函数图象的割线斜率与切线斜率的关系
- 格式:docx
- 大小:408.33 KB
- 文档页数:7
函数的切线问题一、基础知识: (一)与切线相关的定义1、切线的定义:在曲线的某点A 附近取点B ,并使B 沿曲线不断接近A 。
这样直线AB 的极限位置就是曲线在点A 的切线。
(1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面也可理解为一个动态的过程,让切点A 附近的点向A 不断接近,当与A 距离非常小时,观察直线AB 是否稳定在一个位置上(2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。
例如函数3y x =在()1,1--处的切线,与曲线有两个公共点。
(3)在定义中,点B 不断接近A 包含两个方向,A 点右边的点向左接近,左边的点向右接近,只有无论从哪个方向接近,直线AB 的极限位置唯一时,这个极限位置才能够成为在点A 处的切线。
对于一个函数,并不能保证在每一个点处均有切线。
例如y x =在()0,0处,通过观察图像可知,当0x =左边的点向其无限接近时,割线的极限位置为y x =-,而当0x =右边的点向其无限接近时,割线的极限位置为y x =,两个不同的方向极限位置不相同,故y x =在()0,0处不含切线(4)由于点B 沿函数曲线不断向A 接近,所以若()f x 在A 处有切线,那么必须在A 点及其附近有定义(包括左边与右边)2、切线与导数:设函数()y f x =上点()()00,,A x f x ()f x 在A 附近有定义且附近的点()()00,B x x f x x +∆+∆,则割线AB 斜率为:()()()()()000000AB f x x f x f x x f x k x x x x +∆-+∆-==+∆-∆ 当B 无限接近A 时,即x ∆接近于零,∴直线AB 到达极限位置时的斜率表示为:()()000limx f x x f x k x∆→+∆-=∆,即切线斜率,由导数定义可知:()()()'0000limx f x x f x k f x x∆→+∆-==∆。
5.1.1变化率问题教学设计一、课时教学内容1. 通过求高台跳水运动员在具体时刻的瞬时速度,体会求瞬时速度的一般方法.2.通过求曲线处某点处切线斜率的过程,体会求切线斜率的一般方法.3.理解函数的平均变化率,瞬时变化率的概念.二、课时教学目标1.体会由平均速度过渡到瞬时速度的过程,理解平均速度、瞬时速度的区别和联系.2.掌握瞬时速度的概念,会求解瞬时速度的相关问题.3.掌握割线与切线的定义,会求其斜率.三、教学重点、难点1、教学重点瞬时速度的概念、割线与切线的定义及斜率求法.2、教学难点割线与切线的斜率.四、教学过程设计环节一创设情境,引入课题为了描述现实世界中的运动、变化现象,在数学中引入了函数.刻画静态现象的数与刻画动态现象的函数都是数学中非常重要的概念.在对函数的深入研究中,数学家创立了微积分,这是具有划时代意义的伟大创造,被誉为数学史上的里程碑.微积分的创立与处理四类科学问题直接相关.一是已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度,反之,已知物体的加速度作为时间的函数,求速度与路程;二是求曲线的切线;三是求函数的最大值与最小值;四是求长度、面积、体积和重心等,历史上科学家们对这些问题的兴趣和研究经久不衰,终于在17世纪中叶,牛顿和莱布尼茨在前人探索与研究的基础上,凭着他们敏锐的直觉和丰富的想象力,各自独立地创立了微积分.导数是微积分的核心内容之一,是现代数学的基本概念,蕴含着微积分的基本思想;导数定量地刻画了函数的局部变化,是研究函数增减、变化快慢、最大(小)值等性质的基本方法,因而也是解决诸如增长率、膨胀率、效率、密度、速度、加速度等实际问题的基本工具.在本章,我们将通过丰富的实际背景和具体实例,学习导数的概念和导数的基本运算,体会导数的内涵与思想,感悟极限的思想.通过具体实例感受导数在研究函数和解决实际问题中的作用,体会导数的意义.5.1导数的概念及其意义在必修第一册中,我们研究了函数的单调性,并利用函数单调性等知识定性地研究了一次函数、指数函数、对数函数增长速度的差异,知道“对数增长”是越来越慢的,“指数函数”比“直线上升”快得多.进一步地,能否精确定量地刻画变化速度的快慢呢?下面我们就来研究这个问题.5.1.1变化率问题问题1高台跳水运动员的速度探究:在一次高台跳水运动中,某运动员在运动过程中的重心相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系2() 4.9 4.811h t t t =-++.如何描述运动员从起跳到入水的过程中运动的快慢程度呢?直觉告诉我们,运动员从起跳到入水的过程中,在上升阶段运动得越来越慢,在下降阶段运动得越来越快.我们可以把整个运动时间段分成许多小段,用运动员在每段时间内的平均速度v 近似地描述他的运动状态. 例如,在00.5t ≤≤这段时间里,(0.5)(0)2.35(m /s)0.50h h v -==-;在12t ≤≤这段时间里,(2)(1)9.9(m /s)21h h v -==--一般地,在12t t t ≤≤这段时间里,211221()()4.9() 4.8h t h t v t t t t -==-++-.环节二 观察分析,感知概念 思考:计算运动员在48049t ≤≤这段时间里的平均速度,你发现了什么? 你认为用平均速度描述运动员的运动状态有什么问题吗? 我们发现,运动员在049t ≤≤这段时间里的平均速度为0.显然,在这段时间内,运动员并不处于静止状态.因此,用平均速度不能准确反映运动员在这一时间段里的运动状态. 为了精确刻画运动员的运动状态,需要引入瞬时速度的概念.我们把物体在某一时刻的速度称为瞬时速度(instantaneous velocity ).探究:瞬时速度与平均速度有什么关系?你能利用这种关系求运动员在1s t =s 时的瞬时速度吗?设运动员在0t 时刻附近某一时间段内的平均速度是v ,可以想象,如果不断缩短这一时间段的长度,那么v 将越来越趋近于运动员在0t 时刻的瞬时速度. 用运动变化的观点研究问题是微积分的重要思想.为了求运动员在1t =时的瞬时速度,我们在1t =之后或之前,任意取一个时刻1t +∆,t ∆是时间改变量,可以是正值,也可以是负值,但不为0.当0t ∆>时,1t +∆在1之后,当0t ∆<时,1t +∆在1之前.当0t ∆>时,把运动员在时间段[1,1]t +∆内近似看成做匀速直线运动,计算时间段[1,1]t +∆内的平均速度v ,用平均速度v 近似表示运动员在1t =时的瞬时速度.当0t ∆<时,在时间段[1,1]t +∆内可作类似处理.为了提高近似表示的精确度,我们不断缩短时间间隔,得到如下表格(表5.1-1).表5.1-1当0t ∆<时,在时间段[1,1]t +∆内当0t ∆>时,在时间段[1,1]t +∆内t ∆2(1)(1)1(1)4.9()5 4.95h h t v t t tt t-+∆=-+∆∆+∆==-∆--∆t ∆2(1)(1)(1)14.9()5 4.95h t h v t t tt t+∆-=+∆--∆-∆==-∆-∆-0.01 -4.951 0.01 -5.049 -0.001 -4.9951 0.001 -5.0049 -0.0001 -4.99951 0.0001 -5.00049 -0.00001 -4.999951 0.00001 -5.000049 -0.000001-4.9999951 0.000001-5.0000049……观察:给出t ∆更多的值,利用计算工具计算对应的平均速度v 的值.当t ∆无限趋近于0时,平均速度v 有什么变化趋势?1时,平均速度v 都无限趋近于5-.事实上,由(1)(1)4.95(1)1h t h v t t +∆-==-∆-+∆-可以发现,当t ∆无限趋近于0时, 4.9t -∆也无限趋近于0,所以v 无限趋近于5-.这与前面得到的结论一致.数学中,我们把5-叫做“当t ∆无限趋近于0时,(1)(1)h t h v t+∆-=∆的极限”,记为0(1)(1)lim5t h t h t ∆→+∆-=-∆.从物理的角度看,当时间间隔t ∆无限趋近于0时,平均速度v 就无限趋近于1t =时的瞬时速度.因此,运动员在1s t =时的瞬时速度(1)5m /s v =-. 思考:(1)求运动员在2s t =时的瞬时速度;(2)如何求运动员从起跳到入水过程中在某一时刻0t 的瞬时速度? 