九年级数学圆第六讲直线与圆的位置关系判定小技巧
- 格式:pdf
- 大小:2.71 MB
- 文档页数:15
判断圆与直线的位置关系的方法圆与直线的位置关系是几何学中的一个重要概念,我们可以通过一些方法来判断圆与直线的位置关系。
在本文中,我们将介绍三种常见的方法:切线法、判别式法和坐标法。
一、切线法切线法是判断圆与直线位置关系的一种常用方法。
当直线与圆相交时,我们可以通过判断直线与圆的切点个数来确定它们的位置关系。
1. 如果直线与圆相交于两个不同的切点,则直线与圆相交。
2. 如果直线与圆相切于一个切点,则直线与圆相切。
3. 如果直线不与圆相交或相切,则直线与圆相离。
二、判别式法判别式法是通过判别式来判断圆与直线的位置关系。
对于一般方程的直线和圆的方程,我们可以通过判别式来确定它们的位置关系。
1. 如果判别式大于零,则直线与圆相交。
2. 如果判别式等于零,则直线与圆相切。
3. 如果判别式小于零,则直线与圆相离。
三、坐标法坐标法是通过直线和圆的方程的坐标表示来判断它们的位置关系。
我们可以将直线和圆的方程代入,然后通过解方程组的方法来判断它们的位置关系。
1. 如果方程组有两个不相等的实数解,则直线与圆相交。
2. 如果方程组有一个实数解,则直线与圆相切。
3. 如果方程组无实数解,则直线与圆相离。
通过切线法、判别式法和坐标法,我们可以判断圆与直线的位置关系。
在实际应用中,我们经常会遇到需要判断圆与直线的位置关系的问题,比如在建筑设计、机械制造等领域中。
掌握这些方法可以帮助我们更好地解决相关问题,提高工作效率。
判断圆与直线的位置关系是几何学中的一个重要问题。
通过切线法、判别式法和坐标法,我们可以准确地判断圆与直线的位置关系,从而更好地解决相关问题。
希望本文对读者有所帮助,能够在实践中灵活运用这些方法。
初三数学直线和圆的位置关系一.直线和圆的位置关系:①相交:直线和圆有两个公共点,这时说这条直线和圆相交;这条直线叫做圆的割线;②相切:直线和圆有唯一公共点,这时说这条直线和圆相切;这条直线叫做圆的切线,这个点叫做切点.③相离:直线和圆没有公共点,这时说这条直线和圆相离.二.直线和圆的位置关系的判定:(1)定理:若⊙O的半径为R,圆心到直线l 的距离为d. 则直线l与⊙O相交d﹤R;直线l与⊙O相切 d =R;直线l与⊙O相离d﹥R;(2)“圆心到直线的距离d和半径R的数量关系”与“直线和圆的位置关系”之间的对应与等价关系列表如下:例1、1.在Rt△ABC中,∠C=,AC=3cm,AB=6cm,以点C为圆心,与AB边相切的圆的半径为_________cm.2.如图,⊙O的半径OD为5cm,直线l⊥OD,垂足为O,则直线l沿射线OD方向平移_________cm时与⊙O相切.3.已知⊙O的直径为6cm,如果直线l上的一点C到圆心的距离为3cm,则直线l与⊙O的位置关系是_________.4.⊙O的半径为R,圆心O到直线l的距离d与R是方程x2-6x+9=0的两个实数根,则直线l和⊙O的位置关系是_________.三.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线;2.切线的性质:①切线垂直于过切点的半径;②切线和圆心的距离等于半径;③经过圆心且垂直于切线的直线必过切点;④经过切点垂直于切线的直线必过圆心.综上所述,在解决有关圆的切线的问题,连接圆心和切点的线段是最常见的辅助线.四、切线长的定义及切线长定理过圆外一点作圆的切线,这点和切点之间的线段长叫做这点到圆的切线长,如图所示,PA,PB 是⊙O的两条切线,A,B为切点,线段PA,PB的长即为点P到⊙O的切线长.切线长定理:过圆外一点所画的圆的两条切线长相等.例2、如图,AB是⊙O的直径,BC切⊙O于点B,AD∥CO.求证:CD是⊙O的切线.1、⊙O的半径为R,直线l和⊙O有公共点,若圆心到直线l的距离是d,则d与R的大小关系是()A.d>RB.d<RC.d≤RD.d≥R2、点A为直线l上任一点,过A点与直线l相切的圆有()个.A.1 B.2C.不存在 D.