上海路中学2010-2011学年度第一学期九年级视图与投影单元检测题
- 格式:doc
- 大小:120.00 KB
- 文档页数:3
第五章投影与视图单元质检卷(A卷)【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下列投影是平行投影的是( )A.太阳光下窗户的影子B.台灯下书本的影子C.在手电筒照射下纸片的影子D.路灯下行人的影子2.下列几何体中,主视图是三角形的是( )A. B. C. D.3.如图所示的几何体的俯视图是( )A. B.C. D.4.如图是某一几何体的主视图、左视图、俯视图,该几何体是( )A.四棱柱B.四棱锥C.三棱柱D.三棱锥5.如图,小明居住的小区内有一条笔直的小路,有一盏路灯位于小路上M,N两点的正中间,晚上,小明由点M处径直走到点N处,他在灯光照射下的影长y与行走路程x之间的变化关系用图象表示大致是( )A. B.C. D.6.如图是一个几何体的三视图,根据图中所标数据计算这个几何体的体积为( )A. B. C. D.7.如图,小颖身高为,在阳光下影长,当她走到距离墙角(点D)处时,她的部分影子投射到墙上,则投射在墙上的影子DE的长度为( )A. B. C. D.8.由圆柱和长方体(底面为正方形)组成的几何体如图放置,该几何体的俯视图是( )A. B. C. D.9.某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自己正前方的水果盘中,则这块西瓜的三视图是( )A. B. C. D.10.如图,在平面直角坐标系中,点是一个光.木杆两端的坐标分别为,.则木杆在x轴上的投影长为( )A. B. C.5 D.6二、填空题(每小题4分,共20分)11.如图,日晷仪也称日晷,是观测日影计时的仪器,主要是根据日影的位置,以指定当时的时辰或刻数,是我国古代较为普遍使用的计时仪器.但在史籍中却少有记载,现在史料中最早的记载是“汉书•律历志•制汉历”一节:太史令司马迁建议共议“乃定东西,主晷仪,下刻漏”.看来日晷是我国古代利用日影测定时刻的仪器,晷针在晷面上所形成的投影属于___________投影.12.图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为__________.13.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕A按逆时针方向旋转至地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC(假定),影长的最大值为m,最小值为n,那么下列结论:①;②;③;④影子的长度先增大后减小.其中正确结论的序号是__________.14.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,_____.15.图①是艺术家埃舍尔的作品,他将数学与绘画完美结合,在平面上创造出立体效果.图②是一个菱形,将图②截去一个边长为原来一半的菱形得到图③,用图③镶嵌得到图④,将图④着色后,再次镶嵌便得到图①,则图④中的度数是_____°.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)画出如图所示物体的主视图、左视图、俯视图.17.(8分)小红想利用阳光下的影长测量学校旗杆AB的高度.如图,某一时刻她在地面上竖立了一根2米长的标杆CD,测得其影长米.(1)请在图中画出此时旗杆AB在阳光下的投影BF.(2)如果米,求旗杆AB的高.18.(10分)作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体.(1)图中有__________块小正方体;(2)该几何体的主视图如图所示,请分别画出它的左视图和俯视图.19.(10分)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图所示,此时测得地面上的影长为8米,坡面上的影长为4米已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,请计算出树的高度.20.(12分)图(1)是由两个长方体组成的立体图形,图(2)中的长方体是图(1)中的两个长方体的另一种摆放形式,图①②③是从不同的方向看图(1)所得的平面图形.(1)填空:图①是从___________面看得到的平面图形,图②是从___________面看得到的平面图形,图③是从___________面看得到的平面图形,(2)请根据各图中所给的信息(单位:cm),计算出图(1)中上面的小长方体的体积.21.(12分)为测量水平操场上旗杆的高度,九(2)班各学习小组运用了多种测量方法.(1)如图1,小张在测量时发现,自己在操场上的影长EF恰好等于自己的身高DE.此时,小组同学测得旗杆AB的影长BC为,据此可得旗杆高度为________m;(2)如图2,小李站在操场上E点处,前面水平放置镜面C,并通过镜面观测到旗杆顶部A.小组同学测得小李的眼睛距地面高度,小李到镜面距离,镜面到旗杆的距离.求旗杆高度;(3)小王所在小组采用图3的方法测量,结果误差较大.在更新测量工具,优化测量方法后,测量精度明显提高,研学旅行时,他们利用自制工具,成功测量了江姐故里广场雕塑的高度.方法如下:如图4,在透明的塑料软管内注入适量的水,利用连通器原理,保持管内水面M,N两点始终处于同一水平线上.如图5,在支架上端P处,用细线系小重物Q,标高线PQ始终垂直于水平地面.如图6,在江姐故里广场上E点处,同学们用注水管确定与雕塑底部B处于同一水平线的D,G两点,并标记观测视线DA与标高线交点C,测得标高,.将观测点D后移到D处,采用同样方法,测得,.求雕塑高度(结果精确到).答案以及解析1.答案:A解析:太阳光下窗户的影子是平行投影;台灯下书本的影子是中心投影;在手电筒照射下纸片的影子是中心投影;路灯下行人的影子是中心投影.故选A.2.答案:A解析:A.主视图是三角形,故本选项符合题意;B.主视图是矩形,故本选项不符合题意;C.主视图是矩形,故本选项不符合题意;D.主视图是正方形,故本选项不符合题意.故选:A.3.答案:D解析:这个几何体的俯视图为,故选D.4.答案:B解析:由主视图与左视图是三角形,俯视图是正方形且有两条对角线,可知该几何体是四棱锥,故选B.5.答案:C解析:小路MN路段的正中间有一盏路灯,小明在灯光照射下的影长y与行走路程x之间的变化关系为当小明从M处走到灯下时y随x的增大而减小,离开灯继续走到N处时y随x的增大而增大,用图象表示出来应为选项C.故选C.6.答案:B解析:由三视图可得,该几何体是空心圆柱,其小圆半径是1,大圆半径是2,则大圆面积为,小圆面积为,故这个几何体的体积为.故选B.7.答案:B解析:如图,过E作于F.设投射在墙上的影子DE的长度为.由题意,得,,即,解得.故投射在墙上的影子DE的长度为.故选B.8.答案:C解析:竖立圆柱的俯视图是圆,底面为正方形的长方体的俯视图是正方形,且所有轮廓线均为实线,故选C.9.答案:B解析:观察图形可知,这块西瓜的三视图是.故选B.10.答案:D解析:延长、分别交x轴于、,作轴于E,交于D,如图,,,.,,,,,,即,,故选:D.11.答案:平行解析:因为太阳光属于平行光线,而日晷利用日影测定时刻,所以晷针在晷面上所形成的投影属于平行投影.故答案为:平行.12.答案:解析:由三视图知该几何体为圆柱,且底面圆的半径是1,高是3,这个几何体的体积为.故答案为.13.答案:①③④解析:木杆AB绕点A按逆时针方向旋转,如图所示,当木杆AB与光线垂直时,影子最长,则,①成立,②不成立.当木杆AB到达地面时,影子最短,故,③成立.由上可知,影子的长度先增大后减小,④成立.故答案为①③④.14.答案:16解析:易得第一层有4个正方体,第二层最多有3个正方体,最少有2个正方体,第三层最多有2个正方体,最少有1个正方体,,,所以.故答案为:16.15.答案:60解析:如图,,,,,,故答案为:60.16.答案:见解析解析:如图所示:17.答案:(1)见解析(2)8米解析:(1)如图,连接CE,过点A作交BD于点F,则BF即为所求.(2),.又,,,即,米.答:旗杆AB的高为8米.18.答案:(1)11(2)图见解析解析:(1)如图所示:上层有5个小正方体;底层比上层多了1个小立方体,即图中共有11块小正方体,故答案为:11;(2)由题中立体图形及主视图可知,正面看组合体的方向如图所示:左视图是;俯视图是.19.答案:如图,延长AC交直线BD于点F,过点C作于点E.在中,米,,则米,所以米.根据同一时刻物高与影长对应成比例,得,则米,所以米.又,所以米,所以树的高度为米.解析:20.答案:(1)正或后;上;左或右(2)解析:(1)正或后;上;左或右(2)由题图可得解得所以题图(1)中上面的小长方体的长、宽、高分别为,,,所以,即题图(1)中上面的小长方体的体积为.21.答案:(1)11.3(2)旗杆高度为12m(3)雕塑高度为29m解析:由题意得,由题意得:,,故答案为:;(2)如图,由题意得,,,,根据镜面反射可知:,,,,,,即,,答:旗杆高度为;(3)设,由题意得:,,,,即,,,整理得,解得,经检验符合,,答:雕塑高度为.。
九年级数学投影与视图测试题(后附答案)(时限:100分钟 满分:100分)班级 ____________ 姓名 _________________ 总分 ____________________ 一、 — 题共12小题,每小题2分,共24 分)1. 平行投影中光线是( )A.平行的B.聚成一点的 C 不平行的D.向四面八方发散的 2. 木棒长为1.2m ,则它的正投影的长一定()A.大于1.2mB.小于1.2mC 等于1.2mD.小于或等于 1.2m3. 如图是一根电线杆在一天中不同时刻的影长图,试按一天中时间先后顺序排列,正A.①②③④B.④①③② C ④②③① D.④③②①4.下图是一个立体图形的二视图,根据图示的数据求出这个立体图形的体积是()6. 如图是某几何体的三视图及相关数据,则判断正确的是(C.72cmD.192cmA. a >C B. b >C C. 4a 2+ b 2= c 2D. a 2+ b 2= c 2)A.24cmAB C D7. 如图是由一些相同的小正方体构成的几何体的三视图,则这个几何体的小正方体的 个数是(9•一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底边长10.下列投影一定不会改变厶 ABC 的形状和大小的是( )A.中心投影B.平行投影 C 正投影。
