如何设计阻抗匹配网络第一部分
- 格式:ppt
- 大小:1015.00 KB
- 文档页数:17
阻抗匹配设计原理及⽅法阻抗匹配(Impedance matching)是微波电⼦学⾥的⼀部分,主要⽤于传输线上,来达⾄所有⾼频的微波信号皆能传⾄负载点的⽬的,⼏乎不会有信号反射回来源点,从⽽提升能源效益。
阻抗匹配有两种,⼀种是透过改变阻抗⼒(lumped-circuit matching),另⼀种则是调整传输线的波长(transmission line matching)。
要匹配⼀组线路,⾸先把负载点的阻抗值,除以传输线的特性阻抗值来归⼀化,然后把数值划在史密斯图上。
改变阻抗⼒把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿着代表实数电阻的圆圈⾛动。
如果把电容或电感接地,⾸先图表上的点会以图中⼼旋转180度,然后才沿电阻圈⾛动,再沿中⼼旋转180度。
重复以上⽅法直⾄电阻值变成1,即可直接把阻抗⼒变为零完成匹配。
阻抗匹配:简单的说就是「特性阻抗」等于「负载阻抗」。
调整传输线由负载点⾄来源点加长传输线,在图表上的圆点会沿着图中⼼以逆时针⽅向⾛动,直⾄⾛到电阻值为1的圆圈上,即可加电容或电感把阻抗⼒调整为零,完成匹配。
阻抗匹配则传输功率⼤,对于⼀个电源来讲,单它的内阻等于负载时,输出功率最⼤,此时阻抗匹配。
最⼤功率传输定理,如果是⾼频的话,就是⽆反射波。
对于普通的宽频放⼤器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远⼤于电缆长度,即缆长可以忽略的话,就⽆须考虑阻抗匹配了。
阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产⽣反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。
⾼速PCB布线时,为了防⽌信号的反射,要求是线路的阻抗为50欧姆。
这是个⼤约的数字,⼀般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整⽽已,为了匹配⽅便.阻抗从字⾯上看就与电阻不⼀样,其中只有⼀个阻字是相同的,⽽另⼀个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延⼀点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。
用LC元件设计L型的阻抗匹配网络一设计要求:用分立LC设计一个L型阻抗匹配网络,使阻抗为Z=25-j*15 Ohm的信号源s与阻抗为Z=100-j*25 Ohm的负载匹配,频率为50Mhz。
(L节匹配网络)L二阻抗匹配的原理用两个电抗元件设计L型的匹配网络,应该是匹配网络设计中最简单的一种,但仅适用于较小的频率和电路尺寸的范围,即L型的匹配网络有其局限性在RF理论中,微波电路和系统的设计(包括天线,雷达等),不管是无源电路还是有源电路,都必须考虑他们的阻抗匹配(impedance matching)问题。
阻抗匹配网络是设计微波电路和系统时采用最多的电路元件。
其根本原因是微波电路传输的是电磁波,不匹配会引起严重的反射,致使严重损耗。
所以在设计时,设计一个好的阻抗匹配网络是非常重要的。
阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。
对于不同特性的电路,匹配条件是不一样的。
在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。
根据最大功率传输定理,要获得信号源端到负载端的最大传输功率,需要满足信号源阻抗与R?iX?R?iXX?X?0,负载阻抗互为共轭的条件,。
若电路为纯电阻电路则即LLSLSS R?R。
而此定理表现在高频电路上,则是表示无反射波,即反射系数为0.即LS值得注意的是,要得到最佳效率的能量传输并不需要负载匹配,此条件只是避免能量从负载端到信号源端形成反射的必要条件。
当RL=Rs 时可获得最大输出功率,此时为阻抗匹配状态。
无论负载电阻大于还是小于信号源内阻,都不可能使负载获得最大功率,且两个电阻值偏差越大,输出功率越小. 阻抗匹配是无线电技术中常见的一种工作状态,它反映了输人电路与输出电路之间的功率传输关系。