解:(1)运动员在2s t =时的瞬时速度2200(2)(2)[ 4.9(2) 4.8()11][ 4.92 4.8211](2)lim lim (2)2t t h t h t t t v t t ∆→∆→+∆--+∆++∆+--⨯+⨯+==+∆-∆lim( 4.914.8)14.8t t ∆→=-∆+=.(2)运动员从起跳到入水过程中在某一时刻0t 的瞬时速度2200000000000()()[ 4.9() 4.8()11][ 4.9 4.811]()lim lim()t t h t t h t t t t t t t v t t t t t∆→∆→+∆--+∆++∆+--++==+∆-∆000lim( 4.99.8 4.8)9.8 4.8t t t t ∆→=-∆-+=-+.1.求问题1中高台跳水运动员在0.5s t =时的瞬时速度.1.【解析】22(0.5)(0.5)[ 4.9(0.5) 4.8(0.5)11]( 4.90.5 4.80.511)h t h t t +∆-=-+∆++∆+--⨯+⨯+24.9()0.1t t =-∆-∆,所以,00(0.5)(0.5)(0.5)limlim(0.1 4.9)0.1(m /s)t t h t h v t t∆→∆→+∆-==--∆=-∆.所以,高台跳水运动员在0.5s t =时的瞬时速度为0.1m /s -. 2.火箭发射s t 后,其高度(单位:m )为2()0.9h t t =,求: (1)在12t ≤≤这段时间里,火箭爬高的平均速度; (2)发射后第10s 时,火箭爬高的瞬时速度. 2.【解析】(1)因为22(2)(1)0.920.91 2.7(m /s)21h h v -==⨯-⨯=-,所以在12t ≤≤这段时间里,火箭爬高的平均速度为2.7m /s ;(2)因为222000(10)(10)0.9(10)0.9100.9()18lim lim lim (10)10t t t h t h t t t t t t ∆→∆→∆→+∆-⨯+∆-⨯∆+∆==+∆-∆∆ 0lim(0.11898)t t ∆→=∆+=.所以发射后第10s 时,火箭爬高的瞬时速度18m /s .3.一个小球从5 m 的高处自由下落,其位移y (单位:m )与时间t (单位:s )之间的关系为2() 4.9y t t =-.求1s t =时小球的瞬时速度.3.【解析】由题意知:222000()() 4.9() 4.99.8 4.9()lim lim limt t t y t t y t t t t t t t t t t∆→∆→∆→+∆--+∆+-⋅∆-∆==∆∆∆ 0lim(9.8 4.9)9.8t t t t ∆→=--∆=-,当1s t =时,小球的瞬时速度为s 9.8m /-.环节四 辨析理解,深化概念 问题2抛物线的切线的斜率我们知道,如果一条直线与一个圆只有一个公共点,那么这条直线与这个圆相切.对于一般的曲线C ,如何定义它的切线呢?下面我们以抛物线2()f x x =为例进行研究. 探究:你认为应该如何定义抛物线2()f x x =在点0(1,1)P 处的切线?与研究瞬时速度类似,为了研究抛物线2()f x x =在点0(1,1)P 处的切线,我们通常在点0(1,1)P 的附近任取一点2(,)P x x ,考察抛物线2()f x x =的割线0P P 的变化情况.观察:如图5.1-1,当点2(,)P x x 沿着抛物线2()f x x =趋近于点0(1,1)P 时,割线0P P 有什么变化趋势?我们发现,当点P 无限趋近于点0P 时,割线0P P 无限趋近于一个确定的位置,这个确定位置的直线0P T 称为抛物线2()f x x =在点0(1,1)P 处的切线. 环节五 概念应用,巩固内化探究我们知道,斜率是确定直线的一个要素.如何求抛物线2()f x x =在点0(1,1)P 处的切线0P T 的斜率0k 呢?从上述切线的定义可见,抛物线2()f x x =在点0(1,1)P 处的切线0P T 的斜率与割线0P P 的斜率有内在联系.记1x x ∆=-①,则点P 的坐标是2(1,(1))x x +∆+∆.于是,割线0P P 的斜率2()(1)(1)121(1)1f x f x k x x x -+∆-===∆+-+∆-.①x ∆可以是正值,也可以是负值,但不为0.我们可以用割线0P P 的斜率k 近似地表示切线0P T 的斜率0k ,并且可以通过不断缩短横坐标间隔x ∆来提高近似表示的精确度,得到如下表格(表5.1-2).表5.1-20x ∆< 0x ∆>x ∆ 2k x =∆+ x ∆ 2k x =∆+ -0.01 1.99 0.01 2.01 -0.001 1.999 0.001 2.001 -0.00011.99990.00012.0001OxyP 0PT2()f x x =-0.00001 1.99999 0.00001 2.00001 -0.0000011.9999990.0000012.000001……观察:利用计算工具计算更多割线0P P 的斜率k 的值,当x ∆无限趋近于0时,割线0P P 的斜率k 有什么变化趋势?近于1时,割线0P P 的斜率k 都无限趋近于2.事实上,由(1)(1)2f x f k x x+∆-==∆+∆可以直接看出,当x ∆无限趋近于0时,2x ∆+无限趋近于2.我们把2叫做“当x ∆无限趋近于0时,(1)(1)f x f k x+∆-=∆的极限”,记为(1)(1)lim2x f x f x∆→+∆-=∆.从几何图形上看,当横坐标间隔x ∆无限变小时,点P 无限趋近于点0P ,于是割线0P P 无限趋近于点0P 处的切线0P T .这时,割线0P P 的斜率k 无限趋近于点0P 处的切线0P T 的斜率0k .因此,切线0P T 的斜率02k =.思考:观察问题1中的函数2() 4.9 4.811h t t t =-++的图象(图5.1-2),平均速度(1)(1)(1)1h t h v t +∆-=+∆-的几何意义是什么?瞬时速度(1)v 呢?环节六 归纳总结,反思提升问题:请同学们回顾本节课的学习内容,并回答下列问题: 1. 本节课学习的概念有哪些?2() 4.9 4.811h t t t =-++(1,(1))h (1,(1))t h t +∆+∆图5.1-2(1) 平均速度、瞬时速度的概念及其关系。
切线与割线斜率关系的深度探析1.问题提出文【1】得出了如下的结论:设()y f x =是定义在(,)a b 上的可导函数,曲线:()C y f x =上任意两个不同点的连线(称为割线)斜率的取值区间为P ,曲线C 上任意一点处的切线斜率的取值范围为Q ,则P Q ⊆,而且Q 中元素比P 中元素至多多了区间P 的端点值. 并指出,求解1212()()f x f x x x -∨-的恒成立问题,可将1212()()f x f x x x --转化为()f x ',用导数法求解.设用导数法求得参数取值区间为D ,然后再检验区间D 的端点值是否符合题意. 例如,已知21()2ln (0)f x x x x xλ=++>,对于任意两个不等的正数12,x x ,恒有1212()()f x f x x x ''->-,求λ的取值范围(四川2006高考题变式). 【解】设21()()4g x f x x x x λ'==-+,322()4g x x xλ'=+-,依条件1212()()1g x g x x x ->-,由()1g x '>得32241x x λ+->,以1x 替换x ,则有32241x x λ-+>对任意0x >恒成立.①当0λ≤时,显然成立;②当0λ>时,令32()24(0)h x x x x λ=-+>,2()62h x x x λ'=-,令()03h x x λ'=⇒=.min ()()4327h x h λλ∴==-+. 若min ()0h x ≤,则m in ()0h x =,此时32241x xλ-+>对任意0x >不能恒成立,故必有min ()0h x >,此时3min min ()()427h x h x λ==-+,依条件有33412704027λλλ⎧-+>⎪⎪⇒<<⎨⎪-+>⎪⎩. 综上得λ<.下面检验端点λ=是否符合题意.当λ=时,1212()()f x f x x x ''->-12221241x x x x +⇔+>1212123x x x x x x +⇔+>或1212125x x x x x x ++<. 由于1212121212333x x x x x x x x x x ++>=≥(当12x x =时取等号),故λ=符合题意,因而λ=反思上述解法,总感到美中不足.因为在检验λ=验过程不轻松,且不容易想到.那么是否有一种融解答与检验为一体的导数解法呢?