无数个3、在Rt△ABC中,∠A=,BA=12,CA=5,若以A为圆心,5为半径作圆,则斜边BC与⊙A的位置关系是()A.相交 B.相离C.相切 D.不确定4、等边△ABC的边长为6,点O为△ABC的外心,以O为圆心,为半径的圆与△ABC的三边()A.都相交B.都相离C.都相切D.不确定5、两个同心圆的半径分别为3cm和5cm,作大圆的弦MN=8cm,则MN与小圆的位置关系是()A.相交 B.相切C.相离D.无法判断6、如图,在直角坐标系中,⊙O的半径为1,则直线与⊙O的位置关系是()A.相离 B.相交C.相切 D.以上三种情形都有可能7、下列说法正确的是()A.垂直于切线的直线必过切点B.垂直于半径的直线是圆的切线C.圆的切线垂直于经过切点的半径D.垂直于切线的直线必经过圆心8、已知Rt△ABC的直角边AC=BC=4cm,若以C为圆心,以3cm的长为半径作圆,则这个圆与斜边所在的直线的位置关系是()A.相交 B.相切C.相离 D.不能确定9、如右上图,在△ABC中,AB=2,AC=1,以AB为直径的圆与AC相切,与边BC交于点D,则AD的长为()10、如下图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,∠D=__________.11、如图,⊙O的半径为1,圆心O在正三角形的边AB上沿图示方向移动,当⊙O移动到与AC相切时,OA=__________.12、设⊙O的半径为R,⊙O的圆心到直线的距离为d,若d、R是方程x2-6x+m=0的两根,则直线l 与⊙O相切时,m的值为__________.13、已知∠ABC=60°,点O在∠ABC的平分线上,OB=5cm,以O为圆心,2cm为半径作⊙O,则⊙O与BC的位置关系是__________.14、如图,Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,DB的长为半径作⊙D.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.15、如图,以边长为4的正△ABC的BC边为直径作⊙O与AB相交于点D,⊙O的切线DE交AC于E,EF⊥BC,点F是垂足,求EF的长.16、如图,PA是⊙O的切线,切点是A,过点A作AH⊥OP于点H,交⊙O于点B.求证:PB是⊙O的切线.17、如图,已知AB是⊙O的直径,AB=2,∠BAC=30°,点C在⊙O上,过点C与⊙O相切的直线交AB 的延长线于点D,求线段BD的长.1.弧长公式:n°的圆心角所对的弧长l公式不要死记硬背,可依比例关系很快地随手推得:2.扇形面积公式:(1)和含n°圆心角的扇形的面积公式同样不要死记硬背,可依比例关系很快地随手推得:.(2)将弧长公式代入扇形面积公式中,立即得到用弧长和半径表示的扇形面积公式:。
圆知识要点圆的定义:(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点叫圆心,线段OA叫做半径;(2)圆是到定点的距离等于定长的点的集合。
1、点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:d<r <====>点P在⊙O内;d=r <====>点P在⊙O上;d>r <====>点P在⊙O外。
2、直线与圆的位置关系(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交<====>d<r;直线l与⊙O相切<====>d=r;直线l与⊙O相离<====>d>r;3、切线的判定和性质(1)、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
(2)、切线的性质定理圆的切线垂直于经过切点的半径。
如右图中,OD垂直于切线。
4、切线长定理(1)、切线长在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
(2)、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