当电路实现阻抗匹配时,将获得最大的功率传输。
反之,当电路阻抗失配时,不但得不到最大的功率传输,还可能对电路产生损害。
用LC元件设计L型的阻抗匹配网络一设计要求:用分立LC设计一个L型阻抗匹配网络,使阻抗为Z=25-j*15 Ohm的信号源s与阻抗为Z=100-j*25 Ohm的负载匹配,频率为50Mhz。
(L节匹配网络)L二阻抗匹配的原理用两个电抗元件设计L型的匹配网络,应该是匹配网络设计中最简单的一种,但仅适用于较小的频率和电路尺寸的范围,即L型的匹配网络有其局限性在RF理论中,微波电路和系统的设计(包括天线,雷达等),不管是无源电路还是有源电路,都必须考虑他们的阻抗匹配(impedance matching)问题。
阻抗匹配网络是设计微波电路和系统时采用最多的电路元件。
其根本原因是微波电路传输的是电磁波,不匹配会引起严重的反射,致使严重损耗。
所以在设计时,设计一个好的阻抗匹配网络是非常重要的。
阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。
对于不同特性的电路,匹配条件是不一样的。
在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。
根据最大功率传输定理,要获得信号源端到负载端的最大传输功率,需要满足信号源阻抗与R?iX?R?iXX?X?0,负载阻抗互为共轭的条件,。
若电路为纯电阻电路则即LLSLSS R?R。
而此定理表现在高频电路上,则是表示无反射波,即反射系数为0.即LS值得注意的是,要得到最佳效率的能量传输并不需要负载匹配,此条件只是避免能量从负载端到信号源端形成反射的必要条件。
当RL=Rs 时可获得最大输出功率,此时为阻抗匹配状态。
无论负载电阻大于还是小于信号源内阻,都不可能使负载获得最大功率,且两个电阻值偏差越大,输出功率越小. 阻抗匹配是无线电技术中常见的一种工作状态,它反映了输人电路与输出电路之间的功率传输关系。
当电路实现阻抗匹配时,将获得最大的功率传输。
反之,当电路阻抗失配时,不但得不到最大的功率传输,还可能对电路产生损害。
实验二衰减及阻抗匹配网络的设计一、实验目的⒈了解衰减器和网络匹配的特点。
⒉学习常用衰减器和匹配网络的设计方法。
⒊学习精确阻值电阻的制作。
二、原理与说明⒈衰减器的主要用途在信号源与负载之间插入衰减器,使信号通过它产生一定大小或可以调节的衰减,以满足负载或下一级网络在正常工作时对输入信号幅度的要求。
常用的衰减网络结构有倒L型、T型、П型和桥T型等几种。
⒉常用衰减器的衰减量有连续可调和按步级衰减两种衰减器的衰减量,即衰减倍数可直接用输入、输出电压比表示,也可以用它的dB数表示。
图2-1和图2-2所示为两种按分压器原理工作的衰减器,其中图2-1所示是一个电位器,它的分压比连续可调;图2-2规律衰减的步级衰减器,这两种衰减器都可等效成倒L型网络,输入特性阻抗和输出特性阻抗不等,且随衰减量的不同而变化。
此类衰减器常用在对匹配要求不高的场合,并且要求负载电阻越大越好。
图2-1图2-2⒊对称网络衰减器当要求衰减器的插入不改变前后级匹配状况时,常采用如图2-3所示T型或П型对称网络衰减器。
这类对称网络的特点是输入、输出特性阻抗一致且不随衰减档级而变化。
R RR(a)(b)图2-3若衰减器的电压衰减倍数12U N U ⎛⎫⎪⎝⎭和特性阻抗C Z 给定,则元件参数可由(2-1)式或(2-2)式决定。
对П型衰减器有2112C N R Z N -=211CN R Z N +=- (2-1) 对T 型衰减器有111CN R Z N -=+ 2221C NR Z N =- (2-2)图2-4用多个相同的衰减器级联可构成一个步级衰减器,如图2-4所示。
由于其中两个2R 并联可用一个2R /2来等效,因此还可以用图2-5所示梯形电路构成衰减器。
由于是对称网络,级联后输入输出特性阻抗不变,而总衰减量为各级衰减量相乘或dB 数之和。
图2-5⒋ 倒L 型网络衰减器当前后级或信号源与负载网络不匹配时,可以插入一倒L 型网络,使之成为匹配传输网络(倒L 型网络本身是衰减器,因此在匹配的同时也产生衰减)。
一、50ohm特征阻抗终端电阻的应用场合:时钟,数据,地址线的终端串联,差分数据线终端并联等。