要回答这个问题,关键得弄清如下实质问题:何时曲线的割线斜率取值范围等于切线斜率的取值范围,即P Q =?何时P Q Ø,且Q 比P 多了区间P 的端点值?这些端点值究竟是何值?曲线上与这些端点值对应点的位置在哪里?2.结论构建定理 设()y f x =是定义在连通开区间()I I R ⊆上的二阶可导函数,其对应曲线C 上任意两点的连线斜率的取值集合为P ,曲线C 上任意一点处的切线斜率取值集合为Q ,则(1)P Q ⊆;(2)当曲线C 不存在拐点时,P Q =;(3)P Q ⇔Ø曲线上存在这样的拐点,使得平行于该拐点处切线的任意直线与曲线C 至多有一个交点;(4)在(3)的前提下,设所有这样的拐点处的切线斜率组成的集合为S ,则Q P S =ð. 引理1 函数()y f x =在(,)a b 内二阶可导,则曲线()y f x =在(,)a b 内上凸(或下凸)的(,)x a b ⇔∀∈,()0f x ''≤(或0≥),且在(,)a b 的任何子区间上()f x ''不恒为0.引理2 曲线的向上凸与向下凸部分的分界点称为该曲线的拐点.若()y f x =在一个连通开区间I 上二阶可导,则00(,())x f x 为曲线()y f x =拐点的必要条件是0()0f x ''=.下面给出定理的证明.(1)12,x x I ∀∈,设12x x <,由于()f x 在[]12,x x 上连续,在12(,)x x 内可导,由拉格朗日中值定理可得,在开区间(,)a b 内至少存在一点ξ,使1212()()()f x f x f x x ξ-'=-,故P Q ⊆. (2) 由于曲线C 不存在拐点,故曲线C 的凸性确定.不妨设下凸.设l 是曲线C 的任意一条切线,则C 必在l 的上方,将l 向上平移很小一段距离至直线m ,则m 必与C 交于两个不同的点,E F ,割线EF 的斜率等于l 的斜率,故Q P ⊆,但由(1)知P Q ⊆,故P Q =.(3)一方面,因曲线C 存在这样的拐点,使平行于该拐点处切线的任意直线与C 至多有一个交点,故曲线C 上任意两点的连线斜率都不等于该拐点处切线的斜率,P Q ∴Ø,充分性得证.另一方面,由于P Q Ø,故k Q ∃∈,但k P ∉,令曲线在点00(,())x f x 处的切线为l ,其斜率为k ,若00(,())x f x 不是拐点,则必存在开区间0I I ⊆,使 得00x I ∈,且曲线在0I 上凸性确定.由(2)的证明知,曲线在0I 上必存在某两点的割线斜率等于k ,故k P ∈与k P ∉矛盾,故00(,())x f x 一定是拐点,又k P ∉,故曲线C 不存在与l 平行的割线,也即平行于拐点00(,())x f x 处切线的任意直线与曲线至多有一个交点.必要性得证.(4)由(3) 的证明易知结论成立.由定理知,对于二阶可导曲线:()C y f x =,有①当且仅当曲线C 不存在拐点,或对曲线C 的每一个拐点,都存在平行于该拐点处切EF l E m线的直线与曲线C 至少有两个交点时,P Q =.②可导曲线C 的切线斜率的取值区间Q 至多比割线斜率的取值区间P 多了区间P 的端点值.这些端点值就是定理结论(3)条件中的拐点处切线的斜率.对于只有一个拐点的二阶可导函数,有如下的推论 当曲线C 只有一个拐点A 00(,())x f x 时,必有P Q Ø,而且{}0()Q P f x '=ð.证明:根据定理结论(3),只需要证明斜率为0()k f x '=的任意直线与曲线C 至多有一个交点即可.设斜率为0()k f x '=的任意一条直线为()g x kx b =+.考察方程()()0f x g x -=在I 上解的个数.令()()()()h x f x g x f x kx b =-=--,0()()()()h x f x k f x f x ''''=-=-.因为曲线C 只有一个拐点00(,())A x f x ,故在拐点的两侧曲线C 的凸性相反.不妨设左侧上凸,右侧下凸.则当0x x <时,()0f x ''<,故()f x ' ,0()()()0h x f x f x '''=->;当0x x >时,()0f x ''>,故()f x ' ,0()()()0h x f x f x '''=->.故()h x 在I 上 ,故()()0f x g x -=至多有一解,即直线()g x kx b =+与曲线C 的交点至多一个,根据定理(3)(4)推论得证.定理及推论反映了曲线切线斜率与割线斜率之间的具体关系,为借助切线斜率求解割线斜率范围问题提供了一种新方法.【例】已知曲线2:3()x x C y e e x R =-∈任意不同两点的连线斜率为k ,求k 的取值范围. 解 22399232()488xx x y e e e '=-=--≥-,又243(43)x x x x y e e e e ''=-=-. 当3ln 4x <时0y ''<,曲线上凸;当3ln 4x >时0y ''>,曲线下凸,故曲线在3ln 4x =处是一个拐点,而3498x y ='=-,根据推论,k 的取值范围为9(,)8-+∞. 曹军,《中学数学杂志》2010年11月.【附】文【1】主要结论1212()()f x f x x x -∨-定理 设()y f x =在(,)a b 内可导,连结其图象上任意两点,A B 的割线斜率为AB k ,图象上任意一点处的切线斜率为k ,则(1) 若k m >,则AB k m >;若k m ≥,则AB k m >或AB k m ≥.(2)若AB k m >,则k m >或k m ≥;若AB k m ≥,则k m ≥.证明:设11(,())A x f x ,22(,())B x f x 是曲线()y f x =图象上任意不同的两点.(1)不妨设12x x <,由拉格朗日中值定理可知,在12(,)x x 内至少存在一点ξ,使1212()()()f x f x f x x ξ-'=-. 由于k m >,故()f m ξ'>,故AB k m >.其余类似.(2)设21(0)x x x x =+∆∆≠,211121()()()()AB f x f x f x x f x k m x x x-+∆-==>-∆,则1100()()lim lim x x f x x f x m m x ∆→∆→+∆-≥=∆,即()f x m '≥.其余类似. A。
第1节 导数的概念及其意义要点一:变化率问题和导数的概念知识点一 瞬时速度 瞬时速度的定义(1)物体在某一时刻的速度称为瞬时速度.(2)一般地,设物体的运动规律是s =s (t ),则物体在t 0到t 0+Δt 这段时间内的平均速度为 Δs Δt =s (t 0+Δt )-s (t 0)Δt .如果Δt 无限趋近于0时,Δs Δt 无限趋近于某个常数v ,我们就说当Δt 无限趋近于0时,ΔsΔt 的极限是v ,这时v 就是物体在时刻t =t 0时的瞬时速度即:v =lim Δt →0ΔsΔt =lim Δt →0 s (t 0+Δt )-s (t 0)Δt. 知识点二 函数的平均变化率对于函数y =f (x ),设自变量x 从x 0变化到x 0+Δx ,相应地,函数值y 就从f (x 0)变化到f (x 0+Δx ).这时,x 的变化量为Δx ,y 的变化量为Δy =f (x 0+Δx )-f (x 0).我们把比值ΔyΔx ,即Δy Δx =f (x 0+Δx )-f (x 0)Δx叫做函数y =f (x )从x 0到x 0+Δx 的平均变化率. 知识点三 函数在某点处的导数如果当Δx →0时,平均变化率Δy Δx 无限趋近于一个确定的值,即ΔyΔx 有极限,则称y =f (x )在x =x 0处可导,并把这个确定的值叫做y =f (x )在x =x 0处的导数(也称为瞬时变化率), 记作f ′(x 0)或0=|x x y',即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx.1.在平均变化率中,函数值的增量为正值.( × )2.瞬时变化率是刻画某函数值在区间[x 1,x 2]上变化快慢的物理量.( × ) 3.函数y =f (x )在x =x 0处的导数值与Δx 的正、负无关.( √ )4.设x =x 0+Δx ,则Δx =x -x 0,当Δx 趋近于0时,x 趋近于x 0,因此,f ′(x 0)= lim Δx →0 f (x 0+Δx )-f (x 0)Δx =0lim x x → f (x )-f (x 0)x -x 0.( √ )一、函数的平均变化率例1 (1)函数y =1x 从x =1到x =2的平均变化率为( )A .-1B .-12 C .-2 D .2解析 平均变化率为Δy Δx =12-12-1=-12.