.当厶ABC 平行投影面时的平行投影主视图 B. 5左视图 C. 6A. 4个8.将一个几何体放在桌子上,它的三视图如下,这个几何体是(俯视图D. 7个主视图A.三棱体B ∙长方体C 正方体D 球体A. 3,2√B. 2,2√C. 3, 2D. 2,311.已知一个物体由X 个相同的正方体堆成,值是()它的主视图和左视图如图, 那么X 的最大A. 13B. 12C. 11D.1012.下面左图表示一个由相同小立方块搭成的几何体的俯视图,位置上小立方块的个数,则该几何体的主视图为(小正方形中的数字表示 )俯视图 分别为(主视图左视图俯视图A B C D2420.如图,水平放置的长方体的底面是边长为则长方体的体积等于 __________ .2和4的矩形,它的左视图的面积为 6,、填空题:(本大题共8小题,每小题3分,共24分)13. 在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是 _________.(填序号)14. 由一些大小相同的小正方体组成的几何体三视图如图所示,那么,组成这个几何体的小正方体有 ____________ 块•主视图左视图 俯视图15. 正方形ABCD 的边长为3,以直线AB 为轴旋转一周,所得几何体的左视图的周长 是 ___________ .16. 如图是一个几何体的三视图,其中主视图、左视图、都是腰为13cm ,底为IOcm的等腰三角形,则这个几何体的表面积为 ____________ .17. 一个圆锥的轴截面平行于投影面, 已知圆锥的正投影是边长为a 的等边三角形,则圆锥的体积是 __________ .18. 某一时刻,身高为165cm 的小丽影长是55cm ,此时,小玲在同一地点测得旗杆的 影长为5m ,则该旗杆的高度为 ____________ m. 19. 如图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是 ________________ (把下图中正确和立体图形的序号都填在横线上)③ ④三、解答题:(本大题共52分)21. ( 7分)圆形餐桌正上方有一个灯泡 A ,灯泡A 照射到餐桌后在地面上形成阴影已知餐桌的半径为 0∙4m 、高为1m ,灯泡距地面2.5m,求地面上阴影部分的面积A22. ( 7分)一个几何体的三视图如图所示,它的俯视图为菱形,请写出该几何体的形状,并根据图中所给的数据求出它的侧面积∙23. (8分)某班一位学生要过生日了,为了筹备生日聚会,班主任准备让学生自己动 手制作生日礼帽.如图所示,是礼帽的三视图,请计算制作一个这样的生日礼帽需 要纸板的面积为多少?30cm4 20cm *一24. ( 8分)求证:一个人在两个高度相同的路灯之间行走,他前后的两个影子的长度 之和是一个定值.俯视图25. (8分)如图,花丛中有一路灯杆 AB ,在灯光下,小丽在D 点处的影长DE = 3米, 沿BD 方向行走到达 G 点,DG = 5米,这时小丽的影长 GH = 5米.如果小丽的身高 为1.7米,求路灯杆 AB 的高度(精确到0.1米)26. ( 7分)八年级美术老师在课堂上进行立体模型素描教学时,把14个棱长为10的正方体摆成如图所示的形式,然后他把露出的表面都涂上不同的颜色,求被他涂 上颜色部分的面积.27. ( 7分)观察下列由棱长为 1的小立方体摆成的图形•寻找规律,如图①中共有 1个小立方体,其中1个看得见,0个看不见;如图②共有 8个立方体,其中7个看 得见,1个看不见;如图③中,共有 27个小立方体,其中19个看得见,8个看不照此规律,请你判断第⑥个图中有多少个小立方块,有多少个看不见?③a同理BN = b -^FB.a• MB + BN = (DB + FB)=常数(定值) b-a、选择题:参考答案:1.A ;2.D ;3.B ;4.B ;5.B ;6.D ;7.B ;8.A ;9.C ; 二、填空题:10.D ; 11.C ; 12.C ;13.②;14.5; 15.18 π; 16.90 ∏cm2; 17. n ;18.15 ; 19.①、②、 ④;20.24 ;三、解答题:21.解:如图所示, DE// BC 设底面半径为 可得22.解: 23.解:0.4 =1.5=解得•••底面面积为:该几何体的形状是直四棱柱 .由三视图可知:棱柱底面菱形的对角线长分别为5•菱形的边长为-Cm5•棱柱的测面积=2× 8× 4 = 80 (cm 2)由三视图可知,该几何体是圆锥体 其中,底面直径是 20cm ,高为 30cm. 则圆锥的母线长为 圆锥的表面积为1S=1× 20 π× 4cm 、3cm ,=100 π√10 ( cm 2)•制作生日礼帽需要纸板 100 ∏√0 (cm 2).24.解:如图所示,CD EF 为路灯高度,BM 、BN 为该人前后的两个影子 AB 为该人高度,∙∙∙ AB // CDMB a DM = bMB _ a DB b-aa即MB=b-TDB.F√102+ 302= 10√∣0cm25. 解:如图所示,∙∙∙ CD// AB26. 解:从前、后、左、右看该物体均为 6个正方形,从上面看有9个正方形,所以被涂上颜色部分的面积为6 × 100 × 4+ 900= 3300.27. 解:照此规律,第⑥个图形中有 216个小立方块,有125个小立方块看不见CD 3 X BE1.7 3 x-1.7BD 1.75 x-1.7BG ②得3BD1.7 3—C C 1.7—3—2 1∙75E G15∙∙∙.∙. X ≈ 6.①5 同理BD + 55 BD + 5x-1.72。
一、选择题1.如图,在直角坐标系中,点P (2,2)是一个光源.木杆AB 两端的坐标分别为(0,1),(3,1).则木杆AB 在x 轴上的投影长为( )A .3B .5C .6D .7 2.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是( )A .仅主视图不同B .仅俯视图不同C .仅左视图不同D .主视图、左视图和俯视图都相同 3.如图是一个几何体的三视图,根据图中提供的数据,计算这个几何体的表面积是( )A .4860π+B .4840π+C .4830π+D .4836π+ 4.如图,一个几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为( )A .4πB .2πC .32πD .π5.一个几何体是由一些大小相同的小正方体搭成的,其俯视图与左视图如图所示,则搭成该几何体的方式有( )种A .2B .3C .5D .6 6.如图是用4个同样大小正方体搭成的立体图形,从左面看,它应是下列图形中的( )A .B .C .D . 7.如图的几何体的俯视图是( )A .B .C .D . 8.如图是由6个完全相同的小正方体组成的立体图形,它的左视图是( )A .B .C .D . 9.如图是一个底面为正方形的几何体的实物图,则其俯视图为( )A.B.C.D.10.如图是一个由多个相同的小正方体堆成的几何体从上面看得到的平面图形,小正方形中的数字表示在该位置的小正方体的个数,那么从正面看该几何体得到的平面图形是()A.B.C.D.11.如右图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位览的小立方体的个数,则从左面乔这个几何体所得到的图形是()A.B.C.D.12.下列哪种影子不是中心投影()A.皮影戏中的影子 B.晚上在房间内墙上的手影C.舞厅中霓红灯形成的影子 D.太阳光下林荫道上的树影二、填空题13.甲乙两人在太阳光下并行,乙的身高1.8m,他的影长是2.1m,甲比乙矮12cm,此刻甲的影长是_____.14.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数可以是________.15.一个几何体的三视图如图所示,则这个几何体是_____.16.下图是某天内,电线杆在不同时刻的影长,按先后顺序应当排列为:________.17.如图所示,身高1.5m的小华站在距路灯杆5m的C点处,测得她在灯光下的影长CD 为2.5m,则路灯的高度AB为_____米.18.如果一个几何体从某个方向看到的平面图形是圆,则该几何体可能是________ (至少填两种几何体)19.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形(分别是:主视图,左视图,和俯视图)如图所示,则这一堆方便面共有__________个20.如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n,则n的最小值与最大值的和为______.三、解答题21.如图是一个几何体的三视图.(1)说出这个几何体的名称;(2)若主视图的宽为4cm ,长为7cm ,左视图的宽为3cm ,俯视图为直角三角形,其中斜边长为5cm ,求这个几何体中所有棱长的和,以及它的表面积和体积.【答案】(1)三棱柱;(2)所有棱长的和为45cm ;表面积为296cm ;体积为342cm【分析】(1)根据三视图可以判断该几何体是三棱柱;(2)根据三视图和直三棱柱各棱长的关系求出各棱长,再根据表面积和体积公式计算即可.【详解】解:(1)根据三视图,这个几何体是三棱柱 ;(2)由题意,棱长的和:()4232527345cm ⨯+⨯+⨯+⨯= ,表面积:()()24322345796cm⨯÷⨯+++⨯=, 体积:()3432742cm ⨯÷⨯=,答:所有棱长的和为45cm ;表面积为296cm ;体积为342cm .【点睛】本题考查由三视图判断几何体、求棱柱的表面积和体积,熟记常见几何体的三视图,掌握三视图与几何体的各棱长关系是解答的关键.22.“如图是由10个同样大小的小正方体搭成的几何体,(1)请分别画出它的主视图和左视图.(2)如果在这个几何体的表面喷上黄色的漆(底面不涂色),有_________个小正方体只有两面黄色,有_________个小正方体只有三面黄色,(3)在俯视图和左视图不变的情况下,你认为最多还可以添加_________个小正方体.【答案】(1)见解析;(2)2,3;(3)4【分析】(1)主视图从左至右每列个数分别为3、1、2,左视图左至右每列个数分别为3、2、1. (2)注意题干中的底面不涂色,涂2面的在第一层后面最左面的2个,涂3面的在中间层的后面的左面和第一层的最中间以及第一层的最后最右面,一共3个.(3)要使俯视图和左视图不变,可以在第二列,第二层和第三层的3个空缺处添加,第三层第三列的最上面也可添加.【详解】(1)(2)设由下到上分别是第一层到第三层,由左到右分别是第一列到第三列,有前到后分别是第一行到第三行.有2个面是黄色的应为第一层第一列第三行和第一层第二列第三行的2个小正方体.有3个面是黄色的应为第二层第一列第三行、第一层第二列第二行和第一层第三列第三行的3个小正方体.故答案为2,3.(3)要使俯视图和左视图不变,可添加至第二层第二列第二行、第二层第二列第三行、第三层第二列第三行、第三层第三列第三行.所以可添加4个小正方体.故答案为4.【点睛】本题主要考查作三视图.利用空间想象能力,并把几何体按空间排序来解决问题.23.如图是由四个大小相同的小正方体搭成的一个立体图形,画出从正面,从上面,从左面三个方向看到的立体图形的形状图.【答案】见解析【分析】观察图形可知,从正面看到的图形是两层:下层3个正方形,上层1个靠中间;从左面看到的图形是2层:下层2个正方形,上层1个靠左边;从上面看到的图形是两行:后面一行3个正方形,前面一行1个正方形靠左边,据此即可画图【详解】解:如图【点睛】此题考查了从不同方向观察几何体,锻炼了学生的空间想象力和抽象思维能力.24.一个零件的主视图、左视图、俯视图如图所示(尺寸单位:厘米),求这个零件的表面积.【答案】900cm 2【分析】由题意可得这个零件是长方体,再根据长方体的表面积公式解答即可.【详解】解:由题意可得:这个零件是长方体,且这个零件的表面积=()2101221015212152900cm⨯⨯+⨯⨯+⨯⨯=.答:这个零件的表面积是900cm 2.【点睛】本题考查了几何体的三视图和长方体表面积的计算,正确理解题意、明确求解的方法是关键.25.如图是由8个相同的小正方体组成的一个几何体(1)画出几何体从正面看、左面看、上面看的形状图;(2)现量得小立方体的棱长为2cm ,现要给该几何体表面涂色(不含底面),求涂上颜色部分的总面积.【答案】(1)见解析 (2)2116cm【分析】(1)分别画出几何体图即可;(2)根据题意得涂上颜色的总面积为正反面面积,左右两侧面积,和向上一侧面积,求出总小正方形个数乘以面积即可.【详解】(1)从正面看;从左面看;从上面看.(2)(6×2+6×2+5)×2×2=116(cm2)答:涂色部分面积为116cm2.【点睛】本题考查了立体图形的三视图,及表面积的求法,正确理解三视图的概念,并形成空间图形观念是解题关键.26.一作图题:下列物体是由六个小正方体搭成的,请在下列网格中分别画出从正面、左面、上面看到的立体图形的形状.【答案】答案见解析【分析】根据主视图,左视图,俯视图定义,首先运用形体分析法把组合体分解为若干个形体,确定它们的组合形式,判断形体间邻接表面是否处于共面、相切和相交的特殊位置;然后逐个画出形体的三视图.【详解】【点睛】本题考查了三视图的作图,三视图是主视图、俯视图、左视图的统称,从物体的前面向后面投射所得的视图称主视图,从物体的上面向下面投射所得的视图称俯视图,从物体的左面向右面投射所得的视图称左视图.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用中心投影,延长PA 、PB 分别交x 轴于A′、B′,作PE ⊥x 轴于E ,交AB 于D ,如图,证明△PAB ∽△PA′B′,然后利用相似比可求出A'B'的长.