = x^2在区间[-1, 2]内的值域。
我们可以看到,当x = 0时,f(x) = 0;当x = 1时,f(x) = 1;当x = 2时,f(x) = 4。
所以,这个函数在这个区间内的值域是[0, 4]。
接下来,我们来看第二种方法:图像法。
这种方法需要用到一些图形工具,比如Excel或者Python的matplotlib库。
我们可以通过绘制函数的图像来直观地看到函数在哪些区间内取值。
比如,我们还是以f(x) = x^2为例。
我们可以在Excel中输入x和f(x)的值,然后通过“插入”->“散点图”功能绘制出函数图像。
从图像中,我们可以看出函数在[-1, 0]和[2, +\infty)内都单调递增,所以这两个区间都是函数的值域。
而在[0, 2]内,函数是先单调递减再单调递增的,所以这个区间也是函数的值域。
因此,这个函数的值域是[0, 4]。
第三种方法:分段法。
这种方法适用于那些在某个区间内单调递增或单调递减的函数。
比如,我们还是以f(x) = x^2为例。
我们可以发现,当x在[-1, 0]和[2, +\infty)内时,函数都是单调递增的;而当x在[0, 2]内时,函数是先单调递减再单调递增的。
所以,我们可以将这个问题分成两个子问题:求f(x)在区间[-1, 0]和[2, +\infty)内的值域;以及求f(x)在区间[0, 2]内的值域。
通过分段法,我们可以分别求出这两个子问题的解,然后将它们合并起来得到原问题的解。
因此,这个函数的值域是[0, 4]。
求函数值域的12种方法函数是中学数学的重要的基本概念之一,它与代数式、方程、不等式、三角函数、微积分等内容有着密切的联系,应用十分广泛。
函数的基础性强、概念多,其中函数的定义域、值域、奇偶性等是难点之一,是高考的常见的题型。
下面就函数的值域的求法,举例说如下。
一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
函数值域求法大全HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】函数值域求法十一种在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。
研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。
确定函数的值域是研究函数不可缺少的重要一环。
对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
本文就函数值域求法归纳如下,供参考。
1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1y =的值域。
解:∵0x ≠ ∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域。
解:∵0x ≥故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max =故函数的值域是:[4,8]3. 判别式法例4. 求函数22x 1x x 1y +++=的值域。
解:原函数化为关于x 的一元二次方程(1)当1y ≠时,R x ∈ 解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21 例5. 求函数)x 2(x x y -+=的值域。
解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
可以采取如下方法进一步确定原函数的值域。
∵2x 0≤≤21y ,0y min +==∴代入方程(1) 解得:]2,0[22222x 41∈-+= 即当22222x 41-+=时, 原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例6. 求函数6x 54x 3++值域。
解:由原函数式可得:3y 5y64x --= 则其反函数为:3x 5y 64y --=,其定义域为:53x ≠ 故所求函数的值域为:⎪⎭⎫ ⎝⎛∞-53, 5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
例7. 求函数1e 1e y x x +-=的值域。
解:由原函数式可得:1y 1y e x -+= ∵0e x > ∴01y 1y >-+解得:1y 1<<-故所求函数的值域为)1,1(-例8. 求函数3x sin xcos y -=的值域。
解:由原函数式可得:y 3x cos x sin y =-,可化为: 即1y y3)x (x sin 2+=β+ ∵R x ∈∴]1,1[)x (x sin -∈β+ 即11y y312≤+≤- 解得:42y 42≤≤- 故函数的值域为⎥⎥⎦⎤⎢⎢⎣⎡-42,426. 函数单调性法例9. 求函数)10x 2(1x log 2y 35x ≤≤-+=-的值域。
解:令1x log y ,2y 325x 1-==-则21y ,y 在[2,10]上都是增函数所以21y y y +=在[2,10]上是增函数当x=2时,8112log 2y 33min =-+=- 当x=10时,339log 2y 35max =+= 故所求函数的值域为:⎥⎦⎤⎢⎣⎡33,81 例10. 求函数1x 1x y --+=的值域。
解:原函数可化为:1x 1x 2y -++= 令1x y ,1x y 21-=+=,显然21y ,y 在],1[+∞上为无上界的增函数所以1y y =,2y 在],1[+∞上也为无上界的增函数所以当x=1时,21y y y +=有最小值2,原函数有最大值222=显然0y >,故原函数的值域为]2,0(7. 换元法 通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。