(2)已知函数y =3x -x 2在x 0=2处的增量为Δx =0.1,则ΔyΔx的值为( ) A .-0.11 B .-1.1 C .3.89 D .0.29解析 ∵Δy =f (2+0.1)-f (2)=(3×2.1-2.12)-(3×2-22)=-0.11,∴Δy Δx =-0.110.1=-1.1.(3)汽车行驶的路程s 和时间t 之间的函数图象如图,在时间段[t 0,t 1],[t 1,t 2],[t 2,t 3]上的平均速度分别为v 1,v 2,v 3,则三者的大小关系为__________________.解析 由平均变化率的几何意义知:v 1=k OA ,v 2=k AB ,v 3=k BC , 由图象知:k OA <k AB <k BC ,即v 1<v 2<v 3. 反思感悟 求平均变化率的主要步骤 (1)先计算函数值的改变量Δy =f (x 2)-f (x 1). (2)再计算自变量的改变量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.跟踪训练1 已知函数f (x )=3x 2+5,求f (x ):(1)从0.1到0.2的平均变化率;(2)在区间[x 0,x 0+Δx ]上的平均变化率.解 (1)因为f (x )=3x 2+5,所以从0.1到0.2的平均变化率为3×0.22+5-3×0.12-50.2-0.1=0.9.(2)f (x 0+Δx )-f (x 0)=3(x 0+Δx )2+5-(3x 20+5)=3x 20+6x 0Δx +3(Δx )2+5-3x 20-5=6x 0Δx +3(Δx )2.函数f (x )在区间[x 0,x 0+Δx ]上的平均变化率为6x 0Δx +3(Δx )2Δx=6x 0+3Δx .二、求瞬时速度例2 一做直线运动的物体,其位移s 与时间t 的关系是s (t )=3t -t 2. (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度.解 (1)当t =0时的速度为初速度.在0时刻取一时间段[0,0+Δt ],即[0,Δt ], ∴Δs =s (Δt )-s (0)=[3Δt -(Δt )2]-(3×0-02)=3Δt -(Δt )2,Δs Δt =3Δt -(Δt )2Δt =3-Δt ,lim Δt →0 Δs Δt =lim Δt →0 (3-Δt )=3.∴物体的初速度为3. (2)取一时间段[2,2+Δt ],∴Δs =s (2+Δt )-s (2)=[3(2+Δt )-(2+Δt )2]-(3×2-22)=-Δt -(Δt )2, Δs Δt =-Δt -(Δt )2Δt =-1-Δt ,lim Δt →0 Δs Δt =lim Δt →0 (-1-Δt )=-1, ∴当t =2时,物体的瞬时速度为-1. 反思感悟 求运动物体瞬时速度的三个步骤 (1)求位移改变量Δs =s (t 0+Δt )-s (t 0). (2)求平均速度v =Δs Δt.(3)求瞬时速度,当Δt 无限趋近于0时,Δs Δt 无限趋近于的常数v 即为瞬时速度,即v =lim Δt →0 ΔsΔt . 跟踪训练2 (1)一物体的运动方程为s =7t 2-13t +8,且在t =t 0时的瞬时速度为1,则t 0=________.解析 因为Δs =7(t 0+Δt )2-13(t 0+Δt )+8-7t 20+13t 0-8=14t 0·Δt -13Δt +7(Δt )2,所以lim Δt →0ΔsΔt =lim Δt →0(14t 0-13+7Δt )=14t 0-13=1,所以t 0=1. (2)一质点M 按运动方程s (t )=at 2+1做直线运动(位移单位:m ,时间单位:s),若质点M 在t =2 s 时的瞬时速度为8 m/s ,求常数a 的值.解 质点M 在t =2 s 时的瞬时速度即为函数在t =2处的瞬时变化率.∵质点M 在t =2附近的平均变化率为Δs Δt =s (2+Δt )-s (2)Δt =a (2+Δt )2-4aΔt =4a +a Δt ,∴lim Δt →0ΔsΔt=4a =8,即a =2. 三、求函数在某点处的导数例3 求函数y =x -1x在x =1处的导数.解 ∵Δy =(1+Δx )-11+Δx -⎝⎛⎭⎫1-11=Δx +Δx 1+Δx ,∴Δy Δx =Δx +Δx 1+Δx Δx =1+11+Δx ,∴lim Δx →0 Δy Δx =limΔx →0⎝⎛⎭⎫1+11+Δx =2.从而y ′|x =1=2.反思感悟 用导数定义求函数在某一点处的导数的步骤 (1)求函数的增量Δy =f (x 0+Δx )-f (x 0).(2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx .(3)求极限lim Δx →0Δy Δx. 跟踪训练3 (1)f (x )=x 2在x =1处的导数为( ) A .2x B .2 C .2+Δx D .1解析 lim Δx →0 ΔyΔx =lim Δx →0 f (1+Δx )-f (1)Δx =lim Δx →0 1+2Δx +(Δx )2-1Δx =lim Δx →0 (2+Δx )=2. (2)已知f (x )=2x ,且f ′(m )=-12,则m 的值等于( )A .-4B .2C .-2D .±2解析 因为Δy Δx =f (m +Δx )-f (m )Δx =2m +Δx -2mΔx =-2m (m +Δx ),所以f ′(m )=lim Δx →0 -2m (m +Δx )=-2m 2,所以-2m 2=-12,m 2=4,解得m =±2.要点二:导数的几何意义知识点一 导数的几何意义 1.割线斜率与切线斜率设函数y =f (x )的图象如图所示,直线AB 是过点A (x 0,f (x 0))与点B (x 0+Δx ,f (x 0+Δx ))的一条割线,此割线的斜率是Δy Δx =f (x 0+Δx )-f (x 0)Δx.点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的极限位置为直线AD ,直线AD 叫做此曲线在点A 处的切线.于是,当Δx →0时,割线AB 的斜率无限趋近于过点A 的切线AD 的斜率k ,即k =f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx.2.导数的几何意义函数y =f (x )在点x =x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率. 也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是f ′(x 0).相应地,切线方程为 y -f (x 0)=f ′(x 0)(x -x 0). 知识点二 导函数的定义从求函数f (x )在x =x 0处导数的过程可以看出,当x =x 0时,f ′(x 0)是一个唯一确定的数.这样,当x 变化时,y =f ′(x )就是x 的函数,我们称它为y =f (x )的导函数(简称导数). y =f (x )的导函数记作f ′(x )或y ′,即f ′(x )=y ′=lim Δx →0 f (x +Δx )-f (x )Δx.特别提醒:区别联系f ′(x 0)f ′(x 0)是具体的值,是数值 在x =x 0处的导数f ′(x 0)是导函数f ′(x )在x =x 0处的函数值,因此求函数在某一点处的导数,一般先求导函数,再计算导函数在这一点的函数值f ′(x )f ′(x )是函数f (x )在某区间I 上每一点都存在导数而定义的一个新函数,是函数1.函数在某点处的导数f ′(x 0)是一个常数.( √ )2.函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值.( √ ) 3.函数f (x )=0没有导数.( × )4.直线与曲线相切,则直线与该曲线只有一个公共点.( × )一、求切线方程例1 已知曲线C :y =f (x )=x 3+x . (1)求曲线C 在点(1,2)处切线的方程;(2)设曲线C 上任意一点处切线的倾斜角为α,求α的取值范围. 解 因为Δy Δx =(x +Δx )3+(x +Δx )-x 3-xΔx =3x 2+3x ·Δx +1+(Δx )2,所以f ′(x )=lim Δx →0ΔyΔx =lim Δx →0[3x 2+3x ·Δx +1+(Δx )2]=3x 2+1. (1)曲线C 在点(1,2)处切线的斜率为k =f ′(1)=3×12+1=4.