终端电阻示图B.终端电阻的作用:1、阻抗匹配,匹配信号源和传输线之间的阻抗,极少反射,避免振荡。
2、减少噪声,降低辐射,防止过冲。
在串联应用情况下,串联的终端电阻和信号线的分布电容以及后级电路的输入电容组成RC滤波器,消弱信号边沿的陡峭程度,防止过冲。
C.终端电阻取决于电缆的特性阻抗。
D.如果使用0805封装、1/10W的贴片电阻,但要防止尖峰脉冲的大电流对电阻的影响,加30PF的电容.E.有高频电路经验的人都知道阻抗匹配的重要性。
在数字电路中时钟、信号的数据传送速度快时,更需注意配线、电缆上的阻抗匹配。
高频电路、图像电路一般都用同轴电缆进行信号的传送,使用特性阻抗为Zo=150Ω、75Ω的同轴电缆。
同轴电缆的特性阻抗Zo,由电缆的内部导体和外部屏蔽内径D及绝缘体的导电率er决定:另外,处理分布常数电路时,用相当于单位长的电感L和静电容量C的比率也能计算,如忽略损耗电阻,则图1是用于测定同轴电缆RG58A/U、长度5m的输入阻抗ZIN时的电路构成。
这里研究随着终端电阻RT的值,传送线路的阻抗如何变化。
图1 同轴传送线路的终端电阻构成只有当同轴电缆的特性阻抗Zo和终端阻抗RT的值相等时,即ZIN=Zo=RT称为阻抗匹配。
Zo≠RT时随着频率f,ZIN变化。
作为一个极端的例子,当RT=0、RT=∞时可理解其性质(阻抗以,λ/4为周期起伏波动)。
图2是RT=50Ω(稍微波动的曲线)、75Ω、dOΩ时的输人阻抗特性。
当Zo≠RT时由于随着频率,特性阻抗会变化,所以传送的电缆的频率特上产生弯曲.二、怎样理解阻抗匹配?阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。
阻抗匹配分为低频和高频两种情况讨论。
我们先从直流电压源驱动一个负载入手。
由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。
实验四 阻抗匹配网络理论一、 实验目的1. 了解基本的阻抗匹配理论;2. 利用实验模组实际测量以了解匹配电路的特性。
二、 实验原理在高频电路设计中,阻抗匹配是很重要的一环。
从直流电路的基本理论中,我们知道若信号源的电阻与输出之负载电阻相同时,就可在输出端得到最大的功率输出。
但是在交流电路中,除了电阻,尚有电容与电感等电抗性组件,因此若要求得到最大功率输出时,除了两端的电阻相等外,还需信号源的电抗与负载的电抗互成共轭才行。
所以阻抗匹配的目的就是经由适当方法选择组件使得信号源与负载两端的电抗值成共轭关系,以便产生谐振而互相抵消,使得电路中仅存电阻性,而能得到最大功率传输。
其次,由于现成的网络组件,其阻抗值会随着频率的变化而变化,因此阻抗匹配只能适用于某一特定的频率,但是对于宽频的电路来说,所设计的电路都期望能涵盖整个频宽。
就理论而言,可借着适当方法来增加阻抗匹配的频宽范围。
如图7-1(a )所示:输入信号经过传输以后,其输出功率与输入功率之间存在以下关系,信号的输出功率直接决定于输入阻抗与输出阻抗之比。
inout S S in SL LL S S L P k kP R V P R k R R R R V R I Pout ⋅+=⇒=⋅=⋅+=⋅=22222)1()(图7-1(a ) 输出输入功率关系图输出功率与阻抗比例的关系图见图7-1(b )。
由图可知,当R L =R S 时可获得最大输出功率,此时为阻抗匹配状态。
图7-1(b)输出功率与阻抗比例关系图推而广之,如图7-1(c)所示,当输入阻抗Z S与负载阻抗Z L间成为Z S=Z L*的关系时,满足广义阻抗匹配的条件。
所以,阻抗匹配电路也可以称为阻抗变换器。
当Z L=Z S*,即是[匹配]图7-1(c) 广义[阻抗匹配]关系图欲得到最大的功率输出,则须对电路加以阻抗匹配,阻抗匹配网络一般可分为三种:L 型、π型及T 型三种。
选用何种匹配端视情况而定,除非有特别需求,一般都是以最少的零件来完成匹配。
Feb. 18. 2011Feb. 18. 2011Feb. 18. 2011无线通信系统通常可由射频电路和数字电路两部分所组成,但两者在设计规则和应用场合的不同使之具有很大的差别,主要表现在阻抗、阻抗匹配、吸入电流、在系统的位置以及传输的类型等方面。
Feb. 18. 2011Feb. 18. 2011当数字电路的数据传输速率接近或达到射频频率时,高速数字电路的结构和特点会发生变化,其阻抗匹配变得尤为重要。