【详解】延长PA 、PB 分别交x 轴于A ′、B ′,作PE ⊥x 轴于E ,交AB 于D ,如图∵P (2,2),A (0,1),B (3,1).∴PD =1,PE =2,AB =3,∵AB ∥A ′B ′,∴△PAB ∽△PA ′B ′, ∴AB AD A B AE ='',即312A B ='' ∴A ′B ′=6,故选:C .【点睛】 本题考查了中心投影和三角形相似,引出辅助线利用三角形相似的性质求解是本题的关键.2.D解析:D【分析】分别画出所给两个几何体的三视图,然后比较即可得答案.【详解】第一个几何体的三视图如图所示:第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选D.【点睛】本题考查了几何体的三视图,正确得出各几何体的三视图是解题的关键.3.A解析:A【分析】首先根据题目所给出的三视图,判断出该几何体为34个圆柱体,该圆柱体的底部圆的半径为4,高为6,之后根据每个面分别求出表面积,再将面积进行求和,即可求出答案.【详解】解:∵根据题目所给出的三视图,判断出该几何体为34个圆柱体,该圆柱体的底部圆的半径为4,高为6,∴该几何体的上、下表面积为:22133S =2πr =2π4=24π44⨯⨯⨯⨯⨯,该几何体的侧面积为:233S =2462πr h=48+2π46=48+36π44⨯⨯+⨯⨯⨯⨯⨯, ∴总表面积为:12S=S +S =4860π+,故选:A .【点睛】本题考查了几何体的表面积,解题的关键在于根据三视图判断出几何体的形状,并把每个面的面积分别计算出来,掌握圆、长方体等面积的计算公式也是很重要的.4.D解析:D【分析】这个几何体的侧面是以底面圆周长为长、圆柱体的高为宽的矩形,根据矩形的面积公式计算即可.【详解】根据三视图可得几何体为圆柱,圆柱体的侧面积=底面圆的周长⨯圆柱体的高=11ππ⨯⨯= 故答案为:D .【点睛】本题考查了圆柱体的侧面积问题,掌握矩形的面积公式是解题的关键.5.C解析:C【分析】根据几何体的俯视图与左视图,可得搭成该几何体的叠加方式,进而即可得到答案.【详解】由题意得:搭成该几何体(俯视图中小正方形中的数字表示在该位置上的小正方体块)的个数的方式如下:,故选C .【点睛】本题主要考查几何体的三视图,掌握三视图的定义,是解题的关键.6.A解析:A【分析】从左面观察三个正方形的形状即可解答.【详解】解:从左面看,共有2列,左边一列是两个正方形,右边是一个正方形,且下齐.故答案为A.【点睛】本题考查了立体图形的三视图,理解三视图的概念以及较好的空间思维能力是解答本题的关键.7.C解析:C【分析】安装几何体三视图进行判断即可;【详解】解:本几何体的俯视图是后排有三个,前排有两个,即答案为C.【点睛】本题主要考查了简单几何体的三视图,掌握是从物体正面、左面和上面看物体以及较好的空间思维能力是解答本题的关键.8.D解析:D【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【详解】左视图有2层3列,第一层有3个正方形,第二层有一个正方形;每列上正方形的分布从左到右分别是2,1,1个.故选D.【点睛】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.9.D解析:D【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:从上面看易得到被一条直线分割成两个长方形的正方形.故选D.【点睛】本题考查三视图的知识,俯视图是从物体的上面看得到的视图.10.C解析:C【解析】【分析】找到从正面看所得到的图形即可.解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是1,2,2.故选:C.【点睛】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力.11.D解析:D【分析】从正面看,得到从左往右2列正方形的个数依次为3, 3;从左面看得到从左往右2列正方形的个数依次为5,1,依此画出图形即可.【详解】解:由题意知:该几何体为:故从左面看为:故选D.【点睛】本题考查三视图,解题关键是得到每列正方形的具体的数目为这列正方体的最多数目.12.D解析:D【解析】【分析】根据中心投影的性质,找到不是灯光的光源即可.【详解】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有B选项得到的投影为平行投影,所以太阳光下林荫道上的树影不是中心投影.故选:D.解决本题的关键是理解中心投影的形成光源为灯光.二、填空题13.96m【分析】根据同一时刻两人的身高与影长成正比列出算式求得甲的影长即可【详解】解:∵同一时刻两人的身高与影长成正比∴18:21=(18﹣012):甲的影长解得:甲的影长=196故答案为196m【点解析:96m【分析】根据同一时刻两人的身高与影长成正比列出算式求得甲的影长即可.【详解】解:∵同一时刻两人的身高与影长成正比,∴1.8:2.1=(1.8﹣0.12):甲的影长,解得:甲的影长=1.96,故答案为1.96m.【点睛】考查了相似三角形的应用及平行投影的知识,解题的关键是了解同一时刻两人的身高与影长成正比.14.【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状从主视图和左视图可以看出每一层小正方体的层数和个数从而算出总的个数【详解】从俯视图可以看出下面的一层有6个由主视图可以知道在中间一列的一个解析:8、9、10【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】从俯视图可以看出,下面的一层有6个,由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个,另一个上放1或2个;所以小立方块的个数可以是6+2=8个,6+2+1=9个,6+2+2=10个.故答案为8、9、10.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.三棱柱【解析】试题分析:如图所示根据三视图的知识可使用排除法来解答解:根据俯视图为三角形主视图以及左视图都是矩形可得这个几何体为三棱柱故答案为三棱柱考点:由三视图判断几何体解析:三棱柱试题分析:如图所示,根据三视图的知识可使用排除法来解答.解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故答案为三棱柱.考点:由三视图判断几何体.16.DABC【解析】试题分析:根据北半球上太阳光下的影子变化的规律易得答案试题解析:DABC.【解析】试题分析:根据北半球上太阳光下的影子变化的规律,易得答案.试题根据北半球上太阳光下的影子变化的规律,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.可得顺序为DABC.考点:平行投影.17.5【解析】【分析】由于人和地面是垂直的即和路灯平行构成相似三角形根据对应边成比例列方程解答即可【详解】解:∵CE∥AB∴△ADB∽△EDC∴AB:CE=BD:CD即AB:15=75:25解得:AB=解析:5.【解析】【分析】由于人和地面是垂直的,即和路灯平行,构成相似三角形.根据对应边成比例,列方程解答即可.【详解】解:∵CE∥AB,∴△ADB∽△EDC∴AB:CE=BD:CD即AB:1.5=7.5:2.5解得:AB=4.5m.即路灯的高度为4.5米.故答案为4.5【点睛】考查相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出路灯的高度,体现了转化的思想.18.圆锥圆柱球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥圆柱球等故答案为圆锥圆柱球解析:圆锥、圆柱、球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥,圆柱,球等.故答案为圆锥、圆柱、球.19.5【分析】利用三视图得到排数及列数即可得到答案【详解】由三视图可知此摆放体有两排第一排有一列第二排有两列第一排一列有一个第二排两列分别有两个∴1+2+2=5个故答案为:5【点睛】此题考查三视图的应用解析:5【分析】利用三视图得到排数及列数,即可得到答案.【详解】由三视图可知,此摆放体有两排,第一排有一列,第二排有两列,第一排一列有一个,第二排两列分别有两个,∴1+2+2=5个,故答案为:5.【点睛】此题考查三视图的应用,会看三视图的组成特点及分析得到排数列数是解题的关键. 20.26【分析】从俯视图中可以看出最底层小正方体的个数及形状由主视图可以看出每一列的最大层数和个数从而算出总的个数【详解】解:根据主视图和俯视图可知该几何体中小正方体最少分别情况如下:故n的最小值为1+解析:26【分析】从俯视图中可以看出最底层小正方体的个数及形状,由主视图可以看出每一列的最大层数和个数,从而算出总的个数【详解】解:根据主视图和俯视图可知,该几何体中小正方体最少分别情况如下:故n的最小值为1+1+1+1+3+2+1=10,该几何体中小正方体最多分别情况如下:该几何体中小正方体最大值为3+3+3+2+2+2+1=16,故最大值与最小值得和为10+16=26故答案为:26【点睛】本题主要考查了由三视图判断几何体中小正方体的个数问题,可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的可能个数.三、解答题21.无22.无23.无24.无25.无26.无。
一、选择题1.如图是由几个大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体从正面看到的形状图是()A.B.C.D.2.如图所示的立体图形,其俯视图正确的是()A.B.C.D.3.如图所示几何体的俯视图是()A.B.C.D.4.由5个相同的小正方体组成的几何体如图所示,该几何体的主视图是()A.B.C.D.5.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同6.如图是某零件的模型,则它的左视图为()A.B.C.D.7.一个密封的圆柱体容器中装了一半的水,如果将该容器水平放置如图,那么稳定后的水面形状为().A.B.C.D.8.如图是某兴趣社制作的模型,则它的俯视图是()A.B.C.D.9.如图,在下面的四个几何体中,从它们各自的正面和左面看,不相同的是()A.B.C.D.10.如图所示的几何体,它的左视图为( ).A.B.C.D.11.下列哪种影子不是中心投影()A.皮影戏中的影子 B.晚上在房间内墙上的手影C.舞厅中霓红灯形成的影子 D.太阳光下林荫道上的树影12.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不相同的几何体是()A.①②B.②③C.②④D.③④二、填空题13.如图,小芸用灯泡O照射一个矩形相框ABCD,在墙上形成影子A′B′C′D′.现测得OA =20cm,OA′=50cm,相框ABCD的面积为80cm2,则影子A′B′C′D′的面积为_____cm2.14.一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为_____cm.15.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多是________.16.小芳的房间有一面积为3 m2的玻璃窗,她站在室内离窗子4 m的地方向外看,她能看到窗前面一幢楼房的面积有____m2(楼之间的距离为20 m).17.小亮在上午8时,9时30分,10时,12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为________.18.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5 m,CD=4.5 m,点P到CD的距离为2.7 m,则AB与CD间的距离是m.19.如果一个几何体从某个方向看到的平面图形是圆,则该几何体可能是________ (至少填两种几何体)20.