所以曲线C 在点(1,2)处的切线方程为y -2=4(x -1),即4x -y -2=0.(2)曲线C 在任意一点处切线的斜率为k =f ′(x )=tan α, 所以tan α=3x 2+1≥1.又α∈[0,π),所以α∈⎣⎡⎭⎫π4,π2. 反思感悟 求曲线在某点处的切线方程的步骤跟踪训练1 曲线y =x 2+1在点P (2,5)处的切线与y 轴交点的纵坐标是________. 解析 ∵y ′|x =2=lim Δx →0 Δy Δx =lim Δx →0 (2+Δx )2+1-22-1Δx =lim Δx →0 (4+Δx )=4,∴k =y ′|x =2=4. ∴曲线y =x 2+1在点P (2,5)处的切线方程为y -5=4(x -2),即y =4x -3. ∴切线与y 轴交点的纵坐标是-3. 二、求切点坐标例2 过曲线y =x 2上某点P 的切线满足下列条件,分别求出P 点.(1)平行于直线y =4x -5;(2)垂直于直线2x -6y +5=0;(3)与x 轴成135°的倾斜角. 解 f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0 (x +Δx )2-x 2Δx =2x ,设P (x 0,y 0)是满足条件的点. (1)∵切线与直线y =4x -5平行,∴2x 0=4,x 0=2,y 0=4,即P (2,4)是满足条件的点. (2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,得x 0=-32,y 0=94,即P ⎝⎛⎭⎫-32,94是满足条件的点. (3)∵切线与x 轴成135°的倾斜角,∴其斜率为-1.即2x 0=-1,得x 0=-12,y 0=14,即P ⎝⎛⎭⎫-12,14是满足条件的点. 反思感悟 求切点坐标的一般步骤 (1)设出切点坐标.(2)利用导数或斜率公式求出斜率.(3)利用斜率关系列方程,求出切点的横坐标.(4)把横坐标代入曲线或切线方程,求出切点纵坐标.跟踪训练2 已知曲线f (x )=x 2-1在x =x 0处的切线与曲线g (x )=1-x 3在x =x 0处的切线互相平行,求x 0的值.解 对于曲线f (x )=x 2-1,k 1=lim Δx →0 f (x 0+Δx )-f (x 0)Δx=2x 0.对于曲线g (x )=1-x 3,k 2=lim Δx →0g (x 0+Δx )-g (x 0)Δx =lim Δx →0 1-(x 0+Δx )3-(1-x 30)Δx=-3x 20. 由题意得2x 0=-3x 20,解得x 0=0或x 0=-23.经检验,均符合题意. 三、利用图象理解导数的几何意义例3 已知函数f (x )的图象如图所示,则下列不等关系中正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(2)<f (3)-f (2)<f ′(3)C .0<f ′(3)<f (3)-f (2)<f ′(2)D .0<f (3)-f (2)<f ′(2)<f ′(3) 解析 k AB =f (3)-f (2)3-2=f (3)-f (2), f ′(2)为函数f (x )的图象在点B (2,f (2))处的切线的斜率, f ′(3)为函数f (x )的图象在点A (3,f (3))处的切线的斜率, 根据图象可知0<f ′(3)<f (3)-f (2)<f ′(2).反思感悟 导数的几何意义就是切线的斜率,所以比较导数大小的问题可以用数形结合思想来解决.(1)曲线f (x )在x 0附近的变化情况可通过x 0处的切线刻画.f ′(x 0)>0说明曲线在x 0处的切线的斜率为正值,从而得出在x 0附近曲线是上升的;f ′(x 0)<0说明在x 0附近曲线是下降的. (2)曲线在某点处的切线斜率的大小反映了曲线在相应点处的变化情况,由切线的倾斜程度,可以判断出曲线升降的快慢.跟踪训练3 若函数y =f (x )的导函数在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是( )解析 依题意,y =f ′(x )在[a ,b ]上是增函数,则在函数f (x )的图象上,各点的切线的斜率随着x 的增大而增大,观察四个选项的图象,只有A 满足.过某点的曲线的切线典例 求过点(-1,0)与曲线y =x 2+x +1相切的直线方程.解 设切点为(x 0,x 20+x 0+1),则切线的斜率为k =lim Δx →0 (x 0+Δx )2+(x 0+Δx )+1-(x 20+x 0+1)Δx=2x 0+1. 又k =(x 20+x 0+1)-0x 0-(-1)=x 20+x 0+1x 0+1,∴2x 0+1=x 20+x 0+1x 0+1.解得x 0=0或x 0=-2.当x 0=0时,切线斜率k =1,过(-1,0)的切线方程为y -0=x +1,即x -y +1=0.当x 0=-2时,切线斜率k =-3,过(-1,0)的切线方程为y -0=-3(x +1),即3x +y +3=0. 故所求切线方程为x -y +1=0或3x +y +3=0.[素养提升] (1)首先要理解过某点的含义,切线过某点,这点不一定是切点. (2)过点(x 1,y 1)与曲线y =f (x )相切的直线方程的求法步骤 ①设切点(x 0,f (x 0)). ②建立方程f ′(x 0)=y 1-f (x 0)x 1-x 0.③解方程得k =f ′(x 0),x 0,y 0,从而写出切线方程.(3)本例考查了切线的含义及切线方程的求法.体现了直观想象和数学运算的数学核心素养.变化率问题和导数的概念1.已知函数y =2+1x ,当x 由1变到2时,函数的增量Δy 等于( )A.12 B .-12 C .1 D .-1 答案 B解析 Δy =⎝⎛⎭⎫2+12-(2+1)=-12. 2.函数f (x )=5x -3在区间[a ,b ]上的平均变化率为( ) A .3 B .4 C .5 D .6 答案 C解析 平均变化率为f (b )-f (a )b -a =5(b -a )b -a=5.3.一质点的运动方程为s =5-3t 2,若该质点在时间段[1,1+Δt ]内相应的平均速度为-3Δt -6,则该质点在t =1时的瞬时速度是( ) A .-3 B .3 C .6 D .-6 答案 D解析 由平均速度和瞬时速度的关系可知,质点在t =1时的瞬时速度为lim Δt →0(-3Δt -6)=-6. 4.已知f (x )=x 2-3x ,则f ′(0)等于( ) A .Δx -3 B .(Δx )2-3Δx C .-3 D .0答案 C解析 f ′(0)=lim Δx →0 (0+Δx )2-3(0+Δx )-02+3×0Δx =lim Δx →0 (Δx )2-3Δx Δx=lim Δx →0 (Δx -3)=-3. 5.(多选)设f (x )=t 2x ,若f ′(1)=4,则t 的值是( ) A .-2 B .-1 C .1 D .2 答案 AD解析 因为f ′(1)=lim Δx →0 t 2(1+Δx )-t 2Δx =t 2=4, 所以t =±2.6.函数f (x )=x 2-x 在区间[-2,t ]上的平均变化率是2,则t =________. 答案 5解析 因为函数f (x )=x 2-x 在区间[-2,t ]上的平均变化率是2, 所以f (t )-f (-2)t -(-2)=(t 2-t )-[(-2)2-(-2)]t +2=2,即t 2-t -6=2t +4, 从而t 2-3t -10=0, 解得t =5或t =-2(舍去).7.一物体位移s 和时间t 的关系是s =2t -3t 2,则物体的初速度是________. 答案 2解析 由题意知, lim Δt →0s (t +Δt )-s (t )Δt=lim Δt →0 2(t +Δt )-3(t +Δt )2-2t +3t 2Δt =lim Δt →0 2Δt -6t Δt -3(Δt )2Δt =2-6t . 当t =0时,v =2-6×0=2, 即物体的初速度是2.8.若可导函数f (x )的图象过原点,且满足lim Δx →0 f (Δx )Δx=-1,则f ′(0)=__________. 答案 -1解析 ∵f (x )的图象过原点,∴f (0)=0, ∴f ′(0)=lim Δx →0f (0+Δx )-f (0)Δx=lim Δx →0 f (Δx )Δx =-1. 9.若函数f (x )=ax 2+c ,且f ′(1)=2,求a 的值. 