高速数字电路的设计需要的设计经验和背景。
Feb. 18. 2011当信号源阻抗和负载阻抗不是正好共轭匹配时,为了实现信号源到负载之间的无相移最大功率传输,就需Feb. 18. 2011Feb. 18. 2011 Feb. 18. 2011Feb. 18. 2011 Feb. 18. 2011Feb. 18. 2011廉、性能最可靠、调节最简便为第一目标基于集总元件的匹配电路拓扑结构Feb. 18. 2011Feb. 18. 2011From SEIEE SJTU•从连接结构上来看,可以有串联连接和并联连接的不同连接,•从滤波特性上来看,可以有低通滤波器和高通滤波器之分•从匹配特性上来看,可以分别适用于Zs>ZL 或者Zs<ZLFeb. 18. 2011Feb. 18. 2011From SEIEE SJTU1Feb. 18. 2011Feb. 18. 2011Feb. 18. 2011From SEIEE SJTURs<R LRs>R LFeb. 18. 2011(1) R S <R L选择LC 低通或CL 高通滤波结构的匹配电路:C S S f X L π2=S C S X f C π21=Feb. 18. 2011S L LL L S S S 选择CL 低通或LC 高通滤波结构的匹配电路:S C P f X L X f C ππ221==C S P f X L π2=Feb. 18. 2011Feb. 18. 2011Feb. 18. 2011••Feb. 18. 2011Feb. 18. 2011Feb. 18. 2011From SEIEE SJTUSmith 圆图匹配网络图解设计示意图Feb. 18. 2011Feb. 18. 20116. Feb. 18. 2011From SEIEE SJTUSmith 圆图上的四个区域:区域1:低电阻(或高电导):区域2:高电阻(或低电导):区域3:低电阻低电导正电抗:区域4:低电阻低电导正电抗:Feb. 18. 2011From SEIEE SJTUFeb. 18. 2011From SEIEE SJTUFeb. 18. 2011From SEIEE SJTUFeb. 18. 2011From SEIEE SJTUFeb. 18. 2011From SEIEE SJTU 匹配P2线路结构只可应用于区域1和4,而不能应用于区域2和3。
阻抗匹配及调配网络参数设计作者:李俊学, 李湛宇来源:《物联网技术》2011年第10期摘要:在信息传输系统中,不论是超高频、高频还是低频,阻抗匹配都是一个极为重要的环节。
为了能使能量得到有效地传输,使负载得到最大的有效功率,文中给出了阻抗匹配的方法及网络计算公式,同时给出了抑制射频倒送的主要方法。
关键词:阻抗匹配;网络参数;射频倒送;信息传输中图分类号:TN92 文献标识码:A文章编号:2095-1302(2011)10-0072-LI Jun--(1.Shaanxi People′s Broadcasting Station, Xi’an 710068, China; 2 Xi’an Jiaotong University,Abstract: In the information transmission system, whether it is ultra-high frequency, high frequency or low frequency, impedance matching is an extremely important part. In order to enable the effective transmission of energy, and to maximize the effective power of load, methods of impedance matching and formulas of network computation are proposed, and the inhibition of RFKeywords: impedance matching; network parameters; RF send down; information0 引言所谓阻抗匹配,一般来说,就是任意一负载通过一个特殊的网络,都应将其转换为某设备或电路所要求的特定阻抗,以使其获得最大的能量,从而达到最佳的传输效果。