例11. 求函数1x x y -+=的值域。
解:令t 1x =-,)0t (≥则1t x 2+= ∵43)21t (1t t y 22++=++= 又0t ≥,由二次函数的性质可知当0t =时,1y min =当0t →时,+∞→y故函数的值域为),1[+∞例12. 求函数2)1x (12x y +-++=的值域。
解:因0)1x (12≥+-即1)1x (2≤+ 故可令],0[,cos 1x π∈ββ=+ ∴1cos sin cos 11cos y 2+β+β=β-++β= ∵π≤π+β≤π≤β≤4540,0 故所求函数的值域为]21,0[+例13. 求函数1x 2x x x y 243++-=的值域。
解:原函数可变形为:222x 1x 1x 1x 221y +-⨯+⨯=可令β=tg x ,则有β=+-β=+2222cos x 1x 1,2sin x 1x 2 当82k π-π=β时,41y max = 当82k π+π=β时,41y min -= 而此时βtan 有意义。
故所求函数的值域为⎥⎦⎤⎢⎣⎡-41,41 例14. 求函数)1x )(cos 1x (sin y ++=,⎥⎦⎤⎢⎣⎡ππ-∈2,12x 的值域。
解:)1x )(cos 1x (sin y ++=令t x cos x sin =+,则)1t (21x cos x sin 2-= 由)4/x sin(2x cos x sin t π+=+= 且⎥⎦⎤⎢⎣⎡ππ-∈2,12x 可得:2t 22≤≤ ∴当2t =时,223y max +=,当22t =时,2243y += 故所求函数的值域为⎥⎥⎦⎤⎢⎢⎣⎡++223,2243。
例15. 求函数2x 54x y -++=的值域。
解:由0x 52≥-,可得5|x |≤ 故可令],0[,cos 5x π∈ββ=∵π≤β≤0当4/π=β时,104y max +=当π=β时,54y min -= 故所求函数的值域为:]104,54[+-8. 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。
例16. 求函数22)8x ()2x (y ++-=的值域。
解:原函数可化简得:|8x ||2x |y ++-=上式可以看成数轴上点P (x )到定点A (2),)8(B -间的距离之和。
由上图可知,当点P 在线段AB 上时,10|AB ||8x ||2x |y ==++-=当点P 在线段AB 的延长线或反向延长线上时,10|AB ||8x ||2x |y =>++-=故所求函数的值域为:],10[+∞例17. 求函数5x 4x 13x 6x y 22++++-=的值域。
解:原函数可变形为:上式可看成x 轴上的点)0,x (P 到两定点)1,2(B ),2,3(A --的距离之和,由图可知当点P 为线段与x 轴的交点时,43)12()23(|AB |y 22min =+++==, 故所求函数的值域为],43[+∞例18. 求函数5x 4x 13x 6x y 22++-+-=的值域。
解:将函数变形为:2222)10()2x ()20()3x (y -++--+-=上式可看成定点A (3,2)到点P (x ,0)的距离与定点)1,2(B -到点)0,x (P 的距离之差。
即:|BP ||AP |y -=由图可知:(1)当点P 在x 轴上且不是直线AB 与x 轴的交点时,如点'P ,则构成'ABP ∆,根据三角形两边之差小于第三边,有26)12()23(|AB |||'BP ||'AP ||22=-++=<- 即:26y 26<<-(2)当点P 恰好为直线AB 与x 轴的交点时,有26|AB |||BP ||AP ||==- 综上所述,可知函数的值域为:]26,26(-注:由例17,18可知,求两距离之和时,要将函数式变形,使A 、B 两点在x 轴的两侧,而求两距离之差时,则要使A ,B 两点在x 轴的同侧。
如:例17的A ,B 两点坐标分别为:(3,2),)1,2(--,在x 轴的同侧;例18的A ,B 两点坐标分别为(3,2),)1,2(-,在x 轴的同侧。
9. 不等式法 利用基本不等式abc 3c b a ,ab 2b a 3≥++≥+)R c ,b ,a (+∈,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧。
例19. 求函数4)x cos 1x (cos )x sin 1x (sin y 22-+++=的值域。
解:原函数变形为:当且仅当x cot x tan =即当4k x π±π=时)z k (∈,等号成立故原函数的值域为:),5[+∞例20. 求函数x 2sin x sin 2y =的值域。
解:x cos x sin x sin 4y =当且仅当x sin 22x sin 22-=,即当32x sin 2=时,等号成立。
由2764y 2≤可得:938y 938≤≤- 故原函数的值域为:⎥⎥⎦⎤⎢⎢⎣⎡-938,938 10. 一一映射法 原理:因为)0c (d cx b ax y ≠++=在定义域上x 与y 是一一对应的。
故两个变量中,若知道一个变量范围,就可以求另一个变量范围。
例21. 求函数1x 2x31y +-=的值域。
解:∵定义域为⎭⎬⎫⎩⎨⎧->-<21x 21x |x 或 由1x 2x 31y +-=得3y 2y 1x +-= 故213y 2y 1x ->+-=或213y 2y 1x -<+-= 解得23y 23y ->-<或 故函数的值域为⎪⎭⎫ ⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,2323,11. 多种方法综合运用例22. 求函数3x 2x y ++=的值域。