解 ∵f (1+Δx )-f (1)=a (1+Δx )2+c -a -c =a (Δx )2+2a Δx , ∴f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx=lim Δx →0 a (Δx )2+2a (Δx )Δx=lim Δx →0(a Δx +2a )=2a ,即2a =2, ∴a =1.10.某物体按照s (t )=3t 2+2t +4(s 的单位:m)的规律做直线运动,求自运动开始到4 s 时物体的运动的平均速度和4 s 时的瞬时速度. 解 自运动开始到t s 时,物体运动的平均速度 v (t )=s (t )t =3t +2+4t,故前4 s 物体的平均速度为v (4)=3×4+2+44=15(m/s).由于Δs =3(t +Δt )2+2(t +Δt )+4-(3t 2+2t +4) =(2+6t )Δt +3(Δt )2. ΔsΔt =2+6t +3·Δt , lim Δt →0ΔsΔt=2+6t , 当t =4时,lim Δt →0ΔsΔt=2+6×4=26,所以4 s 时物体的瞬时速度为26m/s.11.(多选)如图显示物体甲、乙在时间0到t 1范围内,路程的变化情况,下列说法正确的是( )A .在0到t 0范围内,甲的平均速度大于乙的平均速度B .在0到t 0范围内,甲的平均速度等于乙的平均速度C .在t 0到t 1范围内,甲的平均速度大于乙的平均速度D .在t 0到t 1范围内,甲的平均速度小于乙的平均速度答案 BC解析 在0到t 0范围内,甲、乙的平均速度都为v =s 0t 0,故A 错误,B 正确;在t 0到t 1范围内,甲的平均速度为s 2-s 0t 1-t 0,乙的平均速度为s 1-s 0t 1-t 0.因为s 2-s 0>s 1-s 0,t 1-t 0>0,所以s 2-s 0t 1-t 0>s 1-s 0t 1-t 0,故C 正确,D 错误. 12.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大答案 B解析 由题图可知,A ,B 两机关用电量在[0,t 0]上的平均变化率都小于0,由平均变化率的几何意义知,A 机关用电量在[0,t 0]上的平均变化率小于B 机关的平均变化率,从而A 机关比B 机关节能效果好.13.设函数f (x )可导,则lim Δx →0 f (1+Δx )-f (1)3Δx等于( ) A .f ′(1) B .3f ′(1) C.13f ′(1) D .f ′(3) 答案 C解析 lim Δx →0 f (1+Δx )-f (1)3Δx =13lim Δx →0 f (1+Δx )-f (1)Δx =13f ′(1). 14.如图所示,函数y =f (x )在[x 1,x 2],[x 2,x 3],[x 3,x 4]这几个区间内,平均变化率最大的一个区间是________.答案 [x 3,x 4]解析 由平均变化率的定义可知,函数y =f (x )在区间[x 1,x 2],[x 2,x 3],[x 3,x 4]上的平均变化率分别为f (x 2)-f (x 1)x 2-x 1,f (x 3)-f (x 2)x 3-x 2,f (x 4)-f (x 3)x 4-x 3, 结合图象可以发现函数y =f (x )的平均变化率最大的一个区间是[x 3,x 4].15.将半径为R 的球加热,若半径从R =1到R =m 时球的体积膨胀率为28π3,则m 的值为________.答案 2解析 体积的增加量ΔV =4π3m 3-4π3=4π3(m 3-1), 所以ΔV ΔR =4π3(m 3-1)m -1=28π3, 所以m 2+m +1=7,所以m =2或m =-3(舍).16.若一物体的运动方程如下:(位移单位:m ,时间单位:s)s =f (t )=⎩⎪⎨⎪⎧29+3(t -3)2,0≤t <3,3t 2+2,t ≥3. 求:(1)物体在t ∈[3,5]内的平均速度;(2)物体在t =1时的瞬时速度.解 (1)因为物体在t ∈[3,5]内的时间变化量为Δt =5-3=2,位移变化量为Δs =3×52+2-(3×32+2)=3×(52-32)=48,所以物体在t ∈[3,5]内的平均速度为Δs Δt =482=24 m/s. 即物体在t ∈[3,5]内的平均速度为24 m/s.(2)物体在t =1时的瞬时速度即为物体在t =1处位移的瞬时变化率,因为物体在t =1附近位移的平均变化率为 Δs Δt =f (1+Δt )-f (1)Δt=29+3[(1+Δt )-3]2-29-3(1-3)2Δt =3Δt -12,所以物体在t =1处位移的瞬时变化率为lim Δt →0 ΔsΔt =lim Δt →0 (3Δt -12)=-12,即物体在t =1时的瞬时速度为-12 m/s.导数的几何意义1.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( )A .不存在B .与x 轴平行或重合C .与x 轴垂直D .与x 轴斜交答案 B解析 因为f ′(x 0)=0,所以曲线y =f (x )在点(x 0,f (x 0))处的切线斜率为0.2.已知曲线y =2x 2上一点A (2,8),则在点A 处的切线斜率为( )A .4B .16C .8D .2答案 C解析 k =y ′|x =2=lim Δx →0 2(2+Δx )2-2×22Δx =8.3.若曲线f (x )=x 2的一条切线l 与直线x +4y -8=0垂直,则l 的方程为() A .4x -y -4=0 B .x +4y -5=0C .4x -y +3=0D .x +4y +3=0答案 A解析 设切点为(x 0,y 0), 因为f ′(x )=lim Δx →0 (x +Δx )2-x 2Δx=lim Δx →0(2x +Δx )=2x . 由题意可知,切线斜率k =4,即f ′(x 0)=2x 0=4,所以x 0=2.所以切点坐标为(2,4),切线方程为y -4=4(x -2),即4x -y -4=0,故选A.4.已知函数f (x )满足f ′(x 1)>0,f ′(x 2)<0,则在x 1和x 2附近符合条件的f (x )的图象大致是( )答案 D解析 由f ′(x 1)>0,f ′(x 2)<0可知,f (x )的图象在x 1处切线的斜率为正,在x 2处切线的斜率为负.5.(多选)下列各点中,在曲线y =x 3-2x 上,且在该点处的切线倾斜角为π4的是( ) A .(0,0)B .(1,-1)C .(-1,1)D .(1,1)答案 BC解析 设切点坐标为(x 0,y 0),则0=|x x y'=lim Δx →0 (x 0+Δx )3-2(x 0+Δx )-(x 30-2x 0)Δx=3x 20-2=tan π4=1, 所以x 0=±1,当x 0=1时,y 0=-1.当x 0=-1时,y 0=1.6.已知函数y =f (x )在点(2,1)处的切线与直线3x -y -2=0平行,则y ′|x =2=________. 答案 3解析 因为直线3x -y -2=0的斜率为3,所以由导数的几何意义可知y ′|x =2=3.7.已知f (x )=x 2+ax ,f ′(1)=4,曲线f (x )在x =1处的切线在y 轴上的截距为-1,则实数a 的值为________.答案 2解析 由导数的几何意义,得切线的斜率为k =f ′(1)=4.又切线在y 轴上的截距为-1,所以曲线f (x )在x =1处的切线方程为y =4x -1,从而可得切点坐标为(1,3),所以f (1)=1+a =3,即a =2.8.设f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx=-1,则曲线y =f (x )在点(1,f (1))处的切线斜率为______.答案 -1解析 lim Δx →0 f (1)-f (1-2Δx )2Δx =lim Δx →0 f (1-2Δx )-f (1)-2Δx =f ′(1)=-1.9.在抛物线y =x 2上哪一点处的切线平行于直线4x -y +1=0?哪一点处的切线垂直于这条直线?解 y ′=lim Δx →0 (x +Δx )2-x 2Δx=lim Δx →0 (2x +Δx )=2x . 设抛物线上点P (x 0,y 0)处的切线平行于直线4x -y +1=0,则0=|x x y'=2x 0=4,解得x 0=2,所以y 0=x 20=4,即P (2,4),经检验,符合题意.设抛物线上点Q (x 1,y 1)处的切线垂直于直线4x -y +1=0,则1=|x x y'=2x 1=-14,解得x 1=-18, 所以y 1=x 21=164,即Q ⎝⎛⎭⎫-18,164,经检验,符合题意. 