一个几何体的三视图如图所示,则该几何体的表面积为_____.(π取3)三、解答题21.如图,在平整的地面上,用8个完全相同的小正方体堆成一个几何体,请画出从三个方向看到的几何体的形状图.【答案】画图见解析【分析】根据三视图的定义画出图形即可.【详解】解:三视图如图所示:【点睛】本题考查作图-三视图,解题的关键是建立空间观念,正确画出图形.22.已知下图为一几何体从三个方向看到的形状图:从正面看:长方形从左面看:长方形从上面看:等边三角形(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)根据图中所给的数据,求这个几何体的侧面积.96cm【答案】(1)三棱柱;(2)见解析;(3)2【分析】(1)由三视图可知,该几何体为三棱柱;(2)画出三棱柱的展开图即可;(3)根据三棱柱侧面积计算公式计算可得.【详解】解:(1)由三视图可知,该几何体为三棱柱;(2)展开图如下:(3)这个几何体的侧面积为3×8×4=96cm2.【点睛】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.一个几何体由一些大小相同的小立方块组成,从正面和从上面看到的几何体的形状图如图所示.(1)若组成这个几何体的小立方块的个数为n,请你写出n的所有可能值(2)请你画出从左面看到的几何体所有可能的形状图【答案】(1)n=8,9,10,11;(2)见解析【分析】(1)分析题意可知几何体最底一层有5个正方体,第二层最少有2个正方体,最多有4个正方体,最上层最少有1个,最多有两个,分别求和即可得到答案;(2)根据形状图的定义画出图形即可.【详解】解:(1)∵俯视图有5个正方形,∴几何体的最底层有5个正方体,由主视图可知,第二层最少有2个正方体,最多有4个正方体,最上层最少有1个,最多有两个,∴组成该几何体的小正方体的个数为:①5+2+1=8;②5+3+1=9;③5+3+2=5+4+1=10;④5+4+2=11∴n=8,9,10,11.(2)从左面看到的形状图有以下5种情形:【点睛】本题考查了由三视图判断几何体,由三视图想象几何体的形状,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.24.在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学测量树的高度时,发现树的影子有一部分0.2米落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是4.62米”;小强说:“要是没有台阶遮挡的话,树的影子长度肯定比4.62米要长”.(1)你认为小玲和小强的说法对吗?(2)请根据小玲和小强的测量数据计算树的高度;(3)要是没有台阶遮挡的话,树的影子长度是多少?【答案】(1)小玲的说法不对,小强的说法对;(2)树的高度为8米;(3)树的影子长度是4.8米.【分析】(1)根据题意可得小玲的说法不对,小强的说法对;(2)根据题意可得DEEH=10.6,DE=0.3,EH=0.18,进而可求大树的影长AF,所以可求大树的高度;(3)结合(2)即可得树的影长.【详解】(1)小玲的说法不对,小强的说法对,理由如下(2)可得;(2)根据题意画出图形,如图所示,根据平行投影可知:DEEH=10.6,DE=0.3,∴EH=0.3×0.6=0.18,∵四边形DGFH是平行四边形,∴FH=DG=0.2,∵AE=4.42,∴AF=AE+EH+FH=4.42+0.18+0.2=4.8,∵ABAF =10.6,∴AB=4.80.6=8(米).答:树的高度为8米.(3)由(2)可知:AF =4.8(米),答:树的影子长度是4.8米.【点睛】考查了相似三角形的应用、平行投影,解题关键是掌握并运用平行投影.25.如图,正方形硬纸板的边长为a ,其4个角上剪去的小正方形的边长为b (b <2a ),这样可制作一个无盖的长方体纸盒.(1)这个纸盒的容积为 ;(2)画出这个长方体纸盒的三视图.(在图上用含a 、b 的式子标明视图的长和宽)【答案】(1)b(a ﹣2b)2;(2)详见解析【分析】(1)根据图形,得出底面边长、高,从而得出长方体纸盒体积;(2)脑海中构建立体图形,绘制三视图.【详解】解:(1)由题意知纸盒的底面边长为a ﹣2b 、高为b ,则这个纸盒的容积为b(a ﹣2b)2,故答案为:b(a ﹣2b)2.(2)如图所示:【点睛】本题考查立体图形的三视图,解题关键是在脑海中构建出立体图形的样子.26.如图,甲、乙两个几何体是由一些棱长是1的正方体粘连在一起所构成的,这两个几何体从上面看到的形状图相同是“”请回答下列问题:(1)请分别写出粘连甲、乙两个几何体的正方体的个数.(2)甲、乙两个几何体从正面、左面、上面三个方向所看到的形状图中哪个不相同?请画出这个不同的形状图.(3)请分别求出甲、乙两个几何体的表面积.【答案】(1)见解析,甲的正方体有8个;乙的正方体有7个;(2)见解析;(3)甲几何体的表面积为:28;乙几何体的表面积为:28【分析】(1)分别利用几何的形状得出组成的个数;(2)甲的左视图从左往右3列正方形的个数依次为2,2,2;乙的左视图从左往右3列正方形的个数依次为2,1,2;(3)直接利用几何体的形状进而得出表面积.【详解】解:(1)如图所示:甲的正方体有4+4=8个;乙的正方体有4+3=7个;(2)甲、乙两个几何体的主视图相同,俯视图也相同,只有左视图不同;甲、乙两个几何体的左视图不同,如图所示:;(3)甲几何体的表面积为:14+14=28;乙几何体的表面积为:14+1+5+8=28.【点睛】本题考查了视图的相关知识;用到的知识点是:三视图分别是从物体的正面、左面、上面看得到的平面图形.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据主视图的定义判断即可.【详解】解:这个几何体从正面看到的图形是C,故选:C.【点睛】本题考查三视图的应用,熟练掌握三视图的意义及观察方法是解题关键.2.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案【详解】解:从上边看是两个正方形,对应顶点间有线段的图形,看得见的棱都是实线;如图所示:故选:C.【点睛】本题考查了立体图形的三视图,从上边看得到的图形是俯视图,注意看得见的棱用实线,看不见的棱用虚线.3.D解析:D【分析】直接找出从上面看到的图形即可.【详解】解:该几何体的俯视图为,故选:D.【点睛】本题考查几何体的三视图,注意看不到的边要用虚线表示出来.4.D解析:D【分析】找到从几何体的正面看所得到的图形即可.【详解】解:主视图有3列,每列小正方形数目分别为2,1,1,故选:D.【点睛】此题主要考查了简单几何体的三视图,主视图是从物体的正面看得到的视图.5.D解析:D【分析】分别画出所给两个几何体的三视图,然后比较即可得答案.【详解】第一个几何体的三视图如图所示:第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选D.【点睛】本题考查了几何体的三视图,正确得出各几何体的三视图是解题的关键.6.D解析:D【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】从左面看去,是两个有公共边的矩形,如图所示:故选:D.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.7.A解析:A【分析】根据垂直于圆柱底面的截面是矩形,可得答案.【详解】由水平面与圆柱的底面垂直,得水面的形状是长方形.故选:A.【点睛】本题考查了截几何体和认识立体图形.解题的关键是能够正确认识立体图形,明确垂直于圆柱底面的截面是长方形,平行圆柱底面的截面是圆形.8.B解析:B【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选B.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.9.A解析:A【分析】利用主、俯:长对正;主、左:高平齐;俯、左:宽相等可对各选项进行判断.【详解】A、左视图和主视图虽然都是长方形,但是左视图的长方形的宽为三棱柱的底面三角形的高;主视图的长方形的宽为三棱柱的底面三角形的边长,所以A选项正确;B、左视图和主视图都是相同的正方形,所以B选项错误;C、左视图和主视图都是相同的长方形,所以C选项错误;D、左视图和主视图都是相同的等腰三角形,所以D选项错误.故选A.【点睛】本题考查了简单几何体的三视图:画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.会画常见的几何体的三视图.10.D解析:D【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看是上大下小等宽的两个矩形,矩形的公共边是虚线,故选:D.【点睛】本题考查简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.11.D解析:D【解析】【分析】根据中心投影的性质,找到不是灯光的光源即可.【详解】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有B选项得到的投影为平行投影,所以太阳光下林荫道上的树影不是中心投影.故选:D.【点睛】解决本题的关键是理解中心投影的形成光源为灯光.12.B解析:B【解析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,分别得到每个几何体的三视图,进而得到答案:正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆.∴三视图有两个相同,而另一个不相同的几何体是圆柱和圆锥.故选B.二、填空题13.500cm2【分析】易得对应点到对应中心的比值那么面积比为对应点到对应中心的比值的平方据此求解可得【详解】解:∵OA:OA′=2:5可知OB:OB′=2:5∵∠AOB=∠A′OB′∴△AOB∽△A′解析:500cm2.【分析】易得对应点到对应中心的比值,那么面积比为对应点到对应中心的比值的平方,据此求解可得.【详解】解:∵OA:OA′=2:5,可知OB:OB′=2:5,∵∠AOB=∠A′OB′,∴△AOB∽△A′OB′,∴AB:A′B′=2:5,∴矩形ABCD的面积:矩形A′B′C′D′的面积为4:25,又矩形ABCD的面积为80cm2,则矩形A′B′C′D′的面积为500cm2.故答案为500cm2.【点睛】本题考查中心投影与位似图形的性质,用到的知识点为:位似比为对应点到对应中心的比值,面积比为位似比的平方.14.8【分析】由题意易得△ABC∽△A1B1C1根据相似比求A1B1即可【详解】∵∠ACB=90°BC=12cmAC=8cm∴AB=4cm∵△A1B1C1是△ABC的中心投影∴△ABC∽△A1B1C1∴解析:【分析】由题意易得△ABC∽△A1B1C1,根据相似比求A1B1即可.【详解】∵∠ACB=90°,BC=12cm,AC=8cm,∴,∵△A1B1C1是△ABC的中心投影,∴△ABC∽△A1B1C1,∴A1B1:AB=B1C1:BC=2:1,即A1B1.故答案为【点睛】本题综合考查了中心投影的特点和规律以及相似三角形性质的运用.解题的关键是利用中心投影的特点可知在这两组三角形相似,利用其相似比作为相等关系求出所需要的线段.15.5【解析】【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】结合主视图和俯视图可知左边上层最多有2个左边下层最多有2个右边只有一层且只有解析:5【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故答案为:5.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.16.108【解析】考点:平行投影;相似三角形的应用分析:在不同时刻同一物体的影子的方向和大小可能不同不同时刻物体在太阳光下的影子的大小在变方向也在改变依此进行分析解答:解:根据题意:她能看到窗前面一幢楼解析:108【解析】考点:平行投影;相似三角形的应用.