矩形微带天线设计与阻抗匹配网络矩形微带天线设计与阻抗匹配网络引言:微带天线是一种工作在无线通信系统中的重要天线结构,其具有小型化、轻量化、易于集成电路等优点,在现代无线通信系统中得到了广泛应用。
而阻抗匹配网络作为微带天线的关键部分,对于天线的性能起着决定性作用。
本文主要对矩形微带天线设计及其阻抗匹配网络进行研究和分析。
一、矩形微带天线的设计:为了确定矩形微带天线的结构参数和工作频率,需要进行天线的几何构造和电磁参数的计算。
首先,确定天线的长度和宽度,通过优化设计得到最佳的工作频率。
在设计中,天线长度可以用来调节天线的谐振频率,而天线宽度则是用来控制天线的输入阻抗。
根据实际需求,可以选择不同尺寸的矩形微带天线结构。
然后,通过天线的电磁参数计算,包括互感、电感、电容等等,可以确定天线在所选频率下的输入阻抗和谐振条件。
二、矩形微带天线的阻抗匹配网络设计:矩形微带天线由于其特殊的结构和工作原理,导致其输入阻抗常常不匹配。
为了提高天线的实际效能,需要设计适当的阻抗匹配网络,将天线的输入阻抗与发射/接收端的信号源阻抗进行匹配。
阻抗匹配网络的设计目标是使天线输入阻抗与信号源的阻抗相等,从而减小反射损耗,提高天线的效率。
常见的阻抗匹配网络包括LC网络、T型网络和π型网络等。
三、矩形微带天线的性能评估:对于矩形微带天线的设计和阻抗匹配网络的优化,需要进行性能评估。
常见的评估指标包括输入阻抗、驻波比、增益、辐射方向性等。
其中,输入阻抗是确保天线和信号源匹配的重要指标,驻波比则体现了天线的效率和信号的传输质量,增益则是反映了天线的辐射能力。
四、矩形微带天线设计的实例分析:为了验证矩形微带天线的设计与阻抗匹配网络的有效性,我们设计了一个具体的实例。
通过模拟软件和硬件实验的手段,我们得到了矩形微带天线在设计频率下的输入阻抗和驻波比。
然后,通过调整阻抗匹配网络,使得天线的输入阻抗与信号源的阻抗相匹配。
最后,评估天线的增益、辐射方向性等性能指标。
实验三 阻抗匹配网络的设计与仿真一、实验设计目标1、设计目标:设计微带单枝短截线匹配电路,把阻抗Ohm j Z L )50*30(+=的负载匹配到阻抗Ohm j Z s )40*55(-=的信号源,中心频率为1.5GHz2、设计目标:设计L 型阻抗匹配网络,使Ohm j Z s )15*25(-=信号源与Ohm j Z L )25*100(-=的负载匹配,频率为50MHz二、实验设备1、台式电脑 1台 配置要符合相关软件要求2、ADS 软件 1套 微波软件三、实验过程及仿真结果1、新建工程和设计原理图如图1所示。
设置仿真参数,进行仿真,仿真结果如图2所示。
2、分立电容电感匹配在频率不是很高的应用场合,可以使用分立电容电感器件进行不同阻抗之间的匹配,如果频率不高,分立器件的寄生参数对整体性能的影响可以忽略。
用分立电容电感进行匹配设计的步骤如下:(1)在原理图中设定输入输出端口和相应的阻抗(2)在原理图里加入Smith Chart Matching 控件,并设置相关的频率和输入输出阻抗等参数(3)打开Smith Chart Utility ,倒入对应Smith Chart Matching 控件的相关参数或者输入相关参数(4)Smith Chart Utility 中选用器件完成匹配(5)生成匹配的原理图。
四、实验过程及仿真结果设计1的实验原理图图1,设计1的等效电路图图2,设计1的Smith 图形图3,设计1的仿真图形图4,设计2的实验原理图图5,设计2的等效电路图图6,设计2的Smith 图形图7,设计2的仿真图形图8。
五、实验体会本次实验让我了解了阻抗匹配网络的设计与仿真。
我感觉自己懂得还是很少,不过经过这两次实验自己不断摸索,发现并学会了很多的关于射频电路设计方面的东西,我感觉自己对这方面兴趣挺大的,不过要准备考研,这学期的课都没有好好上,也是一种遗憾,射频这方面的学习也只能学到这种很模糊的状态了,如果以后还接触的话,我一定好好学。
干货——详解高速电路设计阻抗匹配的几种方法电路如同人工智能的经脉与网络为什么要阻抗匹配?在高速数字电路系统中,电路数据传输线上阻抗如果不匹配会引起数据信号反射,造成过冲、下冲和振铃等信号畸变,当然信号沿传输线传播过程当中,如果传输线上各处具有一致的信号传播速度,并且单位长度上的电容也一样,那么信号在传播过程中总是看到完全一致的瞬间阻抗。