故抛物线y =x 2在点(2,4)处的切线平行于直线4x -y +1=0,在点⎝⎛⎭⎫-18,164处的切线垂直于直线4x -y +1=0.10.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2,求直线l 2的方程.解 因为y ′=lim Δx →0 Δy Δx=lim Δx →0 (x +Δx )2+(x +Δx )-2-(x 2+x -2)Δx=2x +1, 所以y ′|x =1=3,所以直线l 1的方程为y =3(x -1),即y =3x -3,设直线l 2过曲线y =x 2+x -2上的点P (x 0,x 20+x 0-2),则直线l 2的方程为y -(x 20+x 0-2)=(2x 0+1)(x -x 0).因为l 1⊥l 2,所以2x 0+1=-13,x 0=-23, 所以直线l 2的方程为3x +9y +22=0.11.若曲线y =x +1x上任意一点P 处的切线斜率为k ,则k 的取值范围是( ) A .(-∞,-1)B .(-1,1)C .(-∞,1)D .(1,+∞)答案 C解析 y =x +1x上任意一点P (x 0,y 0)处的切线斜率为 k =0=|x x y'=lim Δx →0 (x 0+Δx )+1x 0+Δx -⎝⎛⎭⎫x 0+1x 0Δx =lim Δx →0 ⎝⎛⎭⎫1-1x 20+x 0Δx =1-1x 20<1. 即k <1.12.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则a =________,b =________. 答案 1 2解析 由题意知a +b =3,又y ′|x =1=lim Δx →0 a (1+Δx )2+b -(a +b )Δx=2a =2, ∴a =1,b =2.13.若点P 是抛物线y =x 2上任意一点,则点P 到直线y =x -2的最小距离为________. 答案 728解析 由题意可得,当点P 到直线y =x -2的距离最小时,点P 为抛物线y =x 2的一条切线的切点,且该切线平行于直线y =x -2,设y =f (x )=x 2,由导数的几何意义知y ′=f ′(x )= lim Δx →0 f (x +Δx )-f (x )Δx =2x =1,解得x =12,所以P ⎝⎛⎭⎫12,14,故点P 到直线y =x -2的最小距离为d =⎪⎪⎪⎪12-14-22=728.14.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,在点P 处的切线恰好过坐标原点,则实数c 的值为________.答案 4解析 y ′=lim Δx →0Δy Δx =2x -1,在点P 处的切线斜率为2×(-2)-1=-5.因为点P 的横坐标是-2,所以点P 的纵坐标是6+c ,故直线OP 的斜率为-6+c 2, 根据题意有-6+c 2=-5,解得c =4.15.已知函数f (x )=x 3,过点P ⎝⎛⎭⎫23,0作曲线f (x )的切线,则其切线方程为________________.答案 y =0或3x -y -2=0解析 设切点为Q (x 0,x 30),得切线的斜率为k =f ′(x 0)=lim Δx →0 (x 0+Δx )3-x 30Δx=3x 20, 切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.因为切线过点P ⎝⎛⎭⎫23,0,所以2x 20-2x 30=0, 解得x 0=0或x 0=1,从而切线方程为y =0或3x -y -2=0.16.点P 在曲线f (x )=x 2+1上,且曲线在点P 处的切线与曲线y =-2x 2-1相切,求点P 的坐标.解 设P (x 0,y 0),则y 0=x 20+1,f ′(x 0)=lim Δx →0=(x 0+Δx )2+1-(x 20+1)Δx=2x 0, 所以过点P 的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x +1-x 20,而此直线与曲线y =-2x 2-1相切,所以切线与曲线y =-2x 2-1只有一个公共点,由⎩⎪⎨⎪⎧y =2x 0x +1-x 20,y =-2x 2-1, 得2x 2+2x 0x +2-x 20=0,则Δ=4x 20-8(2-x 20)=0,解得x 0=±233,则y 0=73,所以点P 的坐标为⎝⎛⎭⎫233,73或⎝⎛⎭⎫-233,73.。
图像法本专题主要讲述图像法在物理学中的应用。
解决物理问题的依据主要是利用相应的物理规律,定量给出物理量间的函数关系式,而采用数、形转换这一手段将给出的函数关系式以图像的形式表现出来就称为函数的图像,它和用公式的形式给出的物理规律本质是一致的。
但表现的形式不同,图像能够直观、形象、动态地表达物理过程和物理规律。
有时候,在解决一些复杂问题时用图像法解题更为明了、简捷。
图像包含的信息内容非常丰富,可考查学生的数形结合能力和信息提取的能力。
图像的识别(2020·重庆模拟)如图所示,有一边长为L的正方形线框abcd,由距匀强磁场上边界H处静止释放,其下边刚进入匀强磁场区域时恰好能做匀速直线运动。
匀强磁场区域宽度也为L,ab边开始进入磁场时记为t1,cd边出磁场时记为t2,忽略空气阻力,从线框开始下落到cd边刚出磁场的过程中,线框的速度大小v、加速度大小a、ab两点的电压大小U ab、线框中产生的焦耳热Q随时间t的变化图像可能正确的是()A.B.C.D.关键信息:边刚进入匀强磁场区域时恰好能做匀速直线运动→线框所受安培力与重力平衡→分析出cd边出磁场之前线框也做匀速直线运动ab边开始进入磁场→ab边相当于电源,ab两点间电压对应的是路端电压,U ab=34Ecd边出磁场前→ab两点间电压对应的是ab两点间这段导线电阻的电压,U ab=14E线框中产生的焦耳热Q→因线框进入磁场之后的下落是做匀速直线运动,所以线框中的电流大小不变,可结合法拉第电磁感应定律以及焦耳定律进行计算解题思路:由右手定则判断出感应电流的方向,由法拉第电磁感应定律计算感应电动势的大小,进而得到安培力,再根据平衡条件、牛顿第二定律、电路知识、焦耳定律等进行相关计算、判断。
AB.线框从磁场上方H处开始下落到下边刚进入磁场过程中线框做自由落体运动;因线框下边刚进入匀强磁场区域时恰好能做匀速直线运动,可知线框直到cd边出磁场时也做匀速直线运动,可知A、B错误;CD.线框ab边进入磁场的过程:E=BLv,ab边相当于电源,则U ab=34BLv;cd边进入磁场的过程:E=BLv,cd边相当于电源,ab边相当于外电路中的一个电阻,其电阻为线框电阻的14,则U ab=14BLv;线框进入磁场和出磁场过程中电动势相同,均为E=BLv,时间相同,则线框中产生的热量Q=2EtR相同;故C项正确,D错误。
函数图象的割线斜率与切线斜率的关系Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】函数图象的割线斜率与切线斜率的关系题1 (2010年高考辽宁卷理科第21(2)题)已知函数1,1ln )1()(2-<+++=a ax x a x f .如果对任意2121214)()(),,0(,x x x f x f x x -≥-+∞∈,求a 的取值范围.(答案:2-≤a .)题2 (2009年高考辽宁卷理科第21(2)题)已知函数1,ln )1(21)(2>-+-=a x a ax x x f .证明:若5<a ,则对任意2121),,0(,x x x x ≠+∞∈,有1)()(2121->--x x x f x f . 题3 (2009年高考浙江卷理科第10题)对于正实数α,记αM 为满足下述条件的函数)(x f 构成的集合:∈∀21,x x R 且12x x >,有)()()()(121212x x x f x f x x -<-<--αα.下列结论中正确的是( )(答案:C.)A.若21)(,)(ααM x g M x f ∈∈,则21)()(αα⋅∈⋅M x g x fB.若21)(,)(ααM x g M x f ∈∈且0)(≠x g ,则21)()(ααM x g x f ∈C.若21)(,)(ααM x g M x f ∈∈,则21)()(αα+∈+M x g x fD.若21)(,)(ααM x g M x f ∈∈且21αα>,则21)()(αα-∈-M x g x f题4 (2006年高考四川卷理科第22(2)题)已知函数)(),0(ln 2)(2x f x x a xx x f >++=的导函数是)(x f ',21,,4x x a ≤是不相等的正数,求证:2121)()(x x x f x f ->'-'.