分析:在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.解答:解:根据题意:她能看到窗前面一幢楼房的图形与玻璃窗的外形应该相似,且相似比为246=6,故面积的比为36;故她能看到窗前面一幢楼房的面积有36×3=108m2.点评:本题考查了平行投影、视点、视线、位似变换、相似三角形对应高的比等于相似比等知识点.注意平行投影特点:在同一时刻,不同物体的物高和影长成比例17.上午8时【解析】解:根据地理知识北半球不同时刻太阳高度角不同影长也不同规律是由长变短再变长故答案为上午8时点睛:根据北半球不同时刻物体在太阳光下的影长是由长变短再变长来解答此题解析:上午8时【解析】解:根据地理知识,北半球不同时刻太阳高度角不同影长也不同,规律是由长变短,再变长.故答案为上午8时.点睛:根据北半球不同时刻物体在太阳光下的影长是由长变短,再变长来解答此题. 18.8【详解】由AB ∥CD 可得△PAB ∽△PCD 设CD 到AB 距离为x 根据相似三角形的性质可得即解得x=18m 所以AB 离地面的距离为18m 故答案为18 解析:8【详解】由AB ∥ CD ,可得△PAB ∽ △PCD ,设CD 到AB 距离为x ,根据相似三角形的性质可得2.72.7AB x CD -=,即2 2.76 2.7x -=,解得x=1.8m . 所以AB 离地面的距离为1.8m ,故答案为1.8.19.圆锥圆柱球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥圆柱球等故答案为圆锥圆柱球解析:圆锥、圆柱、球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥,圆柱,球等.故答案为圆锥、圆柱、球.20.13【分析】首先根据三视图判断几何体的形状然后计算其表面积即可【详解】观察该几何体的三视图发现其为半个圆柱半圆柱的直径为2高为2故其表面积为:故答案为:13【点睛】本题考查了由三视图判断几何体的知识 解析:13【分析】首先根据三视图判断几何体的形状,然后计算其表面积即可.【详解】观察该几何体的三视图发现其为半个圆柱,半圆柱的直径为2,高为2, 故其表面积为:211222234334132πππ⨯+⨯+⨯⨯=+=⨯+=. 故答案为:13.【点睛】本题考查了由三视图判断几何体的知识,解题的关键是首先根据三视图得到几何体的形状,难度不大.三、解答题21.无22.无23.无24.无25.无26.无。
一.选择题1.下面四个几何体中,从上往下看,其正投影不是圆的几何体是()。
A.$B.$C.$D.$2.下列投影一定不会改变△ABC的形状和大小的是()。
A.中心投影B.平行投影C.正投影D.当△ABC平行投影面时的正投影3.木棒长为 3.5m,则它的正投影的长一定()。
A.等于 3.5mB.小于 3.5mC.大于 3.5mD.小于或等于 3.5m4.一根电线杆的接线柱部分AB在阳光下的投影CD的长为 1.2,太阳光线与地面的夹角,则AB的长为()。
A.12B.0.6C.D.5.图中的八边形是一个正八棱柱的俯视图,如果要想恰好看到这个正八棱柱的三个侧面,在图中标注的4个区域中,应该选择站在()。
A.①B.②C.③D.④6.如图,几个完全相同的小正方体组成一个几何体,这个几何体的三视图中面积最大的是()。
A.主视图B.左视图C.俯视图D.主视图和左视图7.如图是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体是()。
A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变8.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为()。
A.66B.48C.482+36D.579.如图所示的几何体的俯视图是()。
A.$B.$C.$D.$10.某商品的外包装盒的三视图如图所示,则这个包装盒的体积是()。
A.200π(cm3)B.500π(cm3)C.1000π(cm3)D.2000π(cm3)二.填空题11.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为 1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为_____米。
12.如图,是某一个几何体的俯视图,主视图、左视图,则这个几何体是_____。
13.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么它的左视图的高是_____。
九年级上册数学第四章视图与投影练习(附答案)以下是查字典数学网为您推荐的九年级上册数学第四章视图与投影练习(附答案),希望本篇文章对您学习有所帮助。
九年级上册数学第四章视图与投影练习(附答案)1.图1所示的物体的左视图(从左面看得到的视图)是( D ) 图1 A.B. C. D.2.如图所示的是某几何体的三视图,则该几何体的形状是( B )(A)长方体 (B)三棱柱 (C)圆锥 (D)正方体3.在相同的时刻,物高与影长成比例.如果高为1.5米人测竿的影长为2.5米,那么影长为30米的旗杆的高是( C )A、20米B、16米C、18米D、15米4.如图3,箭头表示投影的方向,则图中圆柱体的投影是( B )A.圆B.矩形C.梯形D.圆柱5.在一个晴朗的上午,皮皮拿着一块正方形术板在阳光下做投影实验,正方形木板在地面上形成的投影不可能是( A )6.如图5,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子( B )A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长7.关于盲区的说法正确的有( C )(1)我们把视线看不到的地方称为盲区(2)我们上山与下山时视野盲区是相同的(3)我们坐车向前行驶,有时会发现一些高大的建筑物会被比它矮的建筑物挡住(4)人们常说站得高,看得远,说明在高处视野盲区要小,视野范围大A、1 个B、2个C、3个D、4个8.一个长方体的左视图、俯视图及相关数据如图6所示,则其主视图的面积为( B )A.6B.8C.12D.249.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是( D )A.AB=CDB.C.D.10.图7-(1)表示一个正五棱柱形状的高大建筑物,7-图(2)是它的俯视图.小健站在地面观察该建筑物,当他在图7-(2)中的阴影部分所表示的区域活动时,能同时看到建筑物的三个侧面,图中MPN的度数为( B )A.30B.36C.45D.72二、细心填一填!(30分)11.如果一个立体图形的主视图为矩形,则这个立体图形可能是 (•只需填上一个立体图形).12.如图8中物体的一个视图(a)的名称为_▲_.13. 一个几何体的三视图如图9所示(其中标注的a,b,c为相应的边长),则这个几何体的体积是.14.我们把大型会场、体育看台、电影院建为阶梯形状,是为了 .15.如图10,为了测量学校旗杆的高度,小东用长为3.2的竹竿做测量工具。
沪科版九年级数学第25章投影与三视图单元检测试卷及答案学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 如图,路灯距地面 米,身高 米的小明从点 处沿 所在的直线行走 到点 时,人影长度( )A.变长B.变长C.变短D.变短2. 如图是一个由 个相同的正方体组成的立体图形,则它的主视图为( )A.B.C.D.3. 如图所示,夜晚路灯下同样高的旗杆,离路灯越近,它的影子( )A.越长B.越短C.一样长D.无法确定4. 如图所示,是几个相同小正方体所搭成几何体的俯视图,小正方形内的数字表示在该位置的小正方体的个数.则这个几何体的主视图是( )A.B.C.D.5. 下列四个几何体中左视图与俯视图相同的几何体是( )A.①②B.①③C.②③D.③④ 6. 下列基本几何体中,从正面、上面、左面观察都是相同图形的是( ) A.B.C.D.7. 如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的左视图是( )A.B.C.D.8. 如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的正视图是( )A.B.C.D.9. 由一些大小相同的小立方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上立方体的个数,那么该几何体的左视图是( )A.B.C.D.10. 如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是( )A. B. C. D.二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 如图,计算所给三视图表示的几何体的体积是________.12. 如图是一个包装盒的三视图,则这个包装盒的体积是________.13. 在平整的地面上,有若干个完全相同的棱长为的小正方体堆成一个几何体,如图所示.(1)这个几何体由________个小正方体组成;(2)有个面露在外面的正方体有________个;14. 如图表示一个正五棱柱形状的建筑物,如图是它的俯视图,小明站在地面上观察该建筑物,当只能看到建筑物的一个侧面时,他的活动区域有________个.15. 小张与小王的身高相同,若在路灯下,发现小张的影子比小王的影子短,则说明小张离路灯较________.16. 如图中是一球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球影子会________(填“逐渐变大”或“逐渐变小”)17. 如图,小丽站在米高的楼顶远眺前方的广场,米处有一个高为米的障碍物,那么离楼房________的范围内小丽看不见.18. 如图,一只小猫在一片废墟中玩耍,一只老鼠呆在________处才不会被小猫发现.19. 一个几何体从正面看,左面看,上面看到的平面图形一样,那么这个几何体可能是________或________.20. 如图,分别是由若干个完全相同的小正方体组成的一个物体的主视图和俯视图,则组成这个物体的小正方体的个数是________个.三、解答题(本题共计 8 小题,共计60分,)21. (6分)画出下列几何体的主视图、左视图与俯视图.22. (6分)如图所示,观察左图,并在右边的三视图中标出几何体中的相应字母的位置.23. (8分)请指出左图中的平面图形是右图所示立体图形的哪个视图.24. (8分)已知一个直棱柱的三视图如图所示:(单位:).请在俯视图的虚线框内注上符合的数据.25.(8分) 如图,这是由三个大小不等的正方体拼成的组合立体图,其中最小的正方体的棱长是最大正方体棱长的(1)请按这个立体图画出它的三视图;(2)若组合立体图的主视、俯视和左视图的面积分别为,,,则,,之间大小关系.26.(8分) 如图,和是直立在地面上的两根立柱,已知,某一时刻在太阳光下的影子长.(1)在图中画出此时在太阳光下的影子;(2)在测量的影子长时,同时测量出,计算的长.27. (8分)用小立方体搭成一个几何体,使得它的正视图和左视图如图所示,这样的几何体只有一种吗?最少需要多少个小立方块?最多需要多少个小立方块?28.(8分) 如图,正方形的边长为,点,,分别为,,的中点.现从点观察线段,当长度为的线段(图中的黑粗线)以每秒个单位长的速度沿线段从左向右运动时,将阻挡部分观察视线,在区域内形成盲区.设的左端点从点开始,运动时间为秒.设区域内的盲区面积为(平方单位).(1)求与之间的函数关系式;(2)请简单概括随的变化而变化的情况.参考答案与试题解析一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】C【考点】中心投影【解析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.2.