由于在整个传输线上阻抗维持恒定不变,我们给出一个特定的名称,来表示特定的传输线的这种特征或者是特性,称之为该传输线的特征阻抗。
特征阻抗是指信号沿传输线传播时,信号感受的瞬间阻抗的值。
特征阻抗主要参数与PCB导线所在的板层、PCB所用的材质(介电常数)、走线宽度、导线与平面的距离等因素有关,与走线长度无关。
特征阻抗可以使用软件计算。
高速PCB布线中,一般把数字信号的走线阻抗设计为50欧姆,这是个大约的数字。
一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线(差分)为100欧姆。
而减小反射的方法是根据传输线的特性阻抗在其发送端串联端接使源阻抗与传输线阻抗匹配或者在接收端并联端接使负载阻抗与传输线阻抗匹配,从而使源反射系数或者负载反射系数为零。
常用的端接方式为:串联端接、简单的并联端接、戴维宁端接、RC网络端接等。
下面我们将分别对这几种端接方式进行分析1、串联端接串联端接在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射。
匹配电阻选择原则:匹配电阻值与驱动器的输出阻抗之和等于传输线的特征阻抗。
常见的CMOS和TTL驱动器,其输出阻抗会随信号的电平大小变化而变化。
因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑。
链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。
串联匹配是最常用的终端匹配方法。
它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗,而且只需要一个电阻元件。
rf阻抗匹配网络器件制备
RF(射频)阻抗匹配网络是一种专门用于射频设备的匹配网络,它可以有效地将收发机的输出功率提高到最大,使其发射功率最大化,从而提高发射机的性能。
它也可以有效地抑制信号反射,减少失真和噪声,使收发机的性能提高。
RF阻抗匹配网络器件的制备是一个复杂的过程,但可以采用以下步骤来完成:
1.首先,根据收发机的参数,计算出阻抗匹配网络器件的电路参数,这些参数包括电容、电感、反射系数等;
2.然后,根据计算的参数,选择适当的元件,如电容、电感、电阻器等,并组装成电路;
3.接着,在电路中加入收发机的输入和输出器件,以形成阻抗匹配网络;
4.最后,使用仪器测试阻抗匹配网络的参数,确保网络的性能符合要求。
经过上述步骤,RF阻抗匹配网络器件就可以制备完毕,从而提高收发机的性能。
用LC 元件设计L 型的阻抗匹配网络一 设计要求:用分立LC 设计一个L 型阻抗匹配网络,使阻抗为Z s =25-j*15 Ohm 的信号源与阻抗为Z L =100-j*25 Ohm 的负载匹配,频率为50Mhz 。
(L 节匹配网络)二 阻抗匹配的原理用两个电抗元件设计L 型的匹配网络,应该是匹配网络设计中最简单的一种, 但仅适用于较小的频率和电路尺寸的范围,即L 型的匹配网络有其局限性在RF 理论中,微波电路和系统的设计(包括天线,雷达等),不管是无源电路还是有源电路,都必须考虑他们的阻抗匹配(impedance matching )问题。
阻抗匹配网络是设计微波电路和系统时采用最多的电路元件。
其根本原因是微波电路传输的是电磁波,不匹配会引起严重的反射,致使严重损耗。
所以在设计时,设计一个好的阻抗匹配网络是非常重要的。
阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。
对于不同特性的电路,匹配条件是不一样的。
在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。
根据最大功率传输定理,要获得信号源端到负载端的最大传输功率,需要满足信号源阻抗与负载阻抗互为共轭的条件,即。
若电路为纯电阻电路则L L S S iX R iX R +=+,即。
而此定理表现在高频电路上,则是表示无反射波,0==L S X X L S R R =即反射系数为0.值得注意的是,要得到最佳效率的能量传输并不需要负载匹配,此条件只是避免能量从负载端到信号源端形成反射的必要条件。
当RL=Rs 时可获得最大输出功率,此时为阻抗匹配状态。