如右图中:圆外一点P与圆O相切与D,E两点,所以有PD=PE,可以通过连接OP来证明。
5、过三点的圆(1)、不在同一直线上的三个点确定一个圆。
(2)、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆。
如图圆O是△ABC的外接圆(3)、三角形的外心三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
(4)、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。
(5)、三角形的内切圆与三角形的各边都相切的圆叫做三角形的内切圆。
如图圆O是△A'B'C'的内切圆。
直线和圆的位置关系● 基础2. 圆的切线⑴切线的定义:直线和圆有唯一一个公共点时,叫做直线和圆相切,这条直线叫做圆的切线,这个公共点叫做切点。
⑵切线的判定:经过半径的外端,并且垂直于这条半径的直线是圆的切线。
⑶切线的性质:经过圆心垂直于切线的直线必过切点;经过切点垂直于切线的直线必经过圆心;圆的切线垂直于过切点的半径。
⑷切线长定理:从圆外一点引圆的两条切线,线线长相等,这点和圆心连线分两条切线的夹角相等。
3. 三角形的内切圆和三角形各边都相切的圆 叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。
● 培优1. 圆的切线的判定:⑴直线和圆有唯一的公共点,这条直线是圆的切线。
⑵和圆心的距离等于圆的半径的直线是圆的切线。
⑶经过半径的外端并且垂直于这条半径的直线是圆 的切线2. Rt △ABC 中,∠C=90°,则外接圆的半径c R 21=。
内切圆的半径)(21c b a r -+=。
3. 圆的外切四边形的两组对边的和相等● 例题 ◇例已知以Rt △ABC 的直角边AB 为直径作⊙O ,与斜边AC 交于点D ,过点D 作⊙O 的切线交BC 边于点E 。
⑴如图,求证:EB=EC=ED⑵试问在线段DC 上是否存在点F ,满足BC 2=4DF ·DC 。
若存在,作出点F ,并予以证明;若不存在,请说明理由。
◇例已知:如图,△ABC中,AB=BC=CA=6,BC在X轴上,BC边上的高线AO在Y轴上,直线l绕A点转动(与线段BC没有交点)。
设与AB、l、X轴相切的⊙O1的半径为r1,与 AC、l、X轴相切的⊙O2的半径为r2⑴当直线l绕点A转动到何位置时,⊙O1、⊙O2的面积之和最小,为什么?⑵若r1-r2=3,求图像经过点⊙O1、⊙O2的一次函数解析式◇例如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D。
初中数学如何判断一条直线与圆的位置关系
判断一条直线与圆的位置关系有几种情况:相离、相切、相交。
下面我将详细介绍这些情况以及判断的方法:
1. 直线与圆相离:
当直线与圆没有交点时,它们被认为是相离的。
判断直线与圆相离的方法有两种:-计算直线到圆心的距离,如果距离大于圆的半径,则直线与圆相离。
-判断直线与圆的方程是否满足不相交的条件。
2. 直线与圆相切:
当直线与圆有且仅有一个交点时,它们被认为是相切的。
判断直线与圆相切的方法有两种:
-计算直线到圆心的距离,如果距离等于圆的半径,则直线与圆相切。
-判断直线与圆的方程是否满足切线的条件。
3. 直线与圆相交:
当直线与圆有两个交点时,它们被认为是相交的。
判断直线与圆相交的方法有两种:-计算直线与圆心的距离,如果距离小于圆的半径,则直线与圆相交。
-判断直线与圆的方程是否满足相交的条件。
在判断直线与圆的位置关系时,可以使用以下工具和方法:
-距离公式:计算直线到圆心的距离可以使用距离公式来求解。
-圆的方程:圆的方程可以用来判断直线与圆的位置关系。
需要注意的是,判断直线与圆的位置关系时,可以结合使用上述方法,以确保准确判断它们之间的关系。
以上是关于判断直线与圆的位置关系的方法和步骤的介绍。
希望以上内容能够满足你对直线与圆位置关系的了解。