【答案】A【考点】简单组合体的三视图【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.3.【答案】B【考点】中心投影【解析】连接路灯和旗杆的顶端并延长交平面于一点,这点到旗杆的底端的距离是就是旗杆的影长,画出相应图形,比较即可.4.【答案】B【考点】由三视图判断几何体简单组合体的三视图【解析】根据俯视图得出正方形的个数,进而得出从正面看所得到的图形即可.5.【答案】A【考点】简单几何体的三视图【解析】左视图、俯视图是分别从物体左面和上面看,所得到的图形.6.【答案】C简单几何体的三视图【解析】分别写出各选项中几何体的三视图,然后选择答案即可.7.【答案】C【考点】由三视图判断几何体简单组合体的三视图【解析】由已知条件可知,左视图有列,每列小正方形数目分别为:右面上下个,左面个.据此可作出判断.8.【答案】B【考点】由三视图判断几何体简单组合体的三视图【解析】根据主视图的定义求解可得.9.【答案】A【考点】简单组合体的三视图【解析】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.10.【答案】B【考点】简单组合体的三视图【解析】根据俯视图可确定主视图的列数和小正方体的个数,即可解答.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】【考点】由三视图判断几何体【解析】利用三视图判断几何体的形状,通过三视图是数据,求出几何体的体积即可.12.【答案】【考点】由三视图判断几何体【解析】先根据三视图确定几何体的形状,再根据图中所给出的数据求出底面积,再根据体积公式计算即可.13.【答案】;.【考点】作图-三视图【解析】(1)从左往右三列小正方体的个数依次为:,,,相加即可;(2)数出个面露在外面的正方体即可求解;(3)由已知条件可知,主视图有列,每列小正方数形数目分别为,,;左视图有列,每列小正方形数目分别为,,;俯视图有列,每列小正方数形数目分别为,,.据此可画出图形.14.【答案】【考点】视点、视角和盲区【解析】根据正五棱柱形状的建筑物,它的俯视图,可知当只能看到建筑物的一个侧面时,正好是以正五边形其中一条边的正三角形,即可得出符合要求的活动区域.15.【答案】近【考点】中心投影【解析】根据中心投影的特点,结合题意,可得小张离路灯较近.16.【答案】逐渐变大【考点】中心投影【解析】在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,所以当发光的手电筒由远及近时,落在竖直墙面上的球影子会逐渐变大.17.【答案】大于米小于米【考点】视点、视角和盲区【解析】先判断出盲区,然后利用解直角三角形的知识求出盲区即可.18.【答案】,,,【考点】视点、视角和盲区【解析】观察图形,利用视角和盲区的知识,只有老鼠在盲区才不会被小猫发现.19.【答案】正方体,球【考点】简单几何体的三视图【解析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.20.【答案】或【考点】由三视图判断几何体【解析】由主视图易得此几何体有层.俯视图可确定最底层的正方形的个数,由主视图可得几何体第二层可能的正方体的个数,相加即可.三、解答题(本题共计 8 小题,共计60分)21.【答案】解:如图所示:.【考点】简单组合体的三视图【解析】找到从正面、左面、上面看所得到的图形即可,注意所有的看到的棱都应表现在三视图中.22.【答案】解:根据题意如图:【考点】简单几何体的三视图【解析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面所看到的图形,从而得出答案.23.【答案】解:三个图形依次为:左视图,俯视图,主视图.【考点】简单组合体的三视图【解析】根据三视图中主视图,俯视图,左视图的定义结合图形求解.24.【答案】解:【考点】简单几何体的三视图【解析】根据长对正,高平齐,宽相等的原则填空.25.【答案】解:(1)如图所示:;(2)∵主视、俯视和左视图的面积分别为,,,∴.【考点】作图-三视图简单组合体的三视图【解析】(1)根据几何体的形状分别从正面、左面、上面观察图形得出视图即可;(2)利用所画三视图直接得出大小关系即可.26.【答案】的长为.【考点】平行投影【解析】(1)利用平行投影的性质得出即可;(2)利用同一时刻物体影子与实际高度的比值相等进而得出答案.27.【答案】解:最少需要块如图,最多需要块如图【考点】简单组合体的三视图【解析】这种题需要空间想象能力,可以想象这样的小立方体搭了上中下三层,但只有从左到右的二排,符合题中两个视图的几何体不只一种.28.【答案】解:(1)∵正方形的边长为,点,,分别为,,的中点,∴,盲区为梯形,且上底为下底的一半,高为,当时,,当时,,当时,•;(2)秒内,随的增大而增大;秒到秒,的值不变;秒到秒,随的增大而减小.【考点】视点、视角和盲区【解析】(1)根据正方形的性质得,盲区为梯形,且上底为下底的一半,高为,然后分段计算:当时,梯形的上底为,则下底为;当时,梯形的上底为,下底为;当时,梯形的上底为,则下底为,然后根据梯形的面积分别计算出三中情况下的梯形的面积即可;(2)根据一次函数的性质求解.。
一、选择题1.下面的三视图所对应的物体是().A. B. C.D.2.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面和上面看到的形状图,该几何体最少要用________个立方块搭成,最多要用________个立方块搭成()A.7,12 B.8,11 C.8,10 D.9,133.如图所示的几何体的主视图是()A.B.C.D.4.将一个圆柱和一个正三棱柱如图放置,则所构成的几何体的主视图是()A.B.C.D.5.如图所示,该几何体的俯视图为()A.B.C.D.6.用大小和形状完全相同的小正方体木块搭成一个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为()A.13个B.16个C.19个D.22个7.下列几何体是由4个相同的小正方体搭成的,其中左视图与主视图相同的是()A.B.C.D.8.一个密封的圆柱体容器中装了一半的水,如果将该容器水平放置如图,那么稳定后的水面形状为().A.B.C.D.9.物体的形状如图所示,则从上面看此物体得到的平面图形是()A.B.C.D.10.如图,下列关于物体的主视图画法正确的是()A.B.C.D.11.若几何体的三视图如图所示,则该几何体是()A.长方体B.圆柱C.圆锥D.三棱柱12.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.二、填空题13.如图,是一个立体图形的三种视图,则这个立体图形的体积为______.14.如图,是由一些相同的小正方体构成的几何体从三个不同方向看到的形状图,则构成这个几何体的小正方体有_____个.15.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠且高度恰好相同.此时测得墙上影子高,,(点A、E、C在同一直线上).已知小明身高EF是1.6m,则楼高AB为______m.16.如图是两棵小树在同一时刻的影子,那么图①是________投影,图②是________投影.17.一个长方体从正面和左面看到的图形如图所示(单位cm),则从其上面看到的图形的面积是_____.18.某长方体从左面看和从上面看得到的图形如图所示,则此长方体的表面积为________.19.如图所示,身高1.5m 的小华站在距路灯杆5m 的C 点处,测得她在灯光下的影长CD 为2.5m ,则路灯的高度AB 为_____米.20.在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为__.三、解答题21.如图是一个正三棱柱及俯视图:(1)请分别画出它的主视图、左视图;(2)若4AC =,6AA '=,则左视图的面积为_____________.【答案】(1)见解析;(2)123【分析】(1)观察图形,根据主视图和左视图的定义即可画出图形,注意看不见的线用虚线; (2)过点B 作BD ⊥AC 于点D ,左视图的面积等于BD 乘棱柱的高,利用勾股定理求得BD 即可.【详解】(1)作图如下:(2)如图,∵是正三棱柱,∴△ABC 为等边三角形,AB =AC =4,过点B 作BD ⊥AC 于点D ,∵4AC =,∴2AD =,4AB AC ==, ∴2223BD AB AD -=, 则左视图的面积为236123=【点睛】本题考查简单的几何体的三视图,三视图的面积的计算,本题是一个易错题,易错点在将侧视图的宽看成底边的边长.22.如图,是由7个大小相同的小立方块搭成的一个几何体.(1)请在指定位置画出该几何体从左面、上面看到的形状图;(2)小颖从该几何体中移去一个小立方块,变成由6个大小相同的小立方块搭成的一个几何体.发现所得新几何体与原几何体相比,从左面、上面看到的形状图仍然保持不变,请画出新几何体从正面看到的形状图.【答案】(1)见解析;(2)见解析.【分析】(1)分别画出立体图形的三视图即可;(2)从几何体中移走一个小立方块,所得新几何体与原几何体相比,从左面、上面看到的形状图保持不变,可得移走的一个小立方块是从正面看第二层第二列的一个,最后再画出主视图即可.【详解】解:(1)如图所示:(2)如图所示:【点睛】本题主要考查了三视图的画法,掌握三视图的定义和较好的空间想象能力成为解答本题关键.23.根据要求画图,并回答问题:如图1是一些小方块所搭几何体的俯视图,俯视图的每个小正方形中的数字表示该位置的小方块的个数,(1)请在图2的网格中画出这个几何体的主视图和左视图;(2)在不改变俯视图、主视图、左视图的情况下,最多能添加个小方块.【答案】(1)画图见解析;(2)3【分析】(1)根据俯视图的每个小正方形中的数字表示该位置的小方块的个数,画出主视图、左视图即可;(2)观察左视图、主视图以及俯视图即可判断.【详解】解:(1)这个几何体的主视图和左视图如图所示:;(2)在不改变俯视图、主视图、左视图的情况下,如图:最多能添加3个小方块.故答案为3.【点睛】本题考查三视图,具备空间想象能力是解题的关键.24.一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如图,小正方形的数字表示在该位置的小正方块儿的个数,请在网格中画出从正面和左面看到的几何体的形状图.【答案】见解析【分析】主视图应该有3列,看到的正方形的个数分别是2、3、4,左视图应该有2列,看到的正方形的个数分别是2、4,据此解答即可【详解】解:正面和左面看到的几何体的形状图如图所示:【点睛】本题考查了简单组合体的三视图,属于常考题型,掌握解答的方法是解题的关键.25.画出下列几何体的三视图【答案】见解析【分析】根据主视图是从正面看所得到的图形,俯视图是从上面看所得到的图形,左视图时从左边看所得到的图形画出图形即可.【详解】如图所示:【点睛】本题主要考查了几何体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.26.由8个边长为1的相同小立方块搭成的几何体如图所示:(1)请画出它的三视图;(2)请计算它的表面积.【答案】(1)三视图见解析;(2)36【分析】(1)画出从正面、左面和上面看到的图形即可;(2)查出从前后,上下,左右可以看到的面,进行计算即可求解.【详解】解:(1)如图所示:;(2)从正面和后面看各有6个面,从上面和下面看各有6个面,从左面和右面看各有6个面,所以表面积为:()666236++⨯=.【点睛】本题考查三视图与求几何体的表面积,画出三视图是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】本题可利用排除法解答.从俯视图看出这个几何体上面一个是圆,直径与下面的矩形的宽相等,故可排除B ,C ,D .【详解】解:从主视图左视图可以看出这个几何体是由上、下两部分组成的,故排除D 选项,从上面物体的三视图看出这是一个圆柱体,故排除B 选项,从俯视图看出是一个底面直径与长方体的宽相等的圆柱体,故选:A .