无论负载电阻大于还是小于信号源内阻,都不可能使负载获得最大功率,且两个电阻值偏差越大,输出功率越小. 阻抗匹配是无线电技术中常见的一种工作状态,它反映了输人电路与输出电路之间的功率传输关系。
当电路实现阻抗匹配时,将获得最大的功率传输。
用LC 元件设计L 型的阻抗匹配网络一 设计要求:用分立LC 设计一个L 型阻抗匹配网络,使阻抗为Z s =25-j*15 Ohm 的信号源与阻抗为Z L =100-j*25 Ohm 的负载匹配,频率为50Mhz 。
(L 节匹配网络)二 阻抗匹配的原理用两个电抗元件设计L 型的匹配网络,应该是匹配网络设计中最简单的一种, 但仅适用于较小的频率和电路尺寸的围,即L 型的匹配网络有其局限性在RF 理论中,微波电路和系统的设计(包括天线,雷达等),不管是无源电路还是有源电路,都必须考虑他们的阻抗匹配(impedance matching )问题。
阻抗匹配网络是设计微波电路和系统时采用最多的电路元件。
其根本原因是微波电路传输的是电磁波,不匹配会引起严重的反射,致使严重损耗。
所以在设计时,设计一个好的阻抗匹配网络是非常重要的。
阻抗匹配是指负载阻抗与激励源部阻抗互相适配,得到最大功率输出的一种工作状态。
对于不同特性的电路,匹配条件是不一样的。
在纯电阻电路中,当负载电阻等于激励源阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。
根据最大功率传输定理,要获得信号源端到负载端的最大传输功率,需要满足信号源阻抗与负载阻抗互为共轭的条件,即L L S S iX R iX R +=+。
若电路为纯电阻电路则0==L S X X ,即L S R R =。
而此定理表现在高频电路上,则是表示无反射波,即反射系数为0.值得注意的是,要得到最佳效率的能量传输并不需要负载匹配,此条件只是避免能量从负载端到信号源端形成反射的必要条件。
当RL=Rs 时可获得最大输出功率,此时为阻抗匹配状态。
无论负载电阻大于还是小于信号源阻,都不可能使负载获得最大功率,且两个电阻值偏差越大,输出功率越小. 阻抗匹配是无线电技术中常见的一种工作状态,它反映了输人电路与输出电路之间的功率传输关系。
当电路实现阻抗匹配时,将获得最大的功率传输。
反之,当电路阻抗失配时,不但得不到最大的功率传输,还可能对电路产生损害。
阻抗匹配网络的设计与制作一、 实验目的1. 了解如何使用史密斯图来设计阻抗匹配网络;2. 了解了解电容抽头与电感抽头匹配网络设计原理;3. 了解宽带匹配网络设计原理。
二、 设计原理阻抗交换器的设计方法,根据使用元件及工作频率高低,大致可分为无源元件型和传输线型两种。
(一) 无源元件型此种电路是利用电感及电容来设计。
根据工作频宽的大小,基本上可分为L 型、T 型及П型等三种。
我们仅以T 型网络为例。
T 型匹配电路(以R S < R L 为例)步骤一:决定工作频率fc 、负载Q 值、输入阻抗R S 及输出阻抗R L 。
并求出R small = MIN( R S ,R L )。
步骤二:依图8-1(a )中所示及下列公式计算出X S1、X P1、X P2及X S2 。
图8-1 (a) T 型匹配电路211(1),,small S S P R R R Q X Q R X Q=⋅+=⋅=L S P LR Q X Q R X R R Q ⋅==-=22222,,1步骤三:根据电路选用元件的不同,可有四种形式。
如图8-1(b )(c )(d )(e )所示。
其中电感及电容值之求法,如下所列:2CXL f π=12C C f Xπ=⋅(b ) (c )(d ) (e )图8-1 (b)、(c)、(d)、(e) T 型匹配电路(二) 传输线型在传统的电子电路设计中,因为其操作频率不高,亦即是信号之波长远大于电路板上传输线之长度,所以于设计上我们可以不考虑讯号在传输在线传输时起点与终端的差异。
然而随着工作频率的上升,信号之波长将不再远大于电路板上传输线之长度,而会接近传输线结构的倍数,所以传统的电路理论无法有效的说明其电压与电流变化的关系以及电压与电流与位置之间的关系。
传输线理论即在阐述电压与电流及位置间的关系,令电压与电流在位置z时为V (z ) 与 I (z ) ,当电波行进一段距离 z + Δz 后,电压与电流分别产生 V (z + Δz ) 、I (z + Δz ) 的变化。