深入研究这四道高考题(除题8是选择压轴题外,其余三道都是解答压轴题的最后一问),可得函数图象的割线斜率与切线斜率的关系:定理 设∈a R ,函数)(x f 在区间I 上可导,则(1)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≤'∈∀⇔≤--)(,)()(2121; (2)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≤'∈∀⇔<--)(,)()(2121且∀区间I I ⊂0,当0I x ∈时a x f =')(不能恒成立;(3)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≥'∈∀⇔≥--)(,)()(2121; (4)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≥'∈∀⇔>--)(,)()(2121且∀区间I I ⊂0,当0I x ∈时a x f =')(不能恒成立;(5)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≤'∈∀⇔≤--)(,)()(2121; (6)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≤'∈∀⇔<--)(,)()(2121且∀区间I I ⊂0,当0I x ∈时a x f =')(及a x f -=')(均不能恒成立;(7)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≥'∈∀⇔≥--)(,)()(2121; (8)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≥'∈∀⇔>--)(,)()(2121且∀区间I I ⊂0,当0I x ∈时a x f =')(及a x f -=')(均不能恒成立.为证明定理,须介绍两个引理,它们在《数学分析》中均可找到(比如文献[1],[2]): 引理1 若函数)(x f 在区间I 上可导,则)(x f 在I 上单调不减(不增)的充要条件是0)()(≤≥'x f 在I x ∈时恒成立.(注:若2121,,x x I x x <∈∀有)()()(21x f x f ≥≤,则称)(x f 在区间I 上单调不减(不增).)引理2 若函数)(x f 在区间I 上可导,则)(x f 在I 上严格递增(递减)⇔在I 上0)()(≤≥'x f 且对于任意的区间I I ⊂0,当0I x ∈时0)(='x f 不能恒成立.(注:若2121,,x x I x x <∈∀有)()()(21x f x f ><,则称)(x f 在区间I 上严格递增(递减).)定理的证明 设ax x f x h ax x f x g +=-=)()(,)()(.(1)左边2121,,x x I x x ≠∈∀⇔有2121212211,,0])([])([x x I x x x x ax x f ax x f ≠∈∀⇔≤----有0)()(2121≤--x x x g x g )(x g ⇔在I 上单调不增0)()(≤-'='⇔a x f x g ⇔右边. (2)左边2121,,x x I x x ≠∈∀⇔有2121212211,,0])([])([x x I x x x x ax x f ax x f ≠∈∀⇔<----有0)()(2121<--x x x g x g )(x g ⇔在I 上严格递减0)()(≤-'='⇔a x f x g (用引理2,这里省去了一些文字的叙述,下同)⇔右边.(3)同(1)可证.(4)同(2)可证.(5)左边2121,,x x I x x ≠∈∀⇔有21212121,,)()(x x I x x a x x x f x f a ≠∈∀⇔≤--≤-有⇔⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≥--≤--0)()(0)()(21212121x x x h x h x x x g x g ⇔⇔⎪⎭⎪⎬⎫⎩⎨⎧ 减上在上在单调不)(单调不增)(I x h I x g 右边. (6)左边2121,,x x I x x ≠∈∀⇔有21212121,,)()(x x I x x a x x x f x f a ≠∈∀⇔<--<-有⇔⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>--<--0)()(0)()(21212121x x x h x h x x x g x g ⇔⇔⎪⎭⎪⎬⎫⎩⎨⎧ 上严格递增在上严格递减在I x h I x g )()(右边. (7) 2121,,x x I x x ≠∈∀有⇔≥--a x x x f x f 2121)()( 2121,,x x I x x <∈∀有a x x x f x f ≥--1212)()(或⇔-≤--a x x x f x f 1212)()( 2121,,x x I x x <∈∀有)()(21x g x g ≤或⇔≥)()(21x h x h0)(,≥'∈∀x g I x 或⇔≤'0)(x ha x f I x ≥'∈∀)(,或⇔-≤'a x f )((8)同(7)可证.题5 已知函数∈++-=b a b ax x x f ,()(23R )的图象上任意不同的两点连线的斜率小于1,求a 的取值范围.解 由定理9(2),得123)(2≤+-='ax x x f 在∈x R 时恒成立,即01232≥+-ax x 恒成立,所以]3,3[,012)2(2-∈≤-=∆a a .所以所求a 的取值范围是]3,3[-.注 由定理9(1)知,若把例1中的“小于”改成“不大于”,所得答案不变.还可验证:当0,3==b a 时,233)(x x x f +-=的图象上任一割线的斜率小于1,但图象在拐点(即凹凸性的分界点,其二阶导数值为0,参见文献[2]或[3])31处切线的斜率为1(图1).图1题6 (2013年福建省厦门一中月考试题)已知函数∈++-=b a b ax x x f ,()(23R )(1)若函数)(x f y =的图象上任意两个不同的点连线斜率小于1,求证:33<<-a ; (2)若]1,0[∈x ,且函数)(x f 的图象上任意一点处的切线斜率为k ,试证明1≤k 的充要条件为31≤≤a .由题5的结论可知,题6的第(1)问是错题(可得第(2)问是正确的).下面用定理给出题1~4的简解.题3的简解 αM 即满足条件“∈∀21,x x R ,有α<--2121)()(x x x f x f ”的函数)(x f 构成的集合.由定理(6),得αM 即满足条件“∈≤'x x f ()(αR )且对于任意的区间I I ⊂0,当0I x ∈时a x f =')(及a x f -=')(均不能恒成立”的函数)(x f 的集合.由此及绝对值不等式可证得选项C 成立(且可排除选项A 、B 、D),所以选C. 题2的简解 由定理(4)知只需证明“当0>x 时1)(-≥'x f 且1)(-='x f 只能在一些孤立点上成立”:所以要证结论成立.(并且还可得:当51≤≤a 时,结论也成立.)题1的简解 )0(21)(>++='x ax x a x f .由定理(7)知题设即421)(≥---='ax x a x f 在0>x 时恒成立,由1-<a 及均值不等式可得所求a 的取值范围是]2,(--∞.注 下面把题1中的题设“1-<a ”改成“∈a R ”,再来求解: 此时题意即“421≥++ax xa 在0>x 时恒成立,求a 的取值范围”. 当1-<a 时,已得2-≤a ;当01≤≤-a 时,可得函数)0(21)(>++=x ax x a x g 是单调减函数,可得此时不满足题设;当0>a 时,由均值不等式可得1≥a .所以所求a 的取值范围是),1[]2,(+∞⋃--∞.题4的简解 设xa x x x f x g +-='=222)()(,即证1)()(2121>--x x x g x g . 由定理(8)知,只需证明:当0>x 时1)(≥'x g ,即只需证 )0(14223>>-+x xa x 即 )0(222>>++x a x x x 这由均值不等式及题设可证:所以欲证成立.注 由以上简解知,把题4中的“4≤a ”改成“343⋅≤a ”后所得结论也成立.参考文献1 刘玉琏,傅沛仁.数学分析讲义(上册)[M].3版.北京:高等教育出版社,19922 华东师范大学数学系编.数学分析(上册)[M].3版.北京:高等教育出版社,2001。