此题考查由三视图还原实物基本能力,还原实物的形状关键是能想象出三视图和立体图形之间的关系,从而得出该物体的形状.本题只从俯视图入手也可以准确快速解题.2.B解析:B【分析】根据题意可以得到该几何体从正面和上面看至少有多少个小立方体,综合考虑即可解答本题.【详解】解:根据主视图、俯视图,可以得出最少时、最多时,在俯视图的相应位置上所摆放的个数如下:最少时:;最多时最少时需要8个,最多时需要11个,故选:B.【点睛】本题考查简单组合体的三视图,在俯视图上相应位置标出所摆放的个数是解决问题的关键.3.A解析:A【分析】找到从几何体的正面看所得到的图形即可.【详解】解:主视图是一个“L”形的组合图形.故选:A.【点睛】此题考查几何体的三视图,掌握几何体三视图观察的方位及图形形状是解题的关键.4.A解析:A【分析】根据主视图是从物体正面看所得到的图形即可解答.【详解】解:根据主视图的概念可知,主视图是从前向后观察物体所得到的图形,上半部分是一个长方形且中间有一条竖实线,下半部分是一个长方形.∴从物体的正面看得到的视图是选项A.【点睛】本题考查了简单几何体的主视图,注意主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形.5.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一些等宽的矩形,其中有两条宽是虚线,故选:C.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.6.A解析:A【分析】由几何体的正视图和俯视图,我们可以判断出这个几何体由一些相同的小正方体构成,其中根据俯视图我们可以判断该几何体共有7摞小正方体组成,然后根据主视图推算每摞小正方体的最少个数,即可得到答案.【详解】根据俯视图我们可以判断该几何体共有7摞小正方体组成,根据正视图,可得:左边2摞,最高层数为3,故小正方体最少有3+1=4个,中间2摞,最高层数为2,故小正方体最少有2+1=3个,右边3摞,最高层数为4,故小正方体最少有4+1+1=6个,故小正方体最少有13个.故选A.【点睛】本题主要考查几何体的三视图,掌握三视图的定义,是解题的关键.7.B解析:B【分析】分别画出四个选项中简单组合体的三视图即可.【详解】A、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;B、左视图为,主视图为,左视图与主视图相同,故此选项符合题意;C、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;D、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;故选B.【点睛】此题主要考查了简单组合体的三视图,关键是掌握左视图和主视图的画法.8.A解析:A【分析】根据垂直于圆柱底面的截面是矩形,可得答案.【详解】由水平面与圆柱的底面垂直,得水面的形状是长方形.故选:A.【点睛】本题考查了截几何体和认识立体图形.解题的关键是能够正确认识立体图形,明确垂直于圆柱底面的截面是长方形,平行圆柱底面的截面是圆形.9.C解析:C【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:从上面看易得第一层有3个正方形,第二层最左边有一个正方形.故选:C.【点睛】本题考查了三视图的知识,理解俯视图是从物体的上面看得到的视图是关键.10.C解析:C【分析】根据主视图是从正面看到的图形,进而得出答案.【详解】主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线,画法正确的是:.故选C.【点睛】本题考查了三视图的知识,关键是找准主视图所看的方向.11.D解析:D【解析】【分析】根据两个视图是长方形得出该几何体是柱体,再根据俯视图是三角形,得出几何体是三棱柱.【详解】主视图和左视图是长方形,∴几何体是柱体,俯视图的大致轮廓是三角形,∴该几何体是三棱柱;所以D选项是正确的.【点睛】此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.12.C解析:C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.二、填空题13.【分析】根据该立体图形的三视图可判断该立体图形为圆柱且底面直径为8高为8根据圆柱的体积公式即可得答案【详解】∵该立体图形的三视图为两个正方形和一个圆∴该立体图形为圆柱且底面直径为8高为8∴这个立体图解析:128π【分析】根据该立体图形的三视图可判断该立体图形为圆柱,且底面直径为8,高为8,根据圆柱的体积公式即可得答案.【详解】∵该立体图形的三视图为两个正方形和一个圆,∴该立体图形为圆柱,且底面直径为8,高为8,∴这个立体图形的体积为π×42×8=128π,故答案为:128π【点睛】本题考查由三视图判断几何体;利用该几何体的三视图得到该几何体底面半径、高是解题的关键.14.6【分析】根据三视图可知:组成几何体的正方体的分布情况进而求出答案【详解】根据几何体的三视图可知:组成该几何体的正方体分布如下:∴构成这个几何体的小正方体有6个故答案是:6【点睛】本题主要考查几何体解析:6【分析】根据三视图可知:组成几何体的正方体的分布情况,进而求出答案.【详解】根据几何体的三视图可知:组成该几何体的正方体分布如下:∴构成这个几何体的小正方体有6个.故答案是:6.【点睛】本题主要考查几何体的三视图,根据三视图想象出几何体的样子,是解题的关键.15.2【解析】【分析】过点D作DN⊥AB可得四边形CDMEACDN是矩形即可证明△DFM∽△DBN从而得出BN进而求得AB的长【详解】解:过点D作DN⊥AB垂足为N交EF于M点∴四边形CDMEACDN是解析:2【解析】【分析】过点D作DN⊥AB,可得四边形CDME、ACDN是矩形,即可证明△DFM∽△DBN,从而得出BN,进而求得AB的长.【详解】解:过点D作DN⊥AB,垂足为N.交EF于M点,∴四边形CDME、ACDN是矩形,∴AN=ME=CD=1.2m,DN=AC=30m,DM=CE=0.6m,∴MF=EF-ME=1.6-1.2=0.4m,依题意知EF∥AB,∴△DFM∽△DBN,,即:,解得:BN=20,∴AB=BN+AN=20+1.2=21.2,答:楼高为AB为21.2米.【点睛】本题考查了平行投影和相似三角形的应用,是中考常见题型,要熟练掌握.16.平行中心【解析】【分析】两物体若是平行投影则等比例放大或缩小中心投影则不同【详解】图①是平行投影图②是中心投影故答案为:平行中心【点睛】本题考查了平行投影和中心投影的知识关键是掌握平行投影和中心投影解析:平行中心【解析】【分析】两物体若是平行投影,则等比例放大或缩小,中心投影则不同.【详解】图①是平行投影,图②是中心投影.故答案为:平行、中心.【点睛】本题考查了平行投影和中心投影的知识,关键是掌握平行投影和中心投影的特点与不同.17.6cm2【分析】先根据从左面从正面看到的形状图的相关数据可得从上面看到的形状图是长为3宽为2的长方形再根据长方形的面积公式计算即可【详解】根据从左面从正面看到的形状图的相关数据可得:从上面看到的形状解析:6cm2【分析】先根据从左面、从正面看到的形状图的相关数据可得,从上面看到的形状图是长为3宽为2的长方形,再根据长方形的面积公式计算即可.【详解】根据从左面、从正面看到的形状图的相关数据可得:从上面看到的形状图是长为3宽为2的长方形,则从上面看到的形状图的面积是2×3=6cm2;故答案为6cm2.【点睛】此题考查了由三视图判断几何体,关键是根据从左面、从正面看到的形状图的相关数据得出从上面看到的形状图是长为3宽为2的长方形.18.38【解析】解:由图知:长方体的长为4宽为3高为1故长方体的表面积=2×4×3+2×3×1+2×4×1=38故答案为38解析:38【解析】解:由图知:长方体的长为4,宽为3,高为1.故长方体的表面积=2×4×3+2×3×1+2×4×1=38.故答案为38.19.5【解析】【分析】由于人和地面是垂直的即和路灯平行构成相似三角形根据对应边成比例列方程解答即可【详解】解:∵CE∥AB∴△ADB∽△EDC∴AB:CE=BD:CD即AB:15=75:25解得:AB=解析:5.【解析】【分析】由于人和地面是垂直的,即和路灯平行,构成相似三角形.根据对应边成比例,列方程解答即可.【详解】解:∵CE∥AB,∴△ADB∽△EDC∴AB:CE=BD:CD即AB:1.5=7.5:2.5解得:AB=4.5m.即路灯的高度为4.5米.故答案为4.5【点睛】考查相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出路灯的高度,体现了转化的思想.20.5【分析】由主视图和左视图可得此几何体有三行三列判断出各行各列最少有几个正方体组成即可得答案【详解】由主视图和左视图可得此几何体有三行三列∵底层正方体最少有3个小正方体第二层最少有2个正方体∴组成这解析:5【分析】由主视图和左视图可得此几何体有三行,三列,判断出各行各列最少有几个正方体组成即可得答案.【详解】由主视图和左视图可得此几何体有三行,三列,∵底层正方体最少有3个小正方体,第二层最少有2个正方体,∴组成这个几何体的小正方体的个数最少有5个,∴n的最小值为5,故答案为:5【点睛】本题考查了由三视图判断几何体的知识,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需正方体的个数.三、解答题21.无22.无23.无24.无25.无26.无。
九年级(上)第四章视图与投影单元测试 班级 姓名一、选择题(每小题3分,共30分)1、下列物体中,主视图和俯视图都是如右图所示图形的立体图形是( )A ①②B ②C ①②③D ①②③④2、如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )≌A B C D3、右图是由一些相同的小正方体构成的几何体的三视图,则构成这个几何体的小正方体的个数是( )A.5B.6C.7D.84、小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子( )A.相交B.平行C.垂直D.无法确定5、在一个晴朗的好天气里,小颖在向正北方向走路时,发现自己的身影向左偏,你知道小颖当时所处的时间是( )A.上午B.中午C.下午D.无法确定6、小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( )A.上午12时B.上午10时C.上午9时30分D.上午8时7、对同一建筑物,相同时刻在太阳光下的影子冬天比夏天( )A.短B.长C.看具体时间D.无法比较8、如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是( )A.①②③④B.④①③②C.④②③①D.④③②①9、晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是( )A.变长B.变短C.先变长后变短D.先变短后变长10、如图所示,在房子外的屋檐E 处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区在( )A.△ACEB.△BFDC.四边形BCEDD.△ABD(第10题图) (第12题图) (第13题图)程 前 你 祝似 锦二、填空题(每小题3分,共18分)11、皮影戏中的皮影是由投影得到的.12、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示。
九年级投影与视图测试卷(本卷满分150分)姓名 得分一、选择题(本题共有10小题,每小题4分,共40分)1、从早上太阳升起的某一时刻开始到晚上,旭日广场的旗杆在地面上的影子的变化规律是( B )A 、先变长,后变短B 、先变短,后变长C 、方向改变,长短不变D 、以上都不正确2、如图是某几何体的三视图,则该几何体的名称是( A )A .圆柱B .圆锥C .棱柱D .长方体4、下列说法正确的是( C ) A 、物体在阳光下的投影只与物体的高度有关B 、小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长.C 、物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化.D 、物体在阳光照射下,影子的长度和方向都是固定不变的.3、一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为…………………………【 C 】A .3, B .2, C .3,2 D .2,34、如图,为一个多面体的表面展开图,每个面内都标注了数字.若数字为6的面是底面,则朝上一面所标注的数字为( D )A.5B.4 C.3 D.25、如图4,丁轩同学在晚上由路灯AC 走向路灯BD ,当他走到点P时,发现身后他影子主视图 俯视图 左视图第3题图 主视图 左视图 俯视图第4题图的顶部刚好接触到路灯AC 的底部,当他向前再步行20m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部,已知丁轩同学的身高是1.5m ,两个路灯的高度都是9m ,则两路灯之间的距离是( D )A .24mB .25mC .28mD .30m6、由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是( D )A .3B .4C .5D .6主视图 左视图 俯视图7、一根笔直的小木棒(记为线段AB ),它的正投影为线段CD ,则下列各式中一定成立的是( D )A .AB=CDB .AB ≤CDC .CD AB > D .AB ≥CD8由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的左视图是( B )9、如图2所示,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m ,桌面距离地面1m ,若灯泡距离地面3m ,则地面上阴影部分的面积为( B ) 第9题A 、0.36πm 2B 、0.81πm 2C 、2πm 2D 、3.24πm 210直四棱柱,长方体和正方体之间的包含关系是( A )二、填空题(本题共有10小题,每小题4分,共40分)11、如果一个几何体的主视图、左视图都是等腰三角形,俯视图为圆,那么我们可以确定这个几何体是圆锥 12、为了测量一根电线杆的高度,取一根2米长的竹竿竖直放在阳光下,2米长的竹竿的影长为1米,并且在同一时刻测得电线杆的影长为7.3米,则电线杆的高为14.6米. 第8题1 2 A . B . C . D . 2 3 113、主视图、左视图、府视图都相同的几何体为 (写出两个).14、如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是218cm15、如图,是一个工件的三视图,则此工件的全面积是90πcm 216如下左图是一个由6个大小相同、棱长为1的小正方体搭成的几何体,则它的俯视图的面积为517、一个物体由多个完全相同的小正方体组成,它的三视图如图1所示,那么组成这个物体的小正方体的个数为418、将棱长是lcm 的小正方体组成如右下图所示的几何体,那么这个几何体的表面积是36cm 219、将一个三角板放在太阳光下,它所形成的投影是三角形,也可能是 一条线段.20、一个几何体的三视图如右图所示,那么这个几何体的侧面积是6π A D C B 第14题图主视图 左视图俯视图第17题图 18 题 (第20题) 3 2 3三、解答题(第21、22、23题每题各10分,第24题12分,第25、26题各14分)21、画出图5中三棱柱的主视图、左视图、俯视图.图522、画出图6中空心圆柱的主视图、左视图、俯视图.图 6 23、一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.解:该几何体的形状是直四棱柱(答直棱柱,四棱柱,棱柱也给分).由三视图知,棱柱底面菱形的对角线长分别为4cm,3cm.∴菱形的边长为52 cm,棱柱的侧面积=52×8×4=80(cm2).24、如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;主视图俯视图左视图4cm 3cm 8cm(3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表面爬到AC 的中点D ,请你求出这个线路的最短路程 .(1) 圆锥;(2) 表面积S=πππππ164122=+=+=+r rl S S 圆扇形(平方厘米)(3) 如图将圆锥侧面展开,线段BD 为所求的最短路程 .由条件得,∠BAB ′=120°,C 为弧BB ′中点,所以BD =33 . 25、如图8为住宅区内的两幢楼,它们的高AB=CD=30m ,两楼间的距离AC=30m ,现需了解甲楼对乙楼的采光的影响情况,(1)当太阳光与水平线的夹角为30°角时,求甲楼的影子在乙楼上有多高(精确到0.1m ,=3 1.73);(2)若要甲楼的影子刚好不落在乙楼的墙上,此时太阳与水平线的夹角为多少度?解:如图,延长OB 交DC 于E ,作EF ⊥AB ,交AB 于F ,在Rt △BEF 中,∵EF=AC=30m ,∠FEB=30°,∴BE=2BF.设BF=x,则 BE=2x.根据勾股定理知 BE 2=BF 2+EF 2 ∴(2x )2=x 2+302∴310±=x (负值舍去),∴3.17≈x (m )因此,EC=30-17.3=12.7(m )。
上海路中学2010-2011学年度第一学期九年级视图与投影单元检测题
一、选择题:(每小题4分,共40分)
1.下列命题正确的是()A 三视图是中心投影 B 小华观察牡丹话,牡丹花就是视点
C 球的三视图均是半径相等的圆
D 阳光从矩形窗子里照射到地面上得到的光区仍是矩形2.平行投影中的光线是()A 平行的 B 聚成一点的 C 不平行的 D 向四面八方发散的
3.在同一时刻,两根长度不等的柑子置于阳光之下,但它们的影长相等,那么这两根竿子的相对位置是()
A 两根都垂直于地面
B 两根平行斜插在地上
C 两根竿子不平行
D 一根到在地上4
.有一实物如图,那么它的主视图
(
)
A
B C D
5.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右
图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )
6.小明从正面观察下图所示的两个物体,看到的是()
7.在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为()
A、16m
B、18m
C、20m
D、22m
8.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子()
A. 相交
B. 平行
C. 垂直
D. 无法确定
9.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动
的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为
( )
A. 上午12时
B. 上午10时
C. 上午9时30分
D. 上午8时
10.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方那些高一些的建筑物好像“沉”到
了位于它们前面那些矮一些的建筑物后面去了。
这是因为()
A 汽车开的很快
B 盲区减小
C 盲区增大
D 无法确定
二.填空题:(每小题4分,共20分)
11.在平行投影中,两人的高度和他们的影子;
12.小军晚上到乌当广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说:“广
场上的大灯泡一定位于两人”;
13.圆柱的左视图是,俯视图是;
14.如图,一几何体的三视图如右:
那么这个几何体是;
15.一个四棱锥的俯视图是;
三.(本题共2小题, 每小题8分,计16分)
16.如图所示:大王站在墙前,小明站在墙后,大王
不能让小明看见,请你画出小明的活动区域。
17.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子;
四.(本题共2小题, 每小题9分,计18分)
18.李栓身高1. 88 m ,王鹏身高1.60 m ,他们在同一时刻站在阳光下,李栓的影子长为1.20 m ,
求王鹏的影长。
B
A C D
正面
A B C D
俯视图左视图主视图
墙
大王
19.立体图形的三视图如下,请你画出它的立体图形: 五.(本题共2小题, 每小题10分,计20分)
20.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能
挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情
况下,请问新建楼房最高多少米?(结果精确到1米.732.13≈,414.12≈)
21. 一个物体的正视图、俯视图如图所示,请你画出该物体的左视图并说出该物体形状的名称.
六.(本题共3小题, 每小题12分,计36分) 22.画出下面实物的三视图:
23.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:
实践:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如右示意图的测量方案:
把镜子放在离树(AB )8.7米的点E 处,然后沿着直线BE 后退到点D ,这是恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7米,观察者目高CD =1.6米,请你计算树(AB )的高度.(精确到0.1米)
24.已知,如图,AB 和DE 是直立在地面上的两根立柱.AB =5m ,某一时刻AB 在阳光下的投影 BC =3m.
(1)请你在图中画出此时DE 在阳光下的投影;
(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.
D E
A C
B
图 5
俯视
图正
视图俯视图左视图主视图
水平线 A B C
D 30° 新 楼 1米 40米 旧 楼
(26)
题
A B 太 阳 光 线 C
D E
参考答案:
一.选择题:
1.C ; 2.A ; 3.C ; 4.A ; 5.B ;6.C ; 7.C ; 8.B ;9.D ; 10.C ; 二.填空题: 11.对应成比例; 12.中间的上方; 13.矩形,圆; 14.圆锥;
15.画有对角线的矩形; 16 题图 三.
16. 如图 17. 如图
17题图
四
18.41.1m 19.略; 五
20.解:过点C 作CE ⊥BD 于E ,(作辅助线1分)
∵AB = 40米
∴CE = 40米
∵阳光入射角为︒30 ∴∠DCE =︒30
在Rt ⊿DCE 中 CE
DE
DCE =∠tan
∴
3
3
40=
DE ∴233
3
40≈⨯
=DE ,而AC = BE = 1米 ∴DB = BE + ED =24231=+米 答:新建楼房最高约24米。
(无答扣1分) 21. 略.
六、 22.略
23 . 解:实践一:由题意知 ∠CED =∠AEB ,∠CDE =∠ABE =Rt ∠ ∴△CED ∽△AEB
∴
BE AB DE CD = ∴7
.87.26.1AB
= ∴AB ≈5.2米
24.解:(1)
(连接AC ,过点D 作DE //AC ,交直线BC 于点F ,线段EF 即为DE 的投影) (2)∵AC //DF ,∴∠ACB =∠DFE .
∵∠ABC =∠DEF =90°∴△ABC ∽△DEF .
53
,.6
AB BC DE EF DE ∴
=∴= ∴DE =10(m ).
说明:画图时,不要求学生做文字说明,只要画出两条平行线AC 和DF ,再连结EF 即可.
A E D
C
B F
墙
大王
水平线
A
B
C
D 30° 新 楼
1米
40米
旧 楼
E
灯泡。